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Abstract
Deepfakes have a huge impact on from multiple standpoints. Current deep fake detection tools lack
real-time detection and accuracy to accommodate the classification speed between classifying the
data into real and fake. Many researchers have tried to implement various models like hybrid
CNN-LSTM or ResNet, MesoNet, or InceptionNet V2 but each model has its drawbacks when it
comes to attention to detail thus we proposed a new hybrid model of CNN-GAN with a Bayesian
approach for its architecture and compared it against two models. This work aims to contribute a
new model and in doing so we have implemented our new model on the famous Deepfake
Detection Challenge (DFDC) dataset by using face extraction from video frames and then our
model was evaluated using a Confusion Matrix and comparing the accuracy results to most
commonly used deep learning models. We have discovered that our proposed model has 80%
accuracy and works within the desired speed of the pipeline. Thus, we conclude our experiment on
deep fake detection using deep learning.

Keywords—Deep fake, CNN, Generative Adversarial Networks, autoencoder, deep learning,
Bayesian, detection

1. Introduction
The concept of deepfake technology has been around since the 1990s yet it only started

gaining attention in the 2010s. The term ‘deepfake’ was coined by a Reddit moderator in 2017.
Back in the 1990s, deepfakes referred to the use of CGIs to generate fake human images. In recent
times, the word ‘deep fakes’ is taken in the context of audio or visual manipulation. Following is
the categorization:

Figure 1: Categories of deep fakes (image source [23])



The use of this technology has been immensely implemented in creative media with ‘face swap’ or
‘facial attribute manipulation’. In this field, the biggest contribution was made by Ian Goodfellow
as he and his team introduced the concept of GAN (Generative Adversarial Network). Eventually,
this doubled the generation of all types of deepfakes including but not limited to audio, video, and
images. [4]

The impact of deepfakes can be massive if these fabrications are used to create a false
narrative in politics or to defame a public figure which might also cause social injustice by creating
falsified events to spread misinformation like wildfire. Even though countries like the United States
tried to create laws in 2019 to prevent destruction with the use of deepfakes, the laws haven’t been
that impactful, thus we need detection tools that work in real-time. It’s a shocking fact that this
invention is used to manufacture unsolicited explicit material where people’s images can be
incorporated in improper situations without their permission. Such cyber violation not only
breaches confidentiality but can also culminate in intense inner conflicts and spoil someone’s good
name. Some other ways that deepfakes can influence are when scammers use audio deepfakes to
scam people or when deepfakes are used to damage a company’s reputation which may also be
leading to changes in the stock market if it is a publicly traded company. Deepfakes can also be
used to disrupt the educational system by feeding false narratives to the younger generation that are
easier to manipulate and can disrupt the trust our society puts in social media. Deepfakes can be
used to replace jobs in the creative industry leaving many unemployed. [3]

As we read up on the many impacts, let us take a look at the advancement of this
technology below:

Figure 2: Timeline of the most significant events in the advancement of deep fakes (image source [23] )

The generation of deep fakes is majorly used for face swapping in videos [2] which can
detected with the following approaches[2]:

A. Visual Feature-based Deepfake Detection
B. Local Feature-based Deepfake Detection
C. Deep Feature-based Deepfake Detection
D. Temporal Feature-based Deepfake Detection



In today’s world, we have many tools for deep fake
creation such as ‘Deepfakes-FaceSwap’, ‘ FaceSwap’,
‘dfaker’, ‘FaceSwap-GAN’and ‘Face2Face’ etc [5] Such
apps can create deep fake content using the neural
network architecture

Figure 3: Face swap example [23]

called as ‘Deep Autoencoder’ that has two parts,
namely encoder and decoder. When the encoder
receives an image, it is converted into a latent
vector that can be converted back into the original
image by the decoder. This is done under conditions
where there is little difference between the original
picture and its reconstruction.

Figure 4: Generation using Deep Autoencoder
[23]

As you can see the Figure 3 how it would work however there are multiple limitations in current
detection techniques and how they impact the current field are the following down below:
Current detection tools have a hard time generalizing toward unseen data and they only do well on
the datasets that they were trained on. In contrast, our proposed model provides a probabilistic
approach that can better handle uncertainty and variability in the data. Adversary assaults can
deceive deepfake recognition systems as insignificant changes to the input data can mislead them.
The Bayesian framework is a tool that can help determine uncertainty and allow for the detection of
adversarial examples. With the inclusion of GANs, it becomes possible to train the models with
adversary instances thus making them resistant to these kinds of assaults. As the techniques for
creating deepfakes continue to improve, the models used for identifying them must be developed
rapidly enough that they can detect new kinds of forgery. The generative component (GAN) allows
for new kinds of deepfake simulation, adapting detection systems immediately to new forgery
types. Additionally, a Bayesian approach provides a framework for incorporating new data into the
model in an organized manner.

Contributions of this paper:
The major contribution of this research is a novel neural network architecture in the deepfake
detection study to solve the above-mentioned limitations so we can avoid the majorly impactful
consequences of deepfakes in various areas.

This paper discusses deep learning models used for deepfake detection and in section 2 we
discuss related work. The research methodology is discussed in section 3 and it also discusses the
design components for the proposed novel deep learning framework in section 3 The
implementation of this research is discussed in section 4. Section 5 presents and discusses the
evaluation results. Section 6 concludes the research and discusses future work.



2. Related Work

In this section, we will focus on different state-of-the-art deep fake detection advancements
contributed by various researchers, evaluate the efficiency of their deep-learning architectural
models, and critically analyze numerous hypotheses.

In 2018, Afchar et al proposed detecting facial video forgery by focusing on the mesoscopic
features of an image by extracting frames with faces in videos using the Viola-Jones object
detection framework which is not as effective as compared to CNN, and then implemented the
MesoNet and MesoInception-4 model which demonstrated high detection rates, with over 98%
accuracy for Deepfake dataset and 95% for Face2Face dataset. Their idea was novel, however, the
simplicity in the layers of the architecture could be better and unfortunately, the study does not
contribute towards the detection of adversarial attacks on deep networks. In spite of its lightness,
the Viola-Jones object detection framework does not have the same efficacy as modern CNN-based
methods that are used for face detection. On the other hand, simple architectures of MesoNet may
find it hard to detect advanced deepfakes; whereas, more complex ones might perform better in
difficult datasets. Additionally, there is no defense against adversarial attacks in this study which is
an important weakness in deep learning models. [1] At Purdue University in 2018, Guera and Delp
used the HOHA dataset to implement CNN to extract feature frames and the use of a 2-node LSTM
model for temporal sequence analysis on the frame. This method was speed efficient however the
number of frames as input for the same video data could easily change the results creating a huge
gap in the results every time. Inconsistent frame inputs affect model performance and result in
instability in detection accuracy. Moreover, it implies a need for advanced models such as
ConvLSTMs or transformers in order to improve its ability to generalize and accurately over a
longer period of time. [8] Amerini, I., and Galteri, L., came up with a novel idea where they used an
optical flow-based method to detect inter-frame dissimilarities and then ran two common neural
networks. Optical flow represents a vector field determined based on two adjacent frames f(t) and
f(t + 1) that help understand the visible movement between the observer and the scene. Specifically,
they hypothesized that the optical flow can take advantage of differences in motion across synthetic
frames compared to those original ones formed through a video camera. This experiment was
implemented on the FaceForensics++ dataset which gave average results yet since it was a novel
idea, grace must be given. Average performance has been obtained from faceforensics++ dataset
using optical flow model which is the recent technique of measuring inter-frame divergences. But it
can drift at some slight deceptions that cause deepfake making the need for better approaches. [9]

In 2020, DeepfakeStack, a deep ensemble learning technique was proposed by Rana and
Sung and the first step in their method was to use 7 DL models and then use stack classifier this
resulted in 1 AUCROC and 99% accuracy but using a large number of models will require immense
processing which is not applicable for daily detection tools. Moreover, using seven deep learning
models and a stack classifier is expensive in terms of computation but this enables us to attain great
accuracy. Therefore in terms of real-time detection and low-resource environments, it becomes
inappropriate since it carries too much load. On the other hand, concerning the ensemble technique
concerning scenarios that require large-scale deepfake detection as well as instant fraud
identification, scalability must be addressed. [10] The research conducted by Worku Muluye [11]
was based on calculating the frequency of eye blinks in a given video to classify it between real and
fake. Firstly VGG16 and ResNet-50 for classifying features on UADFV datasets and for sequence
learning LSTM was used. In the years ahead, techniques for the detection of deepfakes that are
more scalable, accurate, trustworthy and multi-platform will be required for research and



development. Even though this was an interesting approach, it’s not the best approach. By
emphasizing eye blink frequency, the generalizability of the deepfake detection model may be
restricted because it may not take into account other facial components including lip movements or
minor signs, while its robustness may be less efficient in handling complicated videos.

In the study [12], they proposed to use ‘Action-Recognition’ and in their preprocessing,
they used ‘RetinaFace’ even though it was not the best method but their comparison resulted in their
R3D model outperforming I3D which is better at ‘Action-Recognition’. The paper discusses
suboptimal preprocessing (RetinaFace) and its limitations in facial detection, particularly for subtle
manipulations in deepfakes, and its lack of focus on real-time detection, which is crucial for
practical applications like live-stream monitoring. The paper [13] presents a Convolutional Vision
Transformer (CViT), which blends in CNNs as well as Vision Transformers. In this case, CNN
extracts features from facial images while using an attention mechanism to classify these features
by means of a Vision Transformer. Vision transformers along with self-attention methods may come
at a cost because of their plus size computing demands which can make it hard for them to function
well in remote settings where they must work on limited resources over a short period of time. In
addition, in situations where there are few examples or where the samples themselves differ widely
in representation, using transformers on smaller datasets or with imbalanced classes can result in
poor model quality. In 2021, Ismail and Elpeltagy utilized YOLO for face extraction and used
InceptionResNetV2 CNN to extract features from these faces at the same time. The features
obtained from these faces are then passed on to the XGBoost which works as a recognizer at the
uppermost level of CNN network. This experiment was performed on the
CelebDF-FaceForencics++ (c23) merged dataset. However this paper has not mentioned real-time
detection and anything around spoofing attacks thus we need more models. For deepfake detection
scenarios, which usually involve live content validation, the model reflects the essential real-time
detection aspect (Cristian, 2019). It does not take into account defense mechanisms against
adversarial attacks or spoofing attempts usually associated with it. [14] In 2022, Chen and Li
proposed a novel algorithm Xception-LSTM algorithm while using a spatiotemporal attention
mechanism and convolutional long short-term memory (ConvLSTM). The algorithm has been built
on a spatiotemporal attention mechanism, which consists of both spatial and temporal attention
mechanisms for capturing and enhancing spatiotemporal correlations before dimension reduction of
Xception. After that, ConvLSTM is presented to take into account the frame structure information
when modeling temporal information. Unfortunately, this cannot keep up with the calculations
within the frames but this is a great theory to build on in the future. The spatiotemporal attention
mechanism and ConvLSTMs can be computationally expensive, making real-time deployment
challenging. Additionally, the method faces challenges with frame sequence disruptions, affecting
performance over long video inputs. [15]

The paper[16] presents a novel approach to deepfake prevention by embedding
watermarks into video frames using an enhanced steganography technique based on GANs
(Generative Adversarial Networks). The authors propose encoding watermarks into video features
using an attention model trained on a 3D Convolutional Neural Network (CNN). This method aims
to prevent deepfake creation by ensuring that any attempts to manipulate or alter the video frames
result in the detection of inconsistencies in the watermarks. The GAN and CNN models necessitate
extensive computational resources to be trained with this technique. The approach has been
validated against certain datasets, limiting its efficacy to these data sets and possibly precluding its
applicability to every other form of content or deepfake technology. Models like GANs and CNNs
need a lot of computational power both during training and when making predictions. This may



limit their scalability and also make them dependent on particular datasets rendering them less
effective across different kinds of deep fake data.

Using ConvNeXt [17] to extract features, Swin Transformer to process them, and
Autoencoders and Variational Autoencoders for learning the latent data distribution along with
capturing hidden patterns, the GenConViT model enhances deep fake detection. The model can
detect subtle visual and latent features in deep fake videos and has addressed the gap of insufficient
generalizability in previous deep fake detection models. Data scientists are optimizing their models
for generalizability which makes them too intensive to be run on cheap devices. However, because
it employs transformers and autoencoders, the model is computational heavy. This serves as a
barrier to real-time and resource-constrained applications. It may constrain its real-time relevance
because it uses sophisticated parts. The authors [18] proposed a fine-tuned ViT model that uses
global feature extraction and self-attention mechanism and this model was also trained based on
GAN-generated images. But it’s biggest con is that the reliance of the ViT model on self-attention
mechanisms and large-scale transformers could cost a lot in computation, which may put its
utilization in real time or places with little resources at stake. The model's generalizability to
unknown deepfake samples may be limited by overfitting to the training dataset, and its adaptation
to dynamic environments may not adequately address catastrophic forgetting.

In deepfake detection is a new method proposed in the paper that consists of a GAN-CNN
ensemble model with generative replay techniques to reduce catastrophic forgetting, one of the
challenges in CNN models especially during continuous learning tasks. This method is similar to
our proposed model. Therefore, one possibility for the decrease in accuracy is that the model might
be overfitting to the training dataset; another is it may have difficulties generalizing to unknown
samples. Dependence on blur and sharpness discrepancies is the central tenet of the method. As a
result, it might not be applicable to all deepfakes, especially those created by sophisticated
algorithms. Consequently, this means that it will yield unreliable detections of any new deepfake
information from what it has been trained. [19] In a 2023, a blur inconsistency detection system
was developed through an analysis of edge type and sharpness using MultiWavelet transform in this
study. By this ability, it can evaluate if the facial region is hidden in the video or not. [18] Even
though it has 93% this method would be unreliable for unseen data.

In 2024, Hasanaath and Luqman proposed the use of Frequency Enhanced Self-Blended
Images (FSBI). The proposed methodology employs Discrete Wavelet Transforms (DWT), for
purposes of extracting discriminative features from the self-blended images (SBI) so that they can
be used for training a convolutional network architecture model. The SBIs blend an image with
itself by introducing several forgery artifacts in a copy of the image before blending it, in order to
avoid the classifier overfitting specific artifacts through learning more generic representations.
Then, these blended images go into frequency features extractor, which detects those artifacts that
cannot be easily detected in time domain but which are highly significant. This research can be a
benchmark for further studies, however this had disruptive calculation in the frame sequence. As it
analyzes sequentially arranged frames, the model faces some computational issues that could affect
its performance in real-time. Moreover, since self-blended images are utilized as a means of
introducing forgery artifacts, there is a possibility that due to artifact detection specificity in terms
of overfitting may arise. [20]

The FFP-ChT (Facial Feature Points and Ch-Transformer) deepfake video detection
model proposed by Rui Yang is made up of four components. To begin with, a number of frames
from the input video are obtained and sent into the BlazeFace model for face detection. The
outcomes of facial detection are sent to FaceMesh after which 468 facial feature points are taken



out. The feature point Re-Calibration technique is then used to reposition the extracted facial feature
points. Finally, the facial feature points together with their corresponding displacement sequences
are given for classification and forecasting purposes in this paper’s designed Ch-Transformer. This
leads us to combine the predictions on facial feature point displacement sequences with those on
standard facial features so as to determine whether the original video is real or fake. [21] They
could’ve chosen a better face-detection tool. Due to its complexity and potential constraints on
scalability and real-time use, BlazeFace could not be the best choice for deepfake videos with minor
face modifications rather than using it as a facial detection tool that can identify such subtleties
effectively.

Detecting multiple classes of deep fake images using attention-based transformer models
for visual imagery (ViTs) is a completely new approach that employs patch-based deep learning.
The study [22] is concerned with more advanced methods of creating deep fakes such as stable
diffusion and StyleGAN2 that can yield an F1 score of 99.90%. This study looks at how to deal
with multiclass deepfake detection since deepfake generation methods have become more
advanced, especially using ViTs to capture general characteristics like fishing. Even though it is
effective in multi-class deepfake detection, the computationally intensive Vision Transformers
(ViTs) approach is difficult to use in real-time detection systems and may need to be enhanced for
future deepfake generation techniques such as stable diffusion. In such cases, the GAN-based CNN
model can be further improved for example by cutting down computational costs especially when it
is used in real-time situations that require immediate results.
To summarise our findings and more significant models, let’s refer to the following table:

TABLE I: Summary of the different deep fake detection approaches in videos

Ref. Face detector Dataset Accuracy(%) Description of the model

Güera and Delp
(2018)

CNN HOHA dataset 97% CNN + Lstm as sequence
descriptor

Amerini and
Galteri (2019)

CNN FaceForensics++
dataset

75 % Optical flow CNN + ResNet +
VGG

Rana and
Sung(2020)

7 models
ensembled as
base learners

FaceForensics++
dataset

99% DeepfakeStack method

Worku Muluye
(2020)

VGG16 and
ResNet-50

UADFV datasets 93.20% LSTM

Oscar
Lima(2020)

NA Celeb-DF dataset 82% spatiotemporal
convolutional methods

Solomon
Atnafu(2021)

NA DFDC 91 % ViT + CNN

Ismail and
Elpeltagy (2021)

YOLO CelebDF-FaceFor
encics++ (c23)
merged dataset

90.73% CNN + XGBoost

Chen & Li
(2022)

ConvLSTM Multiple datasets 95% Xception-LSTM

Preeti GAN Indian Actor 96.35% GAN + CNN



Sharma(2024) Images Dataset

Hasanaath and
Luqman (2024)

Discrete Wavelet
Transforms
(DWT)

FF++ & Celeb DF 95.49% FSBI

R. Yang (2024) BlazeFace Multiple 92% Ch-Transformer

Muhammad
Asad (2024)

ViTs Synthetic Faces
High Quality
(SFHQ)

70 % Attention-based transformer
models

To conclude the critical analysis of previous works in this area, let us discuss the gaps:
Many models (e.g., DeepfakeStack, CViT, Xception-LSTM) require significant computational
resources which restrict their use in real-time applications. Therefore most of them are
computationally inefficient. Some methods (e.g., CNN + 2-node LSTM, Blur Inconsistency
Detection) produce inconsistent results based on different input frames and consequently have
unreliable performance. It may be impossible for new deepfake techniques to profit from existing
ones because of overfitting and dependency on certain datasets or artifacts (e.g., Worku Muluye’s
eyelid blink detection system, FSBI, GAN-CNN Ensemble). A major challenge in deepfake
detection is posed by adversarial attacks and consequently many methods (e.g., MesoNet,
InceptionResNetV2 + XGBoost) do not counter such attacks. The absence of real time detection in
various models (such as InceptionResNetV2, Watermark-based techniques) can be characterized as
detrimental to their practical utility.

Here is how we fill the above gaps with our model:
The last modification that inspired my model was simply just Bayesian CNNs. Bayesian

convolutional neural networks (CNNs) offer techniques for estimating uncertainty by treating the
weights as probability distributions instead of fixed values. This enables the model to capture
epistemic uncertainty (model uncertainty), which is especially important for deepfake detection
since such a model should be strong and dependable. In deepfake detection, it is important to
estimate uncertainty when classifying video frames or images into real or fake ones. The
uncertainty scores can help in identifying difficult or ambiguous instances where the model is less
confident so that a warning is given when there is need for further analyses. Interpretability:
Bayesian CNNs provide a measure of how much the model “trusts” its predictions, which may lead
to more interpretable deepfake detection models, an essential factor in sensitive applications such as
content moderation or legal environments.

Advantages of adding GAN:
Generated Adversarial Networks (GANs) are expert in generating top-notch artificial data. In a
CNN-GAN framework, the discriminator (CNN) can be trained to differentiate between original
and synthetic images while adversarial examples generated by the generator aid in improving it over
time. The use of GANs together with Bayesian CNNs enables the discriminator to enjoy both robust
learning through adversarial training and understanding uncertainty through bayesian inference.
With such an arrangement, it becomes possible for models to note even slight bogus traces existing
on deep fakes as long as generators advance at making them look like real things. In a Bayesian
CNN-GAN framework, the GAN component serves as a form of regularization to the Bayesian
CNN by producing difficult examples that aid in better generalization and prevent overfitting. This



is specifically significant when subtle alterations are made within deepfakes making them harder to
identify. By exposing the model to different kinds of modifications, real-world deepfakes which can
range in quality and style can be addressed using chain training from GAN within bayesian CNN.
The GAN introduces adversarial examples that mimic the real-world variations of deepfakes. This
collaboration results in a more generalizable model for deepfake detection.

Combining Bayesian CNN with GAN Novelty in Deepfake Identification:
The Probabilistic Discriminative Capability: The application of Bayesian CNN enables a
probabilistic interpretation of classification decisions which increases their trustworthiness and
reliability in critical fields. Adaptive Learning: GANs create synthetic deepfakes which serve as a
continuous challenge to the Bayesian CNN thereby enhancing its capacity to identify more intricate
and high-quality deepfakes. Better Generalization: A fusion between uncertainty estimation and
adversarial training can enhance the generalization ability of a model against new or rare deepfake
techniques taking into account the ever-changing deepfake technology.
The Bayesian CNN-GAN model serves as a new method for the detection of deepfakes, addressing
a number of major gaps. It reduces entire computational burden by amalgamating uncertainty into
one model thus handling inefficiency from computation. The generation of sample, which forms an
important role in GANs’ operations, is carried out during training through synthetic example
creation eliminating the need for some many pre-preparations of data or different kinds of input
configurations. Bayesian CNNs also offer a probabilistic interpretation hence providing more
consistent results across diverse types of deepfakes. A greater variety of manipulations allows the
model to simulate deepfake variations and train on them making it less sensitive to small changes in
the input frames. In the face of unknown patterns, unfamiliar deepfakes are taken care of by
adjusting predictions based on increased uncertainty levels within Bayesian CNNs. This helps avoid
overfitting as it enables continuous learning through generating new sample examples against
changing deepfake techniques from time to time. Adversarial attacks are harder against Bayesian
networks because they involve estimating uncertainty about their predictions (which is inherently
larger than zero). Moreover, during the training phase such kind of model can generate adversarial
deepfakes thereby allowing it recognize both types including those that are crafted intentionally to
deceive their victims and ordinary ones at the same time. By integrating uncertainty estimation into
the CNN directly, running GAN for generating training images at once allows Bayesian CNN-GAN
model to achieve real time detection capability.

3. Methodology
This section discusses the research methodology and the preprocessing before the implementation
of our proposed model.

3.1 Data description:
For our experiment, we have chosen the ‘DFDC’ dataset from Kaggle which a bunch of videos with
a mix of original and deepfakes. There are two files, one with 400 videos and the other one has 802
files and we chose the one with 400 videos to save memory and it comes with train data and test
data split and a CSV file and lastly a metadata JSON file.

3.2 System architecture

Following is a diagram of the system architecture of how our experiment executes:



3.3 Preprocessing

For preprocessing the data given, firstly we focus on dataset features for which we created a
plotting function. After this step, we used cv2 to take in the video path as the input and perform a
video capture and then read these images. Then we have the third function where we extract and
compare different images from the videos. For this function we will take two inputs i.e video path
list and the folder with all the videos. In this process, we will perform the capture and then the
function reads the first frame by opening the file, checking if it was successfully read, convert frame
from BGR to RGB (matplotlib expects RGB format). Now that we have the frames, we have the
next function to detect face features from the image like identify frontal face, eyes, smile and profile
face and display the detected objects over the image. We hae used MTCNN and pretrained
haarcascades to extract the objects in the image frames and for a processed frame we put a red box
around it to show the user. There is a huge need for a folder for all the generated frames and save
paths, we shall do so with the proved ‘metadata’ file in the training video folder. Initialising
‘dlib.get_frontal_face_detector()’ for the face and the convert it to PIL to create an array of
classified paths and save them in a file called ‘real’ or ‘fake’ based on their characteristics. After
processing all 400 videos, we have the following stats that there were 25% real images and 75%
fake images. We even displayed a few examples by labelling the frames which are zoomed on the
face. After finishing with the preprocessing, we move to implement the neural networks.

4. Implementation

In this section, we will discuss the details of all the models used in the research experiment and
their different layers and why they were chosen. The following are the models implemented:



4.1 XceptionNet
We have used the pre-trained XceptionNet from Keras and it is deep CNN used for feature
extraction making it a great choice as it has also been a great benchmark for other research studies
in this topic. For our model, we also imported ‘ImageDataGenerator’ to generate batches of tensor
images in real time. In order to match the expected input for this model, the code loads a pre-trained
Xception model on ImageNet, without its top classification layer, and sets the input shape to (224,
224, 3). To bring down the dimension, it passes through a GlobalAveragePooling2D layer. One can
set up high-level feature learning by hooking in a dense layer with 1024 units and using ReLU as
the non-linearity. Finally, a dense layer with only one unit is added and its output is activated using
sigmoid so that we can do binary classification (0 or 1 corresponding to real or fake). Using the
Adam optimizer, binary cross-entropy loss function (which is appropriate for binary classification),
and accuracy for evaluation are features of the compiled model. Batches of image information can
be generated using an image data generator. This will reduce pixel values to a range from -1 to 1 by
normalizing them with the factor of 1/255. Using the ‘flow_from_directory’ method, we created
‘train_generator’ and ‘validation_generator’, which read images from the directory, resize them to
‘224x224’ pixels and assign labels according to the corresponding folder structures. These
generators will later serve as data feeders for training and validation purposes. For this particular
model evaluation on validation datasets, the evaluate function is used; during this process, both
validation loss and accuracy are computed before being outputted to standard output.

4.2 EfficientNet
We have implemented the pretrained EfficientNet as our second model. The EfficientNetB0 model
is pre-trained with weights from ImageNet. By including the "include_top=False" parameter, one
can exclude the top-most fully connected layers meant for the ImageNet classification problem, thus
rendering it appropriate for transfer learning to another task. The input shape has been set at (224,
224, 3) in such a way that it satisfies the dimensionality requirements of EfficientNetB0. We used
the following three custom layers in the architecture: 1) GlobalAveragePooling2D: This layer is
important in reducing size of data received from a main model, thus boosting the presence of
features in the whole photo. 2) Dense Layer with 1024 Units: In this task to identify deepfake, a
fully connected layer having 1024 neurons along with ReLU activation is included so as to learn
more about specific complex characteristics related to the deepfake detection process. 3) Output
Layer: A dense layer having only one neuron and sigmoid activation produces a probability score
that indicates if an image represents either authenticity or fakeness (binary classification). We used
the Adam optimizer as the optimizer for speed and Binary cross-entropy is chosen as the loss
function since the task is binary classification.

4.3 Proposed model i.e Bayesian CNN-GAN
We import ‘Matplotlib’ to help visualise the generated images from the GAN. The Bayesian CNN
model has the following layers: it involves Conv2D, MaxPooling2D, Flatten, and Dense layers.l2
regularization is used on each layer to avoid overfitting. Dropout: In the course of training, a
proportion of the input units are set equal to zero at random in order to lessen the chances of
overfitting. To perform binary classification tasks (outputting probabilities for two classes), the
output layer employs two neurons with softmax activation function. Then we have the second half
which is the generator model for GAN: This is made to take all the noise and act to generate
synthetic images. The dense layer receives the input noise and converts it into an image format. The
Conv2DTranspose layers are used to increase the dimensions of the image by shrinking it. During



training of generator, this activation function allows a small gradient when the input is negative,
which helps solve the vanishing gradient problem. The final layer outputs image comprised of 3
channels (RGB) using tanh activation function, to keep pixel values within [-1, 1]. For the third half
of this hybrid, we have the discriminator model which distinguishes between real or fake. We use
three layers here: Conv2D Layers: They are applied in order to downsample input image and extract
features. LeakyReLU: They serve as the activation function for convolutional layers. Dense Layer:
A dense layer with a sigmoid activation function outputs a probability score indicating whether the
image is real or fake. Then we have the GAN class: The ‘Keras.Model’ class is extended by this
custom class that combines the generator with the discriminator into a GAN. The ‘train_step
method’ implements a customized training loop for the GAN. It generates phony images, calculates
losses for both the generator and discriminator, and updates the model weights by applying
gradients. The Adam optimization method and the categorical cross-entropy loss function (which is
appropriate for multi-class classification tasks) are used to compile the Bayesian CNN. A binary
cross-entropy loss function is employed in training the GAN with different optimizers for both
generator and discriminator. The Bayesian CNN is trained on a dataset (X_train, Y_train) with
validation data (X_val, Y_val) for 10 epochs. On the other hand, the GAN is trained on the same
dataset (X_train) but in another context concentrating more on generating non-existing pictures than
classifying them. To conclude why I proposed this model: The main emphasis of the code for the
Bayesian CNN is image classification with advanced techniques added to control overfitting.
Secondly, GAN can be referred to as Generating Adversarial Networks where two models compete
against one another (i.e., generator & discriminator) and learn through their interactions.

5. Evaluation and results

In this section, we evaluate all three models and for the first model i.e. the XceptionNet, the
accuracy was 0.9828 and the loss was 0.5585. The process executes in the following way: The
built-in function called 'evaluate()' is used for computing the loss and accuracy of the model on the
supplied 'validation_generator' which is likely to give batches of validation data that comprise both
features and labels. The evaluate method returns a list with: The first element is the loss incurred
while running the validation set; and secondly, its correct classification rate in that same set. Step
performance: 4s/step - accuracy: 0.9828 - loss: 0.5585 indicates that during evaluation, the model
achieved an accuracy of 0.9828 and a loss of 0.5585 per step (batch). Validation Loss and
Accuracy: The two print statements display: Validation Loss: 0.5599 indicates that the total average
loss over the entire validation set was approximately 0.5599. Validation Accuracy: 0.9733 indicates
that the overall accuracy across the validation set was approximately 97.33%.

From the above, we can see that this model has good performance on the validation set with high
accuracy but moderate loss value. Loss and accuracy are typically used to measure a model’s
performance for tuning purposes.

Next, we move on to the second model which is our EfficientNet model which resulted in 0.0013
for loss and with a validation accuracy of 1.0 which is pretty good. The model performance on the
validation set is computed using evaluation = model.evaluate(validation_generator). The validation
loss can be found in evaluation[0] while evaluation[1] contains the validation accuracy. The
following information is presented for each epoch: Training Accuracy and Loss: In each of the
epochs, the accuracy starts very low at first epoch (0.7293 or 72.93%) while it reaches 100%



accuracy in the latter epochs. The loss values are also relatively high during the first epoch
(0.2866), but they decrease in substantial terms when training extends further. Validation Accuracy
and Loss: The model has a consistent 100% validation accuracy from the first epoch to date. The
validation loss starts as low as 0.0010 at first epoch and remains so for a while signifying good
generalizability of the model. The validation loss for final epoch is 0.0013. After training: Final
Validation Loss: 0 (this implies minimal error on validation set). Final Validation Accuracy: 1.0 (it
means that predictions were perfect). Therefore, this model learned well since both trainings and
validations are at 100%. It also shows low loss values indicating precise predictions especially on
validation set; however whether overfitting actually occurs is still left open even in simple tasks or
datatsets.

Finally, we discuss our proposed model, and to
evaluate the main model we implemented a
confusion matrix as you can see in the figure on the
right. The accuracy is 0.8219 and the loss is 0.9150.
After 10 epochs, the test accuracy is 0.80 which is
great for a novel architectural hybrid. Following is
our classification report for the main model:

precision recall f1-score support

Real 0.50 0.75 0.60 75

Fake 0.93 0.81 0.87 300

accuracy 0.80 375

macro avg 0.71 0.78 0.73 375

weighted avg 0.84 0.80 0.81 375

We conclude the evaluation with the overall accuracy being 80.00%.

6. Conclusions and Future Work

In summary, we took the DFDC sample dataset and preprocessed it to create frames out of videos,
and used feature and object detention using pre-trained MTCNN then we implemented three
models: XceptionNet, EfficientNet, and our proposed model i.e the hybrid Bayesian CNN-GAN
which is a novel neural network architecture in the field of deep fake detection which resulted in
80% test accuracy. There is scope for improvement in the model for the coming future. The
Bayesian CNN-GAN network meant for detecting deepfake records has up to an 80% accurate rate



which is highly preferred compared to other machine-learning models such as XceptionNet and
EfficientNet. With the Bayesian inference incorporated in its functions, it is able to manage any
ambiguous or malicious instance, thereby giving it a stronger force even though its present accuracy
may be low. Account for uncertainties or variability in data that originally deterministic models like
XceptionNet and EfficientNet may not be good at; hence, this increases the model’s generalization
capability. Another advantage of Bayesian CNN-GAN is its adaptability. The GAN part can build
sophisticated and high-quality synthesized images of deepfakes that are hard to detect thereby
enhancing the learning process of the whole system over time. However, with an accuracy rate of
80%, there are some shortcomings in order to surpass completely other existing models including
XceptionNet and EfficientNet. Potential limitations include limited training data especially when
dealing with rare or subtle deepfake examples. Future directions will introduce new strategies
including: Transfer learning, Class balance methods among others such as Synthetic Data
Generation overfitting Progressive GAN training Conditional GANS extraction features Network
Depth etc., Computer Capacity Pruning Techniques among others too.

Data augmentation aims to diversify and balance the dataset for improved generalization.
This means that conditional GANs and progressive training are used in the training of GANs.
Hybrid architectures combine advanced feature extractors with Bayesian uncertainty estimation,
regularization involves dropout, Bayesian ensembling and cross-validation in order to reduce
overfitting. Variational inference or Monte Carlo dropout might help to achieve this problem by
providing a more efficient approximation of the Bayesian posterior.

These suggestions could aid in overcoming the current constraints of the Bayesian
CNN-GAN model and enhance its present 80% prediction accuracy so that it could even outperform
XceptionNet, EfficientNet and other models in terms accuracy as well as interpretability.
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