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Configuration Manual for Proactive Equipment
Maintenance in Manufacturing: Leveraging Modern
Deep Learning for Fault Prediction

Sasi Venkata Krishna Dabbakuti
x23141891

1. Introduction

This configuration manual is designed to guide users through the setup, installation, and
execution of the predictive maintenance system developed as part of the research study on
proactive equipment maintenance. The system leverages advanced machine learning and deep
learning models to predict equipment failures, thereby enabling proactive maintenance
strategies in manufacturing environments. This manual provides detailed instructions on
system specifications, software requirements, installation procedures, dataset acquisition, and
execution of the code implementation.

2. System Specification

To successfully run the predictive maintenance system, the following system specifications
are recommended:

e Operating System: Windows 10 or later, macOS 10.15 or later, or a Linux
distribution (e.g., Ubuntu 18.04 or later)
Processor: Intel Core i5 or AMD equivalent (quad-core) or higher
RAM: Minimum 8 GB (16 GB recommended)
Storage: At least 20 GB of free disk space
GPU: Optional but recommended for deep learning model training (NVIDIA GPU
with CUDA support)
e Internet Connection: Required for downloading datasets and software packages

3. Software Used:

The predictive maintenance system is developed using the following software tools and
libraries:
e Python: Programming language used for implementing predictive models.
e Anaconda: A distribution of Python and R for scientific computing and data
science, which includes package management and deployment.
e Jupyter Notebook: An interactive development environment for writing and
running Python code.
e TensorFlow: An open-source deep learning framework used for building and
training the Neural Network model.
e Scikit-learn: A Python library for machine learning that includes tools for data
preprocessing, model training, and evaluation.
Pandas: A Python library used for data manipulation and analysis.
e NumPy: A Python library for numerical computing.
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Matplotlib & Seaborn: Python libraries for data visualization.
Plotly: A Python library for creating interactive plots and visualizations.
Imbalanced-learn: A Python library for handling imbalanced datasets.

4. Dataset Source
The dataset used in this study is sourced from Kaggle. To download the dataset:

Visit the Kaggle Predictive Maintenance Dataset page. [Pls click Control + link to
redirect to dataset Kaggle website]

Sign in with your Kaggle account (or create one if you don't have an account).
Download the dataset (e.g., predictive_maintenance_dataset.csv) to your local
machine.

Place the downloaded dataset in a directory where the code implementation can access
it.

5. Execution of the Code Implementation
To execute the predictive maintenance system, follow these steps:

A. Prepare the Environment:

Ensure that all the required software and libraries are installed as per the steps outlined
above.
Ensure that the dataset is downloaded and placed in the appropriate directory.

B. Launch Jupyter Notebook:

Open the Anaconda Prompt (Windows) or Terminal (macOS/Linux).

Activate the virtual environment (if applicable) wusing: conda activate
predictive_maintenance

Navigate to the directory containing the Jupyter Notebook file (.ipynb) that contains
the code implementation.

Launch Jupyter Notebook by running: Jupyter notebook

Open the notebook file in the browser interface.

C. Execute the Notebook Cells:

The notebook is divided into cells, each containing a portion of the code. Run each
cell sequentially by selecting the cell and pressing Shift + Enter.

Begin with data loading and preprocessing, followed by exploratory data analysis,
model training, and evaluation.

As the cells execute, visualizations and outputs will be generated inline, allowing you
to monitor the progress and results.


https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset/data

Step 1: Import Libraries

= Dy Dy B - @
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objs as go
import plotly.express as px
# Import the necessary library for undersampling
from imblearn.under_sampling import RandomUnderSampler
from sklearn.model selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
# Import various classification algorithms and evaluation metrics
from sklearn.naive_bayes import .
from sklearn.neighbors import
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn import metrics
import warnings
warnings.filterwarnings("ignore")
Python
Step 2: Load and Preprocess Data
# Read the dataset from "predictive_maintenance_dataset.csv” into a DataFrame
dataFrame = pd.read_csv('predictive_maintenance_dataset.csv')
Python
# view the first five attribute rows
dataFrame.head()
Python
date device failure metricl metric2 metric3 metricd metric5 metricé metric7 metric8 metric9
0 1/1/2015 S1F01085 0 215630672 55 0 52 6 407438 0 0 7
1 1/1/2015 S1F0166B 0 61370680 0 3 0 6 403174 0 0 0
2 1/1/2015 S1FO1E6Y 0 173295968 0 0 0 12 23739 0 0 0
3 1/1/2015 S1FO1JEO 0 79694024 0 0 0 6 410186 0 0 0
4 1/1/2015 S1F01R2B 0 135970480 0 0 0 15 313173 0 0 3




dataFrame[ 'date’'] = pd.to_datetime(dataFrame['date’]) # Convert ‘date’ column to datetime format

# Extracting month and weekday features

dataFrame[ ‘month'] = dataFrame['date’'].dt.month # Extract month

dataFrame[ 'week_day'] = dataFrame['date'].dt.weekday # Extract weekday (@=Monday, 6=Sunday)
dataFrame[ 'week_day'].replace(8,7,inplace=True)

Python
# Calculate active days since 2015-01-@1
starting_date = pd.to_datetime('2015-01-01")
datafFrame[ 'active_days'] = (dataFrame['date’'] - starting_date).dt.days

Python
#view the dataset
dataFrame.head()

Python
date device failure metricl metric2 metric3 metricd metric5 metricé metric7 metric8 metric9 moi
2015-

0 01-01 S1F01085 0 215630672 55 0 52 6 407438 0 0 7
2015-
1 01-01 S1F01668B 0 61370680 0 3 0 6 403174 0 0 0
2015-
2 01-01 S1FO1E6Y 0 173295968 0 0 0 12 237394 0 0 0
2015-
3 01-01 S1FO1JED 0 79694024 0 0 0 6 410186 (0] 0 0
2015- & —
4 01-01 S1FO1R2B 0 135970480 0 0 0 15 313173 0 0 3
Step 3: Exploratory Data Analysis
# Group the unique device numbers in Months
dataFrame.groupby('month').agg({ device':lambda x: x.nunique()})
Python
device
month
1 1164
2 726
3 685
4 491
5 424
6 353
7 346
8 334
9 184
10 146
1 31
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Step 4: Feature Engineering
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Step 5: Random Sampling the Dataset through the dependent target
variable

# Create a copy of the DataFrame 'df’
X = dataFrame.copy()

# Create the target variable 'Y' by selecting the 'failure' column
Y = dataFrame["failure"]

# Remove the 'failure’ column from the feature matrix 'X’
X.drop("failure", axis=1, inplace=True)

Python
# Create an instance of the RandomUnderSampler with a fixed random state
rus = RandomUnderSampler(random_state=42)
# Perform random under-sampling and obtain resampled feature matrix and target variable
X_resampled, y resampled = rus.fit_resample(X, Y)
E3 Python

# Create a new DataFrame 'under_sample' by copying the resampled features and adding the ‘'failure' column ba
under_sample = X_resampled.copy()

under_sample["failure"] = y resampled

Python
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Step 6: Splitting of Under-Sampled Dataset into Training and Testing

# Create feature matrix 'X_norm' and target variable 'y _norm’
X_norm = under_sample.drop(['failure'], axis=1)
y_norm = under_sample['failure']

# Split the data into training and testing sets

x_train, x_test, y_train, y test = train_test_split(X_norm, y norm, test_size=0.3, random_state=42)

# Standardize the features

scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)
X_test = scaler.transform(x_test)

# Perform feature selection to reduce the number of features
k = 'all’

selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(x_train, y_train)
X_test_selected = selector.transform(x_test)

Python

Python




Step 7: Model Implementation

Random Forest

# Train RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators=4,max_depth=1)
rf_classifier.fit(X_train_selected, y_train)

Accuracy of Neural Network Model is: 76.56%
Accuracy of Decision Tree Model is: 73.44%
Accuracy of Random Forest Model is: 71.88%
Accuracy of Logistic Regression Model is: 70.31%

Python
v RandomForestClassifier
|RandomForestClassifier (max_depth=l, n_estimators=4)
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Model
# Accuracies
for model, acc in zip(model_names, accuracy_scores):
print("Accuracy of {} Model is: {:.2f}%".format(model, acc * 1@0))
Python

D. Review the Results:

e Upon completing the execution of all cells, review the outputs, including model

evaluation metrics, confusion matrices, and visualizations.

e Compare the performance of different models and analyze their effectiveness in

predicting equipment failures.

E. Modify and Experiment:

e You can modify the code to experiment with different models, hyperparameters, or

preprocessing techniques.

e Save any changes to the notebook and re-run the cells to see how they impact the

results.




By following this configuration manual, you will be able to set up, install, and execute the
predictive maintenance system, allowing you to explore and replicate the results of the research
study.
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