oy

\\ |
National

College
[reland

Configuration Manual for Proactive
Equipment Maintenance in Manufacturing:
Leveraging Modern Deep Learning for
Fault Prediction

MSc Research Project
MSc Artificial Intelligence

Sasi Venkata Krishna Dabbakuti
x23141891

School of Computing
National College of Ireland

Supervisor: Rejwanul Haque

M

“—
\ National

National College of Ireland
Sc Project Submission Sheet
School of Computing

Student Name:

Sasi Venkata Krishna Dabbakuti

Student ID: x23141891
Programme: MSc Artificial Intelligence
Year: 2023 -2024

Module: MSc Research Project
Supervisor: Rejwanul Haque

Submission Due
Date:

16/09/2024

Project Title:

Proactive Equipment Maintenance in Manufacturing:
Lever-aging Modern Deep Learning for Fault Prediction

Word Count:

661

Page Count:

09

I hereby certify that the info
pertaining to research I cond

rmation contained in this (my submission) is information
ucted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author's written or electronic
action.

Signature:

Date:

work is illegal (plagiarism) and may result in disciplinary

Sasi Venkata Krishna

16/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

copies)

Attach a completed copy of this sheet to each project (including multiple

YES

submission, to each project

Attach a Moodle submission receipt of the online project

YES
(including multiple copies).

You must ensure that you

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

retain a HARD COPY of the project, YES

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Collegeof
Ireland

Configuration Manual for Proactive Equipment
Maintenance in Manufacturing: Leveraging Modern
Deep Learning for Fault Prediction

Sasi Venkata Krishna Dabbakuti
x23141891

1. Introduction

This configuration manual is designed to guide users through the setup, installation, and
execution of the predictive maintenance system developed as part of the research study on
proactive equipment maintenance. The system leverages advanced machine learning and deep
learning models to predict equipment failures, thereby enabling proactive maintenance
strategies in manufacturing environments. This manual provides detailed instructions on
system specifications, software requirements, installation procedures, dataset acquisition, and
execution of the code implementation.

2. System Specification

To successfully run the predictive maintenance system, the following system specifications
are recommended:

e Operating System: Windows 10 or later, macOS 10.15 or later, or a Linux
distribution (e.g., Ubuntu 18.04 or later)
Processor: Intel Core i5 or AMD equivalent (quad-core) or higher
RAM: Minimum 8 GB (16 GB recommended)
Storage: At least 20 GB of free disk space
GPU: Optional but recommended for deep learning model training (NVIDIA GPU
with CUDA support)
e Internet Connection: Required for downloading datasets and software packages

3. Software Used:

The predictive maintenance system is developed using the following software tools and
libraries:
e Python: Programming language used for implementing predictive models.
e Anaconda: A distribution of Python and R for scientific computing and data
science, which includes package management and deployment.
e Jupyter Notebook: An interactive development environment for writing and
running Python code.
e TensorFlow: An open-source deep learning framework used for building and
training the Neural Network model.
e Scikit-learn: A Python library for machine learning that includes tools for data
preprocessing, model training, and evaluation.
Pandas: A Python library used for data manipulation and analysis.
e NumPy: A Python library for numerical computing.

1

Matplotlib & Seaborn: Python libraries for data visualization.
Plotly: A Python library for creating interactive plots and visualizations.
Imbalanced-learn: A Python library for handling imbalanced datasets.

4. Dataset Source
The dataset used in this study is sourced from Kaggle. To download the dataset:

Visit the Kaggle Predictive Maintenance Dataset page. [Pls click Control + link to
redirect to dataset Kaggle website]

Sign in with your Kaggle account (or create one if you don't have an account).
Download the dataset (e.g., predictive_maintenance_dataset.csv) to your local
machine.

Place the downloaded dataset in a directory where the code implementation can access
it.

5. Execution of the Code Implementation
To execute the predictive maintenance system, follow these steps:

A. Prepare the Environment:

Ensure that all the required software and libraries are installed as per the steps outlined
above.
Ensure that the dataset is downloaded and placed in the appropriate directory.

B. Launch Jupyter Notebook:

Open the Anaconda Prompt (Windows) or Terminal (macOS/Linux).

Activate the virtual environment (if applicable) wusing: conda activate
predictive_maintenance

Navigate to the directory containing the Jupyter Notebook file (.ipynb) that contains
the code implementation.

Launch Jupyter Notebook by running: Jupyter notebook

Open the notebook file in the browser interface.

C. Execute the Notebook Cells:

The notebook is divided into cells, each containing a portion of the code. Run each
cell sequentially by selecting the cell and pressing Shift + Enter.

Begin with data loading and preprocessing, followed by exploratory data analysis,
model training, and evaluation.

As the cells execute, visualizations and outputs will be generated inline, allowing you
to monitor the progress and results.

https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset/data

Step 1: Import Libraries

= Dy Dy B - @
Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objs as go
import plotly.express as px
Import the necessary library for undersampling
from imblearn.under_sampling import RandomUnderSampler
from sklearn.model selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
Import various classification algorithms and evaluation metrics
from sklearn.naive_bayes import .
from sklearn.neighbors import
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn import metrics
import warnings
warnings.filterwarnings("ignore")
Python
Step 2: Load and Preprocess Data
Read the dataset from "predictive_maintenance_dataset.csv” into a DataFrame
dataFrame = pd.read_csv('predictive_maintenance_dataset.csv')
Python
view the first five attribute rows
dataFrame.head()
Python
date device failure metricl metric2 metric3 metricd metric5 metricé metric7 metric8 metric9
0 1/1/2015 S1F01085 0 215630672 55 0 52 6 407438 0 0 7
1 1/1/2015 S1F0166B 0 61370680 0 3 0 6 403174 0 0 0
2 1/1/2015 S1FO1E6Y 0 173295968 0 0 0 12 23739 0 0 0
3 1/1/2015 S1FO1JEO 0 79694024 0 0 0 6 410186 0 0 0
4 1/1/2015 S1F01R2B 0 135970480 0 0 0 15 313173 0 0 3

dataFrame['date’'] = pd.to_datetime(dataFrame['date’]) # Convert ‘date’ column to datetime format

Extracting month and weekday features

dataFrame[‘month'] = dataFrame['date’'].dt.month # Extract month

dataFrame['week_day'] = dataFrame['date'].dt.weekday # Extract weekday (@=Monday, 6=Sunday)
dataFrame['week_day'].replace(8,7,inplace=True)

Python
Calculate active days since 2015-01-@1
starting_date = pd.to_datetime('2015-01-01")
datafFrame['active_days'] = (dataFrame['date’'] - starting_date).dt.days

Python
#view the dataset
dataFrame.head()

Python
date device failure metricl metric2 metric3 metricd metric5 metricé metric7 metric8 metric9 moi
2015-

0 01-01 S1F01085 0 215630672 55 0 52 6 407438 0 0 7
2015-
1 01-01 S1F01668B 0 61370680 0 3 0 6 403174 0 0 0
2015-
2 01-01 S1FO1E6Y 0 173295968 0 0 0 12 237394 0 0 0
2015-
3 01-01 S1FO1JED 0 79694024 0 0 0 6 410186 (0] 0 0
2015- & —
4 01-01 S1FO1R2B 0 135970480 0 0 0 15 313173 0 0 3
Step 3: Exploratory Data Analysis
Group the unique device numbers in Months
dataFrame.groupby('month').agg({ device':lambda x: x.nunique()})
Python
device
month
1 1164
2 726
3 685
4 491
5 424
6 353
7 346
8 334
9 184
10 146
1 31

Number of Unique Devices Over Time

Number of Unigue Devices

Failure over Time by Month
0.00175 /\
000150 /
000125 /

000100 . /

Failure
/
/
~

0.00075 N S
0.00050 N

000025

0.00000

Month

Step 4: Feature Engineering

e for the plot
tegrid"”)

the distributi

countpl
(figsize=(8, ¢
lot(data=dataFrame, x="'failure', palette='Set
1 fontsize=16

6)) Adjusting figure size for be

e="failure', legend=False) # Using a different
tive

£}

a N

increased font size

m I ot

;(rotation=08)
ht_layout()
w()

Distribution of Failure

120000

100000

80000

Count

60000

40000

20000

Failure

Step 5: Random Sampling the Dataset through the dependent target
variable

Create a copy of the DataFrame 'df’
X = dataFrame.copy()

Create the target variable 'Y' by selecting the 'failure' column
Y = dataFrame["failure"]

Remove the 'failure’ column from the feature matrix 'X’
X.drop("failure", axis=1, inplace=True)

Python
Create an instance of the RandomUnderSampler with a fixed random state
rus = RandomUnderSampler(random_state=42)
Perform random under-sampling and obtain resampled feature matrix and target variable
X_resampled, y resampled = rus.fit_resample(X, Y)
E3 Python

Create a new DataFrame 'under_sample' by copying the resampled features and adding the ‘'failure' column ba
under_sample = X_resampled.copy()

under_sample["failure"] = y resampled

Python

Count

Distribution of Failure

Failure

Step 6: Splitting of Under-Sampled Dataset into Training and Testing

Create feature matrix 'X_norm' and target variable 'y _norm’
X_norm = under_sample.drop(['failure'], axis=1)
y_norm = under_sample['failure']

Split the data into training and testing sets

x_train, x_test, y_train, y test = train_test_split(X_norm, y norm, test_size=0.3, random_state=42)

Standardize the features

scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)
X_test = scaler.transform(x_test)

Perform feature selection to reduce the number of features
k = 'all’

selector = SelectKBest(score_func=f_classif, k=k)
X_train_selected = selector.fit_transform(x_train, y_train)
X_test_selected = selector.transform(x_test)

Python

Python

Step 7: Model Implementation

Random Forest

Train RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators=4,max_depth=1)
rf_classifier.fit(X_train_selected, y_train)

Accuracy of Neural Network Model is: 76.56%
Accuracy of Decision Tree Model is: 73.44%
Accuracy of Random Forest Model is: 71.88%
Accuracy of Logistic Regression Model is: 70.31%

Python
v RandomForestClassifier
|RandomForestClassifier (max_depth=l, n_estimators=4)
Accuracy Scores Between Models
08
73.44%
71.88% N
07 70.31%
06
05
oy
B
S 04
Q
<
0.3
02
0.1
0.0
Neural Network Decision Tree Random Forest Logistic Regression
Model
Accuracies
for model, acc in zip(model_names, accuracy_scores):
print("Accuracy of {} Model is: {:.2f}%".format(model, acc * 1@0))
Python

D. Review the Results:

e Upon completing the execution of all cells, review the outputs, including model

evaluation metrics, confusion matrices, and visualizations.

e Compare the performance of different models and analyze their effectiveness in

predicting equipment failures.

E. Modify and Experiment:

e You can modify the code to experiment with different models, hyperparameters, or

preprocessing techniques.

e Save any changes to the notebook and re-run the cells to see how they impact the

results.

By following this configuration manual, you will be able to set up, install, and execute the
predictive maintenance system, allowing you to explore and replicate the results of the research
study.

References
(1) Anaconda:_https://docs.anaconda.com/free/anaconda/install/windows/

(2) Kaggle Dataset Source: Kagale Predictive Maintenance Dataset page

(3) Python, W. (2021). Python. Python releases for windows, 24.

(4) babu Venkateswara, R. (2022). Configuration Manual.

(5) Gollapudi, S. (2016). Practical machine learning. Packt Publishing Ltd.

(6) Ganapathi, A., Datta, K., Fox, A., & Patterson, D. (2009, March). A case for machine
learning to optimize multicore performance. In First USENIX Workshop on Hot Topics in
Parallelism (HotPar’09).

(7) Phelps, R., Krasnicki, M., Rutenbar, R. A., Carley, L. R., & Hellums, J. R. (2000).

Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(6), 703-717.

https://docs.anaconda.com/free/anaconda/install/windows/
https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset/data

