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Text Summarization using Pegasus Model 

Anu Benny 
x23104937 

Abstract 
As digital content grows at an unprecedented rate, dealing with information 

overload has become a vital concern. In order to improve summarization from 

conversational text, this project uses the SAMSum dataset to fine-tune the Pegasus 

model. Our goal was to strengthen the model’s capacity to produce clear and succinct 

summaries, which led to a significant improvement in the Rouge score—a crucial 

indicator of summarization quality. Because of the vast amount of text data that is 

generated every day—including emails and chat logs—effective summarization is 

essential. The Rouge-1 score was successfully raised by our fine-tuning, indicating 

better summarization accuracy. To further highlight the model’s adaptability, I 

increased its capacity to summarize YouTube videos and extract and summarize text 

from photos. These enhancements provide useful advantages for more effective 

summarization and are in line with recent developments in NLP. In order to get over 

current constraints and improve the model’s wider applicability, future work will 

concentrate on better optimizing it for intricate, multimodal inputs.                  

Keywords: Summarization, finetune, Pegasus 

1 Introduction 

In today’s environment, with the explosion of digital content, summarizing aids in 
information overload by allowing consumers to quickly absorb vital elements without 
having to read lengthy publications. According to IDC research, the amount of digital data 
is expected to surpass 175 zettabytes by 2025, highlighting the urgent need for efficient 
summarization tools Rydning et al. (2018). The relevance of summarizing in boosting 
productivity, promoting better decision-making, and increasing information retrieval 
across a range of businesses, including the news, healthcare, and legal sectors, is 
highlighted by this increase in data. Condensing a large text into a shorter version while 
maintaining its essential details and general meaning is known as text summarizing. Text 
summarizing helps extract key insights and saves time by simplifying the intake of large 
amounts of information. It is becoming increasingly important in our data-driven 
environment. Natural language processing (NLP) has advanced, yet producing summaries 
of high quality is still a difficult challenge. There are two types of text-summarizing 
techniques: extractive and abstractive Mittal et al. (2023). Extractive summarization, 
which chooses essential sentences from a source text, frequently fails to capture subtle 
context and meaning. Abstractive summarization, which generates new sentences to 
convey the core concepts, offers improved coherence and readability, but it is 
computationally intensive and requires sophisticated models. 

Transformer-based models have transformed natural language processing (NLP) by 
adding a technique known as self-attention, which enables models to focus on many areas 
of a text at once. This architecture serves as the basis for Pegasus and is the engine behind 
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numerous sophisticated models, such as BERT, GPT, and T5. The Pegasus model, which 
stands for ”Pre-training with Extracted Gap-Sentences for Abstractive Summarization 
Sequence-to-Sequence Models,” is intended primarily for the abstractive summary of text. 
Pegasus has been optimized to produce clear, coherent summaries of lengthy texts, in 
contrast to other general-purpose models Etemad et al. (2021). A primary advancement 
of Pegasus is its pre-training approach, which mimics a summarizing assignment by 
masking full phrases instead of individual words. This enhances the model’s capacity to 
provide summaries and helps it comprehend a document’s overall context. While Pegasus 
excels in summarization jobs due to its unique pre-training, it has an advantage in 
capturing the substance of a material. ROUGE is a collection of measures typically used to 
assess the quality of summaries produced by models such as Pegasus. It is especially 
useful for evaluating summarization models since it determines how much of the key 
content in the reference summary is captured by the model. 

In this study, the Pegasus model for text summarization has been optimized on a 
dialogue dataset to improve its summary performance. This increases the model’s 
adaptability and efficiency in summarizing various kinds of content. The Pegasus model 
is fine-tuned by training it on the dataset so that it can conform to the unique traits and 

writing styles of the dataset. Following refinement, the model’s performance is measured 
by computing the ROUGE score, a metric that compares the quality of the generated 
summaries to reference summaries to determine how well the model performed. This 
evaluation reveals how effectively the fine-tuned model works in creating accurate and 
coherent summaries of each dataset. In today’s fast-paced digital world, organizing the 
vast volume of content available online is hard. Summarizing tools are useful in this 
situation and provide a lot of benefits in terms of productivity and efficiency. For example, 
summarizing YouTube videos helps users save time by condensing the main points of long 
videos into brief summaries. As a result, viewers may easily understand the main ideas 
without having to see the entire film, which facilitates decision-making by enabling them 
to determine whether the information is worth more attention. In the same way, image 
summarizing improves the simplicity of visual content interpretation. 

Research Questions and objectives: 
1) How useful is the Pegasus model for summarizing discussions, especially when 

fine-tuned with the SAMSum dataset? 
2) What effects do the size and diversity of the SAMSum dataset have on the quality 

of the generated summaries and the process of fine-tuning? 

The Pegasus model’s pre-trained architecture, which is intended to generate 
summaries, makes it very adept for abstractive summarization. Pegasus may be trained to 
provide clear and logical dialogue summaries by utilizing the conversational data in the 
SAMSum dataset. Metrics such as ROUGE scores can be used to assess the model’s 
performance; improvements made after fine-tuning would suggest a successful 
adaptation to the dialogue summary. The SAMSum dataset’s size and diversity are 
important factors in fine-tuning. The model is able to generate summaries that are more 
broadly applicable and exhibit improved generalization when it is given access to a 
diversified dataset featuring a diversity of themes and discourse patterns. On the other 
hand, the model may overfit to particular patterns in the data if the dataset is too limited 
or lacks diversity, which would result in worse generalization and performance in 
hypothetical discussion 
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Figure 1: Architecture 

scenarios. 
My project uses the SAMSum dataset to fine-tune the Pegasus model’s text-summarizing 

capabilities. Following fine-tuning, the ROUGE score—a statistic that contrasts the 
generated summaries with reference summaries—is used to assess the model’s correctness. 
The project requires summarizing content from two sources: YouTube video transcriptions 
and text extracted from photos. The method is trained to summarize text information taken 
from images and to reduce YouTube video transcriptions into brief summaries. The model 
can effectively handle a variety of input data types due to its dual methodology. The research 
intends to improve the model’s capacity to generate precise and cogent summaries, making 
it a flexible tool for processing various media forms by incorporating video and image-to-
text summarizing. 

2 Related Work 

In today’s environment, where information is being generated at an unprecedented rate, 
it is critical to rapidly understand and digest enormous amounts of information. This is 
made easier by text summarizing, which takes lengthy papers and distills them into 
concise, insightful summaries that hit all the important points. In addition to saving time, 
this facilitates access to and utilization of critical information by individuals and 
organizations without entangling them in pointless details. Effective summarizing tools 
enable people to stay informed and make smarter decisions more quickly, whether they 
are handling customer communications, reading news stories, or browsing through 
research papers. It is more crucial than ever to have tools that can effectively summarize 
information because text-based data is constantly increasing Sun et al. (2024). 

An approach known as abstractive summarization only extracts and rearranges the 
most important lines from a text and generates brand-new sentences that more naturally 
and succinctly express the core concepts Asmitha et al. (2024). This is more similar to how 
individuals rephrase information while maintaining its original meaning when 
summarizing it. Advanced technologies, such as deep learning algorithms and powerful 
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neural networks, are needed to build efficient abstractive summarization models. These 
models are able to produce concise, clear, and pertinent summaries because they have 
been trained on a vast quantity of data to comprehend the context and meaning of words. 

Natural language processing activities such as text summarization were commonly 
performed using Pegasus, BERT (Bidirectional Encoder Representations from 
Transformers), T5 (Text-To-Text Transfer Transformer), and BART (Bidirectional and 
Auto-Regressive Transformers). For example, BERT was not expressly made for text 
production; instead, it was mainly employed for jobs where it excelled in understanding 
context, such as question-answering and classification. However, T5 and BART were built 
to handle both understanding and producing text, they were more adaptable. In order to 
enhance the quality of the generated text, BART included parts of both encoder-decoder 
models, whereas T5 treated tasks as text-to-text transformations Shakil et al. (2024). 
While BART, the transformer-based summary model, is excellent at producing 
translations and paraphrases, it might not be as well-suited for abstractive summarization 
as Pegasus. BART employs a denoising autoencoder technique. Although Pegasus was 
particularly trained on summarizing datasets such as CNN/DailyMail, it often 
outperforms T5 on long-text summarization tasks. T5 is a versatile model that can handle 

a wide range of tasks, including summarization. 
When Google developed Pegasus, it raised the standard for abstractive summarization. 

In contrast to earlier models, Pegasus specialized in pre-training, utilizing a cutting-edge 
method known as ”Gap Sentences Generation” (GSG) in order to provide summaries. 
Using this technique, significant sentences in a document are masked, and the model is 
then trained to produce those sentences based on the surrounding content Zhang et al. 
(2020). This method works especially well for summarizing activities since it helps 
Pegasus have a stronger comprehension of how to simplify and rephrase material. 
Although other models, such as BART and T5, may also perform abstractive summarizing, 
Pegasus is able to generate summaries that are frequently more coherent and closely 
resemble the way humans summarize text due to its unique pre-training technique. Fine-
tuning the Pegasus model is critical since it helps the model adapt to different types of 
content and domains, making it more efficient for certain summarization tasks. Pegasus 
learns the specifics of diverse text structures and styles by training on a variety of 
datasets, including news items, dialogues, and scientific papers. This results in summaries 
that are more accurate and pertinent to the context. By comparing the generated 
summaries to reference summaries and measuring overlaps in n-grams, word sequences, 
and word pairs, the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score 
provides a quantitative evaluation of the model’s performance and helps us determine 
how accurate Pegasus is. 

YouTube video summaries have major benefits in an era where video content is 
abundant and time is limited Panthagani et al. (2024). Users may rapidly understand the 
main themes without having to watch long content because of the brief summaries of 
videos that are provided, making it an invaluable tool for effective information intake. This 
is especially true for long talks, lectures, and instructional videos when the essential 
points can be condensed into succinct summaries. By extracting and compressing the 
transcript and concentrating on the most important information, the technology 
summarizes efficiently. But there are drawbacks to this strategy. The correctness of the 
transcript has a significant impact on the quality of the summary; during the 
summarization process, subtleties in tone or visual components may be lost Srivastava et 
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al. (2024). Notwithstanding these difficulties, video summarization is nevertheless a 
potent instrument for improving our interactions with online video material. 

Image summarization is very useful in industries such as digital asset management, 
where vast amounts of photos must be examined and classified efficiently. Users can 
rapidly recognize the most crucial visual components, such as focal objects, scenes, or 
features, by summarizing photos instead of carefully examining each one. This improves 
decision-making in situations where visual data is plentiful, in addition to saving time. 
Still, there are several drawbacks to image-summarizing. Occasionally, the procedure may 
oversimplify intricate visuals, possibly omitting context or minute elements that are 
crucial for complete comprehension. Furthermore, the algorithms employed to 
summarize information may not always accurately capture the subtleties of each image, 
which affects how successful summarization is Mahalakshmi and Fatima (2022). 
Notwithstanding these difficulties, image summarizing is still a useful technique for 
streamlining our processing and interpretation of visual data. 

3 Methodology 

3.1 Finetuning Pegasus 

3.1.1 Data Collection 

To train and evaluate the pegasus model, I used the SAMSum dataset, which contain 
dialogues, and their summaries. The Hugging Face dataset library was used to load this 
datasets. The Samsum dataset contains the columns dialogue, summaries, and id. 

 

Figure 2: Dataset Split 

 

Figure 3: Dataset 
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3.1.2 Data Preprocessing 

Preparing the raw data for modeling requires data preprocessing. 
Tokenization: The Hugging Face Transformers library’s AutoTokenizer, which 

transforms text into input tokens that can be fed into the model, is used to tokenize the 
dialogues and summaries. To maintain uniformity throughout the dataset and avoid 
excessively lengthy sequences, the maximum length of tokens for articles is set to 1024, 
while the maximum length for summaries is set to 128. 

Batch Processing: To effectively manage memory, the dataset is processed in smaller 
batches using the generate-batch-sized-chunks function. Smaller dataset segments are 
produced by this function, allowing for simultaneous processing. 

Mapping the Preprocessing Function: The map method is used to apply the features 
function to the whole dataset. By doing this, it is ensured that every data point in the 

dataset is converted into the right format needed for training the model. 

3.1.3 Feature Extraction 

The retrieved features consist of: 

• input-ids: These are the input articles’ tokenized representations. 

• attention-mask: In the input data, this mask is utilized to distinguish between 
genuine tokens and padding tokens. 

• labels: During training, the method will learn to predict these tokenized 
representations of the target summary. 

The tokenizer is used to extract these features, which are crucial for the sequence-
tosequence modeling function that the PEGASUS model is intended to carry out. 

3.1.4 Modelling 

Hugging Face’s Trainer is used to fine-tune the model on the Samsum dataset, making the 
training process easier.  

Model Initialization: The PEGASUS model is relocated to the appropriate device (CPU or 
GPU) and loaded with pre-trained weights from the google/pegasus-cnn-dailymail 
checkpoint.  

Training Setup: A set of hyperparameters, such as the number of epochs, batch sizes, 
warm-up steps, and weight decay, are setup for the training. The model’s performance can 
only be maximized by using these parameters.  

a) Time intervals (num_train_epochs=1) - Since the SAMSUM dataset is tiny, the 
model may be able to learn the patterns in the data with fewer epochs. Excessive epoch 
fine-tuning may result in overfitting. Therefore, if the epochs are set to 1, the model will 
collect the required data without overfitting. 
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b) Batch Size (per device eval batch size = 1, per device train batch size = 1) -
Especially when employing GPUs with limited memory, maintaining a small batch size 
helps prevent running out of memory.  

c) Steps in Gradient Accumulation (gradient_accumulation_steps=16) - 
Because of memory limitations, the batch size is modest; gradient accumulation helps to 
mimic a higher effective batch size. Gradient accumulation over 16 steps causes the 
optimizer to change its weights every 16 batches, simulating a batch size of 16, which 
improves training stability. 

d) Steps for Warming Up (warmup_steps=500) - In order to ensure smoother 
training and avoid the model diverging too early in the training process, the model starts 
with lower learning rates and progressively raises them over the warmup phase. The 
model's weights are gradually adjusted to the new task using a warmup consisting of 500 
steps. 

e) Loss of Weight (weight_decay = 0.01) - By punishing big weights, weight decay 
is a regularization approach used to minimize overfitting. A modest value of 0.01 
guarantees that the model performs well in terms of generalization on the validation set 
and avoids overfitting to the training set. 

Training: The model, tokenizer, training arguments, data collator, and datasets for 
assessment and training are instantiated into the Trainer class. Using the Samsum dataset, 
the PEGASUS model is refined by invoking the train() method.  

Evaluation: Using ROUGE metrics to compare the generated summaries with the 
reference summaries, the model’s performance is assessed on the test dataset following 
training.  

Model Saving: The optimized model and tokenizer are stored for later use. 

3.2 Video Summarization 

Using YouTubeTranscriptApi, obtain the transcript from the YouTube video. Then the 
preprocessing methods are putting all of the transcript text into one string and due to 
input size limitations, dividing the text into parts for processing. Then the Modelling 
involves using the pipeline function from the transformers library, load a pre-trained 
summarization model. And utilizing the model to produce summaries for every text 
section. 
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Figure 4: Histogram 

3.3 Image Summarization 

Loading the picture. Utilizing OCR to convert the image to text. Then taking textual 
information out of the picture. The text taken from the image is summarized using a pre-
trained Pegasus model that has been loaded. 

4 Design Specification 

Initially, I built up the Python libraries required for managing model training and 
assessment, such as rouge-score, datasets, transformers, and others. Using the 
Transformers library, the code loads a pre-trained model (google/pegasus-cnn-dailymail) 
at the start. To handle massive volumes of data more efficiently, a dataset is divided into 
smaller batches using the chunks function. These batches are then used by the test-ds 
function to tokenize articles, produce summaries using the model, and then decode the 
summaries into legible text. To assess the performance of the model, these generated 
summaries are compared using ROUGE metrics with reference summaries. This batching 
strategy guarantees a methodical evaluation of the model’s summarization skills while 
using less memory. The Samsum dataset was loaded through the Hugging Face datasets 
library. The dataset is divided into smaller pieces for processing in an effective manner 
after loading. It shows the feature names of the training data and prints the number of 
samples in each split. After that, a test example summary and the article are printed to 
help with data format comprehension. Subsequently, a summarization pipeline is 
constructed with the designated PEGASUS model checkpoint, producing a summary for a 
test article. 

To assess the performance of the summarization, ROUGE metrics are loaded. The test 
dataset’s Rouge scores are calculated using the test-ds function; the results are arranged 
into a dictionary and shown in a Pandas DataFrame. In order to show the distributions of 
token lengths for dialogues and summaries, the script additionally analyzes them and 
generates histograms. Using the provided tokenizer, the features method tokenizes the 
summaries and the articles. To maintain consistency, it establishes a maximum length for 
articles and summaries and truncates any material that goes beyond that limit. Inputids, 
attention-mask, and labels are the dictionaries that this method returns. These are 
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necessary for feeding the data into the model. The function is then applied to each sample 
in the dataset by processing it via the map method. In doing so, a format appropriate for 
training is created from the raw dataset. Subsequently, the DataCollatorForSeq2Seq is set 
up to manage dynamic sequence padding during training, ensuring that every batch is 
padded to the batch’s longest sequence. 

The configuration of the training process is done through the training arguments. It 
also details the gradient buildup, saving processes, and evaluation approach and steps. 
The PEGASUS model, training arguments, tokenizer, data collator, and datasets for 
validation and training are built along with a Trainer instance. The process of fine-tuning 
is initiated by calling the train() method. ROUGE measures are used to assess the model’s 
performance on the test dataset following training. These metrics are calculated via the 
test-ds function, and the output is saved in a Pandas DataFrame. Both the tokenizer and 
the refined model are stored for further use. To show how to use the model with a test 
case, the dataset is reloaded. The tokenizer and saved model are used to reinitialize the 
summarization pipeline. In order to compare the efficiency of the refined model with the 
test data, the code prints the article, reference summary, and summary created by the 
model at the end. 

Video Summarization: Takes a YouTube video, extracts its transcript, and 
summarizes it. It starts by obtaining the video ID from the URL and then uses 
YouTubeTranscriptApi to obtain the transcript. After that, the transcript is joined together 
to form a single string. For processing, the text is split up into 1000 character pieces. Each 
chunk is summarized using a pipeline from the Hugging Face Transformers library. The 
summaries are concatenated after being kept in a list. The function then outputs the 
summary text’s length and content. 

Image Summarization: It first receives an image with OpenCV and then displays it 
using Matplotlib. After that, text is extracted from the image using Tesseract OCR. The 
method uses a pre-trained Pegasus model (google/pegasus-cnn-dailymail) to summarize 
the extracted text after it has received the text. After tokenizing the text, the model creates 
a brief synopsis by applying certain parameters. The text summary is presented at the 
end. This method combines NLP and computer vision techniques to automatically extract 
text from photos and summarize it. 

5 Implementation 

To apply the code on Kaggle using a GPU (T4*2) with the Hugging Face datasets and 
transformers libraries, first install the necessary packages (transformers, datasets, rouge 
score, etc.). Use the Huggingface Samsum dataset, and use AutoTokenizer to tokenize the 
articles and summaries from the google/pegasus-cnn-dailymail model. To make sure the 
model runs on a CUDA device, transfer it to the GPU. Using pipeline (summarization”), 
create a summarization pipeline and test it by creating a summary for an example article 
from the test set. To assess the quality of the generated summaries, use the function to 
calculate rouge scores. This function uses the model to create summaries of the dataset, 
processes them in batches, and then compares them to the reference summaries. 
Establish a trainer with the proper training arguments, such as batch size, learning rate, 
and assessment approach, if you want to fine-tune the model. Usage 
model.savepretrained() and tokenizer.save-pretrained() to store the model and tokenizer 
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for later usage after training.Lastly, create test article summaries using the saved model 
and evaluate performance by contrasting them with reference summaries. Using this 
method will guarantee that you can use and assess the Pegasus model for summarizing 
jobs on Kaggle in an efficient manner. 

Video Summarization: The code is executed in a Kaggle notebook and extracts the 
transcript from a YouTube video using the youtube-transcript-api function. The transcript 
is retrieved using the video ID, which is determined by the video’s URL. Next, due to input 
size limits, the complete transcript text is processed in batches of about 1000 characters. 
Each text chunk is summarized succinctly using the pipeline(’summarization’) function 
from the Hugging Face transformers library. A thorough synopsis of the full video 
transcript is produced by combining the summaries that have been produced. To 
accelerate the summarization procedure, Kaggle GPU acceleration is used. 

Image Summarization: To use image summarization in a Kaggle notebook, first 
install pytesseract, opencv-python, and the Tesseract executable. Configure Pytesseract to 
use the Tesseract executable by importing libraries such as pytesseract, cv2, matplotlib, 
and transformers. Upload an image to a dataset, use matplotlib to display it, and then use 
cv2.imread() to read it. Use the OCR method to extract text from the image. After that, load 
the Pegasus model and tokenizer from Hugging Face, tokenize the text that has been 
extracted, and use the model to create a summary. Print the text summary at the end. 

6 Evaluation 

 

Figure 5: Dataset Summary 

This project’s goal was to enhance the Pegasus model’s summarization performance 
by fine-tuning it with the SAMSum dataset. When the model’s ROUGE-1 score was 

0.015568, it meant that the summary quality was low. Following adjustments, the 

 

Figure 6: Before training rouge 
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ROUGE-1 score increased to 0.018595, indicating that the model’s capacity to produce 
accurate and pertinent summaries had improved. This improvement shows that the 
model’s summarization abilities were successfully improved by fine-tuning, producing 
outputs that were more accurate and logical. As a result, the summaries that are produced 
now more closely match the source texts, demonstrating the model’s improved 
performance. 

 

Figure 7: After training rouge 

6.1 Experiment / Case Study 1 

The transcript of the video is 3,240 words long. Creating a succinct synopsis by 
summarizing it. This method preserves important details from the video content while 
guaranteeing the summarizer receives manageable inputs. 

 

Figure 8: Youtube video 

6.2 Experiment / Case Study 2 

Using Pytesseract, first extract the text from the image. Next, import the Hugging Face 
tokenizer and Pegasus model. Tokenize the text and use the model to provide a summary. 
To obtain a succinct summary of the original image content, print the summarized text at 
the end. 
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Figure 9: Length of video 

 

Figure 10: Youtube video summary 

 

Figure 11: Extracted text from image 

 

Figure 12: Image summary 
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7 Conclusion and Future Work 

The goals were to assess how well the SAMSum dataset can be used to fine-tune the 
Pegasus model and to examine the ways in which the features of the dataset impact the 
quality of the summarization. Pegasus’s summarization quality was shown to increase 
with fine-tuning; the model produced dialogue summaries that were more cohesive and 
pertinent to the context. The SAMSum dataset’s size and diversity were important factors 
since larger and more diverse datasets performed better and allowed for better 
generalization. mention the substantial increase in summary quality attained through 
fine-tuning and the significance of dataset diversity in boosting model generalization. 
Nonetheless, managing intricate conversation structures and upholding the coherence of 
the summary can present difficulties. Future work should include the creation of a user 
interface for video and picture summarization, which would broaden the scope of the 
current study to include more modalities. This can entail investigating multiple models 
and datasets to evaluate their efficacy in relation to diverse content kinds. Furthermore, 
this method could be commercialized by being integrated into media content 
management systems or customer service platforms, where precise and effective 
summarizing is crucial. 

To conclude, the project effectively optimized the Pegasus model for discussion 
summarizing, emphasizing the significance of dataset characteristics and creating 
opportunities for more study and business development. 
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