“—-
\ National

Configuration Manual

MSc Research Project
MSCAI

David Oluwatimilehin Bamikole
Student ID: X22179640

School of Computing
National College of Ireland

Supervisor: Dr. Devanshu Anand

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: David Oluwatimilehin Bamikole
Student ID: X22179640
Programme: MSCAI
Year: 2024
Module: MSc Research Project
Supervisor: Dr. Devanshu Anand
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 509
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: David Oluwatimilehin Bamikole

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

David Oluwatimilehin Bamikole
X22179640

1 Introduction

This manual provides information on the environment where the project was implemen-
ted. It also gives an outline of how to reproduce the project titled ”Evaluation of Mul-
timodal Transformer Data Fusion Techniques”.

2 System Configuration

This project was executed on Google Colab Pro, a web-based interactive Jupyter notebook
compatible with Python programming language. The platform gives access to virtual
system resources such as CPU, Disk space, RAM and GPU. Also, the platform comes
with pre-installed libraries, with a provision to install other libraries as well. Figure
shows the system information and Figure [2] shows the GPU information used. The
available disk space was 78GB.

. study concatenation = optuna.create_ study(direction=
study concatenation.optimize(objective, n_trials=12)

LUuELEIUUN LNrU @ 10. 15 LIU FIUUEL U LUNB AL LUNSUBP LLUN WOUE . LHLELL) ARUILN) LIy

carbon INFO @ 18:14: »>>> Tracker's metadata:
carbon INFO @ 8 Platform system: Linux-6.1.85+-x86 64-with-glibc2.35
carbon INFO @ 8 Python vers 10.12

CodeCarbon version: 2.5.8

Available RAM : 12.675 GB

CPU count: 2

CPU model: Intel(R) Xeon(R) CPU @ 2.8@GHz

GPU count: 1

GPU model: 1 x Tesla T4

Default
N/A

GPU Memo
Usage

Figure 2: GPU Information

3 Python Libraries

The following libraries were used for the implementation of this project.
e Os
e Pickle
e Hbpy
e Pandas
e Torch
e Json
e Scipy
e Math
e PIL
e Numpy
e Time
e Seaborn
e Optuna
e Logging
e Matplotlib
e Transformers
e Codecarbon
e Scikit-learn

Most of the libraries come pre-installed on Colab while the other ones need to be
installed. Figure [3] shows the snippet for the missing libraries installation and Figure [4]
shows the importation of necessary libraries.

!pip install codecarbon
!pip install optuna

Figure 3: Libraries Installation

“t pickle

C os
t h5py
t pandas as

t seaborn as sns
t optuna
t logging
t matplotlib.pyplot as plt

sequence

t, Dataloader
t torch.optim.lr_sc r 1r_scheduler
codecarbon
5 ion_report, confusion_matrix

Figure 4: Importation of Libraries

4 Environment Setup

To run the experiment, the preprocessed data could be obtained on Google Drive E] which
is the storage for the official dataset GitHub account [}

The 'mosi_raw.pkl’ will be downloaded from Google Drive and uploaded to the Colab
root directory. At this stage, all the cells can be run sequentially.

5 Execution Stages Explained

The code snippet in Figure |5/ shows the dataset loading phrase.

device = torch.device('cuda’ if torch.cuda.is_available()

MOSI_RAW = ' al
data_dir = destination_file_ path + MOSI_RAW

source = .
destination

os.rename(source, destination)

with open(data_dir) as file:
mosi_raw = pickle.load(file)
print(ed from {data dir}’

mosi_raw loaded from ./data///mosi_raw.pkl

Figure 5: Loading of Dataset

Ihttps://drive.google.com/drive/folders/1uEK737LXB9jA1f9kyqRs6BINEcDncodq?usp=
sharing
“https://github.com/pliang279/MultiBench?tab=readme-ov-file

https://drive.google.com/drive/folders/1uEK737LXB9jAlf9kyqRs6B9N6cDncodq?usp=sharing
https://drive.google.com/drive/folders/1uEK737LXB9jAlf9kyqRs6B9N6cDncodq?usp=sharing
https://github.com/pliang279/MultiBench?tab=readme-ov-file

The code snippet in Figure [6] shows the alignment and creation of dataloader for all
dataset groups.

, text, audio, labels):

train_dataset = MOSIDataset(mosi_raw
MOSIDataset(mosi_raw["
test_dataset = MOSIDataset(mosi_raw

batch_size = 16

train_loader - Dataloader(train_dataset, batch_size-batcl shuffle=
valid_loader - Dataloader(valid_dataset, batch_size- shuffle=
‘test_loader = Dataloader(test_dataset, batch_:

Figure 6: Dataloader Implementation

The code snippet in Figure [7] generates the dataset distribution plot in Figure

Data Distribution

ract_labels(dataloader):
=1
torch.no_grad():
or batch in dataloader:
labels.extend(batch['labels’].c| -numpy ())
n np.array(labels)

flatten_labels(labels):
labels.reshape(-1)

train_labels = flatten_labels(extract_labels(train_loader))
flatten_labe xtract_labels(valid_loader))
test_labels = flatten_labels(extract_labels(test_ loader))

Figure 7: Code for Dataset Distribution

rain Labels Distribution Validation Labels Distribution Test Labels Distribution

Figure 8: Dataset Distribution

The code snippet in Figure [J] shows the helper functions to normalize the dataset,
identify NaN and inf in the data and calculate Pearson correlation

The code snippet for the early concatenation is shown in Figure [I0, while the code
snippet for training the model and hyperparameter search is shown in Figure [11} Figure
shows the code snippet for the best parameter obtained.

The code snippet for the cross-modal attention is shown in Figure [13] and Figure [14]
while the code snippet for training the model and hyperparameter search is shown in
Figure [15| Figure [16| shows the code snippet for the best parameter obtained.

4

normalize(tensor, e

tensor = torch.cla

mean = keepdim=

std = tensor.std(dim=-1, keepdim=)]
normalized_tensor = (tensor - mean) / (std + eps)

normalized_tensor = torch.nan_to_num{normalized_tensor, nan=8.8)

n normalized_tensor

check_for_nans(tensor, name):
if torch.is
print(f"Na alues found in {name}™)
if torch.isinf
ound in {namel}")

count_nans_infs(tensor):
= torch.isnan(tensor).sum().item()
= torch.isinf(tensor).sum().item()
n nan_count, inf_count

calculate_pearson_corr(y_true, y pred):

n scipy.stats.pearsonr(y_true, y_pred)[@]

Figure 9: Utility Function

The code snippet for the hierarchy modal attention is shown in Figure [I7, while the
code snippet for training the model and hyperparameter search is shown in Figure (18|
Figure [19| shows the code snippet for the best parameter obtained.

d_model, num_heads, num_lay: d_ff, dropout, fc_dim):
super(Transformertiodel, self)._ init_ ()

oder_layer = nn.Transform erLayer(d_r _model, nhead=num_heads, dim feedforw dropout=dropout)

1f.tran rmer_en: r rmerEncoder (encoder layer, num_layers=num_layer:
self.fc = nn.Linear(fc_dim, 1)
nn.Dropout(dropout)

t. permute
audio = audio.permute(

c_output = enc_output.transpose(@, 1)

c_output = enc_output.transpose(1, 2)

output 1f . fc(enc_output . mean(dim

output

Figure 10: Early Concatenation Design Code

num_layer-
d_ff=158

fc_dim = d_model
dropou

c_dim=fc_dim)

rain loader, valid loader, epo

| loss, val pearson = luate

Figure 11: Early Concatenation Implementation Code

. print(trial: ")
concatenation = study concatenation.b
rial concatenation.value)

J
alue in trial concatenation.para

value]

Best trial:
Value:
Params:
num_layer

Figure 12: Early Concatenation Best Parameter Code

Cross Modal Atiention

)

= nn.MultiheadAttention(d_model, num_heads)
attn_text_audio = nn.Multih

| text nn.MultiheadAttention(d_model, num heads)
attn_audio_v nn.Hul ttention(d_model, num_h
= nn.Linear(d_s

1f, d model, num heads, num_la

deo_dim):
‘ormerModelWithCross

proj . dim, d model)
proj . video_dim, d model)

modal_attent

d ff, dropout=dropout)

Figure 13: Cross-Modal Attention Design Code

forward(
batch

text = text.permute(1l, @, 2)
audio = audio.permute(l, @, 2)
video = video.permute(l, @, 2)

combined = self.cross modal_attention(» audio, wideo)

src = combined.trans

enc_outp enc_output.mean(dim=1)
output 1f . fc(enc_output)

"n output

Figure 14: Cross-Modal Attention Design Code

vy

print t)
trial cross_ tudy cros n.best_trial
print({" » trial cross_atn.wvalue)
print{'Params: ")

for key, value in trial cross_atn.params.items

print(f"'{key}: {value}')

Best trial:

Value: .815166148161454678
Params:

num_heads: 8

num_layers: 8

Figure 15: Cross-Modal Attention Implementation Code

print{"

trial ¢ » tudy cross_atn.best_trial
print({" ', trial cross_atn.value)

print{'Pza

¢, value in trial cross_atn.params.items({):

key
P

rint (" {key}: {value}")

Best trial:

Value: @.815166148161454678
Params:

num_head

num_layer

Figure 16: Cross-Modal Attention Best Parameter Code

ica t
- dim, audio dim, vi i im, num heads, num laye
delWithHierarchicalAtt:)._dnit_(

num_1;
, num L

proj = nn.Linear(text_din, hidden_dim)
im, hidden ¢
deo_dim, hidden dim)
on_encoder = nn.TransformerEncoder{(n. TransformerEncoderLayer (d_model=hidden_dim * 3, nhead=num_heads
on layer = nn.Linear(hidden dim * 3, hidden dim)
self.output_layer = nn.Linear(hidden dim,

self.num_

audio_en
coder (concat_emb)

on_layer (fusion_output.permute(1,

(fused_emb[

Figure 17: Hierarchy Modal Attention Design Code

n_dim

objective(trial):

egoric:
categorical ("

num_layers=num_layers)

print (v val < val_pearson: .af}")

total_par. g 1.parameters
print(f Total n al_params

chical = optt
hical.optimiz

Figure 18: Hierarchy Modal Attention Implementation Code

' print(’ 1:")
trial hierarchical =
print(
print(’

Best trial:
Value: @

Params:
num_heads: 4
num_layer

Figure 19: Hierarchy Modal Attention Best Parameter Code

10

	Introduction
	System Configuration
	Python Libraries
	Environment Setup
	Execution Stages Explained

