
Configuration Manual - Street Navigation for
Visual Impairment using CNN and

Transformer Models

MSc Research Project

Masters of Science in Artificial Intelligence

Hasan Ali
Student ID: 22142291

School of Computing

National College of Ireland

Supervisor: Faithful Onwuegbuche

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Hasan Ali

Student ID: 22142291

Programme: Masters of Science in Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Faithful Onwuegbuche

Submission Due Date: 12/08/2024

Project Title: Configuration Manual - Street Navigation for Visual Impair-
ment using CNN and Transformer Models

Word Count: XXX

Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Hasan Ali

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual - Street Navigation for Visual
Impairment using CNN and Transformer Models

Hasan Ali
22142291

1 Introduction

This manual provides a detailed step-by-step guide to reproduce the experiments and
results described in the object detection thesis using the DETR and YOLO models. It
focuses on the specific configurations, tools, and procedures required to replicate the
study, from environment setup to running the models.

1.1 Datasets:

Please find the datasets in those location:

Google Drive:

1. Link

RoboFlow:

1. Phase 1 Dataset

2. Phase 2 Dataset

1.2 Detailed Output Runs

Please find here a link to the original model runs outputs, including model predictions,
trained model weights, visualizations of image predictions for all runs in this experiment:

1. Link

Please note this was not included in Moodle due to large size.

2 Prerequisites

Before proceeding with the steps outlined in this manual, ensure you have the following
prerequisites in place:

1. Google Account: Required for using Google Colab.

2. Local Machine: A computer with the minimum recommended specifications (de-
tailed below) for running local tasks.

1

https://drive.google.com/file/d/1ghknxlvGuURpWwEAq9A_tHeY3zuYiNf3/view?usp=drive_link
https://app.roboflow.com/objectdetection-rfyr2/wotr_v3-phase1
https://app.roboflow.com/objectdetection-rfyr2/wotr_v3-phase2
https://drive.google.com/drive/folders/1KYSGdll64kgp-Mp_JSvefL8LQeunD_EZ?usp=drive_link


3 Environment Setup

3.1 Version Control System

We use GitHub for VCS but in this Config manual we refer to your usage of the ZIP
file attahced in Moodle. Firstly, download the ZIP file containing the code artifacts, and
secondly, unzip it in a place suitable for you.

3.2 Google Colab Setup

Google Colab is used for training and running predictions for object detection models, as
it provides access to powerful GPU instances.

1. Google Colab Configuration:

• Login to Google Colab: Access Google Colab and log in with your Google
account.

• Set Hardware Accelerator:

(a) Navigate to Runtime > Change runtime type.

(b) Select GPU from the Hardware accelerator dropdown menu.

2. Colab Resources:

• Hardware:

– Use an Nvidia A100 GPU for optimal performance.

– Opt for the High RAM option for better handling of large datasets.

• Colab Pro+ Subscription:

– Ensure you have a Colab Pro+ subscription, which provides background
task capabilities and longer runtime durations.

• Google Drive Integration:

– Mount Google Drive in Colab to store large datasets and model check-
points.

– Ensure you have Google Drive Premium for adequate storage.

• Action: Use the following code snippet to mount Google Drive in Colab: from
google.colab import drive drive.mount(’/content/drive’)

3.3 Local Resources

Local resources are used for non-intensive tasks such as data preprocessing.

1. System Requirements:

• Operating System: Linux Fedora 39 GNOME (64-bit).

• Processor: Intel i5 8th Generation or higher.

• RAM: Minimum 8GB.

• Storage: Minimum 256GB SSD with 50GB free space.

2

https://colab.research.google.com


2. Software Setup:

• Python Libraries: Ensure the necessary libraries are installed. Use the
requirements.txt file provided in the Zip repository: pip install -r require-
ments.txt

• CUDA Toolkit: Install appropriate GPU drivers and CUDA toolkit for GPU
acceleration.

3. Integrated Development Environment (IDE):

• Install VSCodium:

– VSCodium is a free and open-source code editor, which you will use for
editing and managing your scripts.

– Install and Run VSCodium and open your project folder for editing
and development.

4 Labeling Tools Setup

4.1 LabelImg

1. Installation:

• Download and install LabelImg from its official repository.

• Follow the installation instructions for your operating system.

2. Configuration:

• Use default settings for labeling images.

• Save the labeled images in YOLO format.

4.2 Label Studio

1. Installation: pip install label-studio

2. Configuration:

• Start the Label Studio server: label-studio start

• Configure your project to label images, and export labels after auditing.

4.3 Roboflow

1. Account Setup:

• Sign up for a Roboflow account at Roboflow.

2. Dataset Management:

• Upload your dataset to Roboflow.

• Perform any necessary labeling or format conversion.

3

https://github.com/tzutalin/labelImg
https://roboflow.com


• Use the Roboflow API to manage your dataset within your codebase.

• Example API Usage: from roboflow import Roboflow rf = Roboflow(api key=”YOUR API KEY”)
project = rf.workspace().project(”PROJECT NAME”) dataset = project.version(”VERSION NUMBER”).download(”yolov5”)

5 Dataset Management

5.1 Local Storage

1. Dataset Organization:

• Organize your datasets into directories (e.g., train, test, validation).

• Ensure data is properly formatted for training (e.g., YOLO format).

2. Accessing the Dataset:

• Download the dataset from the provided link and extract it to the appropriate
directory.

5.2 Roboflow Dataset Management

1. Upload and Preprocessing:

• Upload the dataset to Roboflow and perform preprocessing steps such as res-
izing, augmentation, or format conversion.

2. Downloading the Dataset:

• Use the Roboflow API to download datasets directly to your local environment
or Google Colab.

• Example: dataset = project.version(”VERSION NUMBER”).download(”coco”)

5.3 Datasets Details

The dataset will look like below:

Figure 1: Dataset overview

4



Figure 2: Dataset details

6 Running Experiments and Evaluations

6.0.1 Data Preparation

Below are the steps we took to prepare our dataset:

1. Conduct an audit on the dataset:

(a) We manually assessed the accuracy of the ground truth labels to ensure that
the dataset is of high quality.

5



2. Standardize the baseline dataset and improve it:

(a) Remove sign class instances from our labels:

i. We conducted a sense check on the sign class labels and found that it is
not a reliable class as it mixes between stop signs and other directional
signs. Moreover, we asserted that the sign class is not relevant for our
use-case as VIP will not benefit a lot from it.

ii. To be more specific, the ”sign” labels had two issues:

A. They included all signs, meaning they included directional and stop
signs, which is problematic in the evaluation as the COCO dataset
only contains ”stop signs”.

B. They are not useful for our purpose: There is no major use for VIP
in regards to signs (be it stop signs or directional car signs) - in other
words, this class is not a Class of Concern for the VIP when they
engage in street navigation.

iii. In this step, we scan our PASCAL VOC labels for the sign class and
remove them.

6



iv. In this step, we delete empty labels (along with their image pair): We also
delete the images which contain only sign classes because if we keep them,
they might increase the noise in our dataset.

(b) Consolidate classes: There are classes in the WOTR dataset which were ex-
tended from the COCO dataset, such as red/green light instead of the original
COCO class traffic light.

i. After checking the classes in the WOTR dataset, we asserted that some
classes would be better combined and consolidated to ensure better de-
tection and more meaningful prediction and training data.

ii. We consolidate ”tricycle” into ”bicycle”, ”red light” into ”traffic light”,
and ”green light” into ”traffic light”.

(c) Rename classes: The names in the dataset were slightly different from the
COCO dataset, and therefore we renamed them to match the COCO dataset.
For example, ”fire hydrant” to ”fire hydrant”.

i. We will rename the class names to make them more meaningful, as well
as matching the case and style with the COCO dataset.

ii. We rename 1) ”fire hydrant” to ”fire hydrant”, 2) ”reflective cone” to ”re-
flective cone”, 3) ”warning column” to ”warning column”, 4) ”blind road”
to ”tactile pavement”, and 5) ”ashcan” to ”litter bin”.

3. Prepare Phase-based datasets:

7



Figure 3: Enter Caption

(a) In this step, we prepare the dataset for each phase. We aim to have the phase
images in both phases and apply respective differences when needed, such as
keeping only classes in scope for each phase.

(b) Because Phase 2 is a bigger set, we start by preparing the Phase 2 dataset,
and then prepare the Phase 1 dataset out of it, by removing classes out of
scope in Phase 1.

(c) Steps are:

i. Prepare the Phase 2 dataset:

A. Identify classes in scope and remove classes that are not in scope.

B. Classes in scope are: person, bicycle, bus, truck, car, motorcycle,
fire hydrant, dog, traffic light, tree, reflective cone, crosswalk, tactile
pavement, pole, warning column, roadblock, litter bin.

C. Delete empty labels (along with their image pair).

ii. Prepare the Phase 1 dataset:

A. Identify classes and remove classes that are not in scope.

B. Classes are: person, bicycle, bus, truck, car, motorcycle, fire hydrant,
dog, traffic light.

C. Delete empty labels (along with their image pair).

4. Split each phase-based dataset into 3 main collections: Training, Validation,
and Testing datasets. The split we chose is 80/10/10. We used SKLearn to ensure
randomness and avoidance of bias in the image splitting process.

8



(a) Dataset was split into:

i. 80% training set

ii. 10% validation set

iii. 10% test set

5. Convert the labels from PASCAL-VOC to YOLO format: The reason we
chose the YOLO format is that it is native to the YOLO family of models and can
be easily converted at a later stage to other formats.

After performing the steps above, we are ready to utilize the datasets for our predic-
tions and fine-tuning, and evaluating model performance.

9



6.1 Notebooks

1. Structure:

• All experiments are organized in Jupyter notebooks stored in the repository.

• The notebooks are pre-run with results already available in the cell outputs.

• Experiment results and outputs are stored in the ”3 runs and outputs”
folders.

• The experiments are split into two phases: Phase 1 and Phase 2.

• Each phase is further divided by the model type (e.g., YOLOv8, DETR, RT-
DETR, etc.).

• Each notebook includes the necessary library requirements within the first few
cells.

Phase 1 Code snippets and outputs (please note entire code is in the code repository
as it is too big):

Figure 4: YOLO Code Snippet and Output

10



Figure 5: DETR Code Snippet

Figure 6: DETR Code Snippet and Output

Phase 2 Code snippets and outputs ((please note entire code is in the code repository
as it is too big):

Figure 7: YOLOv8 Training: Code Snippet and Output 1/2

Figure 8: YOLOv8 Training: Code Snippet and Output 2/2

11



Figure 9: DETR Training: Code Snippet and Output

Figure 10: RT-DETR Training: Code Snippet and Output

2. Using Datasets:

• YOLO Models: Use the dataset stored on Google Drive directly for both
phases.

• DETR Implementation:

– Phase 1: Use the Google Drive dataset directly.

– Phase 2: Use the dataset from Roboflow in the COCO format. The code
is already in the notebook, just run it.

6.2 Running the Experiments Again

1. Steps to Re-run Experiments:

• Open the Experiment Notebook:

– Navigate to the specific experiment folder in the repository.

– Open the notebook in VSCodium or your preferred IDE (e.g., Jupyter
Notebook).

• Run the Required Cells:

– Execute the cells sequentially as needed to reproduce the results.

– Note that some notebooks may include a final cell that exports or zips
the output folder. Running this cell is optional and is used to compile
prediction images, labels, and other outputs into a zipped file for easier
downloading.

2. Ensure Proper Configuration:

12



• Use the Nvidia A100 GPU in Google Colab to ensure that the experiments
run efficiently.

• Ensure Google Drive is mounted in Colab to store and access large datasets
during the experiments.

7 Evaluating Model Performance

7.1 Output and Evaluation

1. Prediction Labels:

• After running the experiments, you will find the prediction labels for each
image in the output folder.

• These prediction labels are saved in .txt format, corresponding to the images
on which the experiment was run (typically the test set).

2. Post-Processing for DETR/RT-DETR Models:

• Phase 1:

– After obtaining the prediction labels, run the postprocess detr step1.py

script.

– Input Required:

∗ The original folder containing the prediction labels.

∗ A new empty folder where the post-processed labels will be stored.

– The output folder from this step will contain labels ready for metrics
evaluation using detr phase1 postprocess step1.py.

• Phase 2:

– After obtaining the prediction labels, run both detr phase2 postprocess step1.py

and detr phase2 postprocess step2.py.

– Step 1:

∗ Input the original folder containing the prediction labels.

∗ Specify a new empty folder where the post-processed labels from step
1 will be stored.

– Step 2:

∗ Input the folder containing the post-processed labels from step 1.

∗ Specify another new empty folder where the final post-processed labels
will be stored.

– The output folder from step 2 will contain labels ready for metrics evalu-
ation using calculate metrics.py.

3. Running Evaluation Metrics:

• To calculate the evaluation metrics, run the calculate metrics.py script.

• Input Required:

– Ground Truth Labels: The actual labels for the test set.

13



– Prediction Labels: The labels generated by the model, located in the
output folder or the post-processed folder.

• Run the script

• The script will output the evaluation results, which include metrics such as
mAP, Precision, and Recall.

8 Results Reproduction

1. Evaluation Metrics:

• Ensure that you evaluate the models using the same metrics used in the thesis
(e.g., mAP, Precision, Recall).

• Compare the results with those reported in the thesis.

2. Reporting Results:

• Document any deviations from the original results and analyze potential causes.

• Common Issues:

– GPU Memory Errors: Consider reducing batch size or using a smaller model
variant.

– Dataset Format Errors: Ensure the dataset is in the correct format as required
by the model.

9 Appendix

I this section, you can find the full results of the experiment. The original file can be
found in the Google Drive ”Detailed Output Runs” folder. Link.

9.1 Phase 1 and 2 Results:

14

https://drive.google.com/file/d/1EUg-RCXOAiwtQzW8ztLOkQyX8H6ipdyx/view?usp=drive_link


15



10 Conclusion

By following this manual, you should be able to replicate the experimental setup

References

16


	Introduction
	Datasets:
	Detailed Output Runs

	Prerequisites
	Environment Setup
	Version Control System
	Google Colab Setup
	Local Resources

	Labeling Tools Setup
	LabelImg
	Label Studio
	Roboflow

	Dataset Management
	Local Storage
	Roboflow Dataset Management
	Datasets Details

	Running Experiments and Evaluations
	Data Preparation
	Notebooks
	Running the Experiments Again

	Evaluating Model Performance
	Output and Evaluation

	Results Reproduction
	Appendix
	Phase 1 and 2 Results:

	Conclusion

