

Configuration Manual - Street Navigation for Visual Impairment using CNN and Transformer Models

MSc Research Project Masters of Science in Artificial Intelligence

> Hasan Ali Student ID: 22142291

School of Computing National College of Ireland

Supervisor: Faithful Onwuegbuche

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Hasan Ali
Student ID:	22142291
Programme:	Masters of Science in Artificial Intelligence
Year:	2024
Module:	MSc Research Project
Supervisor:	Faithful Onwuegbuche
Submission Due Date:	12/08/2024
Project Title:	Configuration Manual - Street Navigation for Visual Impair-
	ment using CNN and Transformer Models
Word Count:	XXX
Page Count:	16

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Hasan Ali
Date:	16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).						
Attach a Moodle submission receipt of the online project submission, to						
each project (including multiple copies).						
You must ensure that you retain a HARD COPY of the project, both for						
your own reference and in case a project is lost or mislaid. It is not sufficient to keep						
a copy on computer						

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual - Street Navigation for Visual Impairment using CNN and Transformer Models

Hasan Ali 22142291

1 Introduction

This manual provides a detailed step-by-step guide to reproduce the experiments and results described in the object detection thesis using the DETR and YOLO models. It focuses on the specific configurations, tools, and procedures required to replicate the study, from environment setup to running the models.

1.1 Datasets:

Please find the datasets in those location:

Google Drive:

1. Link

RoboFlow:

- 1. Phase 1 Dataset
- 2. Phase 2 Dataset

1.2 Detailed Output Runs

Please find here a link to the original model runs outputs, including model predictions, trained model weights, visualizations of image predictions for all runs in this experiment:

1. Link

Please note this was not included in Moodle due to large size.

2 Prerequisites

Before proceeding with the steps outlined in this manual, ensure you have the following prerequisites in place:

- 1. Google Account: Required for using Google Colab.
- 2. Local Machine: A computer with the minimum recommended specifications (detailed below) for running local tasks.

3 Environment Setup

3.1 Version Control System

We use GitHub for VCS but in this Config manual we refer to your usage of the ZIP file attached in Moodle. Firstly, download the ZIP file containing the code artifacts, and secondly, unzip it in a place suitable for you.

3.2 Google Colab Setup

Google Colab is used for training and running predictions for object detection models, as it provides access to powerful GPU instances.

1. Google Colab Configuration:

- Login to Google Colab: Access Google Colab and log in with your Google account.
- Set Hardware Accelerator:
 - (a) Navigate to Runtime > Change runtime type.
 - (b) Select GPU from the Hardware accelerator dropdown menu.

2. Colab Resources:

- Hardware:
 - Use an Nvidia A100 GPU for optimal performance.
 - Opt for the High RAM option for better handling of large datasets.
- Colab Pro+ Subscription:
 - Ensure you have a Colab Pro+ subscription, which provides background task capabilities and longer runtime durations.
- Google Drive Integration:
 - Mount Google Drive in Colab to store large datasets and model checkpoints.
 - Ensure you have Google Drive Premium for adequate storage.
- Action: Use the following code snippet to mount Google Drive in Colab: from google.colab import drive drive.mount('/content/drive')

3.3 Local Resources

Local resources are used for non-intensive tasks such as data preprocessing.

- 1. System Requirements:
 - **Operating System**: Linux Fedora 39 GNOME (64-bit).
 - **Processor**: Intel i5 8th Generation or higher.
 - **RAM**: Minimum 8GB.
 - Storage: Minimum 256GB SSD with 50GB free space.

- 2. Software Setup:
 - **Python Libraries**: Ensure the necessary libraries are installed. Use the requirements.txt file provided in the Zip repository: pip install -r requirements.txt
 - **CUDA Toolkit**: Install appropriate GPU drivers and CUDA toolkit for GPU acceleration.

3. Integrated Development Environment (IDE):

- Install VSCodium:
 - VSCodium is a free and open-source code editor, which you will use for editing and managing your scripts.
 - Install and Run VSCodium and open your project folder for editing and development.

4 Labeling Tools Setup

4.1 LabelImg

1. Installation:

- Download and install LabelImg from its official repository.
- Follow the installation instructions for your operating system.

2. Configuration:

- Use default settings for labeling images.
- Save the labeled images in YOLO format.

4.2 Label Studio

1. Installation: pip install label-studio

2. Configuration:

- Start the Label Studio server: label-studio start
- Configure your project to label images, and export labels after auditing.

4.3 Roboflow

1. Account Setup:

• Sign up for a Roboflow account at Roboflow.

2. Dataset Management:

- Upload your dataset to Roboflow.
- Perform any necessary labeling or format conversion.

- Use the Roboflow API to manage your dataset within your codebase.
- Example API Usage: from roboflow import Roboflow rf = Roboflow(api_key="YOUR_AP project = rf.workspace().project("PROJECT_NAME") dataset = project.version("VERSION

5 Dataset Management

5.1 Local Storage

- 1. Dataset Organization:
 - Organize your datasets into directories (e.g., train, test, validation).
 - Ensure data is properly formatted for training (e.g., YOLO format).

2. Accessing the Dataset:

• Download the dataset from the provided link and extract it to the appropriate directory.

5.2 Roboflow Dataset Management

1. Upload and Preprocessing:

• Upload the dataset to Roboflow and perform preprocessing steps such as resizing, augmentation, or format conversion.

2. Downloading the Dataset:

- Use the Roboflow API to download datasets directly to your local environment or Google Colab.
- **Example**: dataset = project.version("VERSION_NUMBER").download("coco")

5.3 Datasets Details

The dataset will look like below:

Figure 1: Dataset overview

Figure 2: Dataset details

6 Running Experiments and Evaluations

6.0.1 Data Preparation

Below are the steps we took to prepare our dataset:

1. Conduct an audit on the dataset:

(a) We manually assessed the accuracy of the ground truth labels to ensure that the dataset is of high quality.

2. Standardize the baseline dataset and improve it:

- (a) Remove sign class instances from our labels:
 - i. We conducted a sense check on the sign class labels and found that it is not a reliable class as it mixes between stop signs and other directional signs. Moreover, we asserted that the sign class is not relevant for our use-case as VIP will not benefit a lot from it.
 - ii. To be more specific, the "sign" labels had two issues:
 - A. They included all signs, meaning they included directional and stop signs, which is problematic in the evaluation as the COCO dataset only contains "stop signs".
 - B. They are not useful for our purpose: There is no major use for VIP in regards to signs (be it stop signs or directional car signs) in other words, this class is not a Class of Concern for the VIP when they engage in street navigation.
 - iii. In this step, we scan our PASCAL VOC labels for the sign class and remove them.

- iv. In this step, we delete empty labels (along with their image pair): We also delete the images which contain only sign classes because if we keep them, they might increase the noise in our dataset.
- (b) Consolidate classes: There are classes in the WOTR dataset which were extended from the COCO dataset, such as red/green light instead of the original COCO class traffic light.
 - i. After checking the classes in the WOTR dataset, we asserted that some classes would be better combined and consolidated to ensure better detection and more meaningful prediction and training data.
 - ii. We consolidate "tricycle" into "bicycle", "red light" into "traffic light", and "green light" into "traffic light".
- (c) Rename classes: The names in the dataset were slightly different from the COCO dataset, and therefore we renamed them to match the COCO dataset. For example, "fire_hydrant" to "fire hydrant".
 - i. We will rename the class names to make them more meaningful, as well as matching the case and style with the COCO dataset.
 - ii. We rename 1) "fire_hydrant" to "fire hydrant", 2) "reflective_cone" to "reflective cone", 3) "warning_column" to "warning column", 4) "blind_road" to "tactile pavement", and 5) "ashcan" to "litter bin".

3. Prepare Phase-based datasets:

Figure 3: Enter Caption

- (a) In this step, we prepare the dataset for each phase. We aim to have the phase images in both phases and apply respective differences when needed, such as keeping only classes in scope for each phase.
- (b) Because Phase 2 is a bigger set, we start by preparing the Phase 2 dataset, and then prepare the Phase 1 dataset out of it, by removing classes out of scope in Phase 1.
- (c) Steps are:
 - i. Prepare the Phase 2 dataset:
 - A. Identify classes in scope and remove classes that are not in scope.
 - B. Classes in scope are: person, bicycle, bus, truck, car, motorcycle, fire hydrant, dog, traffic light, tree, reflective cone, crosswalk, tactile pavement, pole, warning column, roadblock, litter bin.
 - C. Delete empty labels (along with their image pair).
 - ii. Prepare the Phase 1 dataset:
 - A. Identify classes and remove classes that are not in scope.
 - B. Classes are: person, bicycle, bus, truck, car, motorcycle, fire hydrant, dog, traffic light.
 - C. Delete empty labels (along with their image pair).
- 4. Split each phase-based dataset into 3 main collections: Training, Validation, and Testing datasets. The split we chose is 80/10/10. We used SKLearn to ensure randomness and avoidance of bias in the image splitting process.

- (a) Dataset was split into:
 - i. 80% training set
 - ii. 10% validation set
 - iii. 10% test set
- 5. Convert the labels from PASCAL-VOC to YOLO format: The reason we chose the YOLO format is that it is native to the YOLO family of models and can be easily converted at a later stage to other formats.

After performing the steps above, we are ready to utilize the datasets for our predictions and fine-tuning, and evaluating model performance.

6.1 Notebooks

1. Structure:

- All experiments are organized in Jupyter notebooks stored in the repository.
- The notebooks are pre-run with results already available in the cell outputs.
- Experiment results and outputs are stored in the "3_runs_and_outputs" folders.
- The experiments are split into two phases: Phase 1 and Phase 2.
- Each phase is further divided by the model type (e.g., YOLOv8, DETR, RT-DETR, etc.).
- Each notebook includes the necessary library requirements within the first few cells.

Phase 1 Code snippets and outputs (please note entire code is in the code repository as it is too big):

Figure 4: YOLO Code Snippet and Output

Figure 5: DETR Code Snippet

Figure 6: DETR Code Snippet and Output

Phase 2 Code snippets and outputs ((please note entire code is in the code repository as it is too big):

The fig fig all fig may approximate the second
No No. No. 201 All And and a state
The second se

Figure 7: YOLOv8 Training: Code Snippet and Output 1/2

The same later is an even of the same later		
The state while the state of th		
the first time and the first time is an and the second second second second		
ter film high dish film high high high high high high high hig		
And the balls for the first line in the second state with the second state of the seco		
to be the fill the second second		
No. of the loss of the loss of the second second second		
And the first first first state of the second		
the second secon		
And the base of th		
The same second se		
All first take the first store is a second strength to be a second strength to		
na dening ang dening series dening dening an . Series and annu ang dening dening and a series a		
sere a presente de marcolante. Entre con entre presente per ange lande como como anterestatado		

Figure 8: YOLOv8 Training: Code Snippet and Output 2/2

Figure 9: DETR Training: Code Snippet and Output

Figure 10: RT-DETR Training: Code Snippet and Output

2. Using Datasets:

- YOLO Models: Use the dataset stored on Google Drive directly for both phases.
- DETR Implementation:
 - Phase 1: Use the Google Drive dataset directly.
 - Phase 2: Use the dataset from Roboflow in the COCO format. The code is already in the notebook, just run it.

6.2 Running the Experiments Again

1. Steps to Re-run Experiments:

- Open the Experiment Notebook:
 - Navigate to the specific experiment folder in the repository.
 - Open the notebook in VSCodium or your preferred IDE (e.g., Jupyter Notebook).

• Run the Required Cells:

- Execute the cells sequentially as needed to reproduce the results.
- Note that some notebooks may include a final cell that exports or zips the output folder. Running this cell is optional and is used to compile prediction images, labels, and other outputs into a zipped file for easier downloading.

2. Ensure Proper Configuration:

- Use the Nvidia A100 GPU in Google Colab to ensure that the experiments run efficiently.
- Ensure Google Drive is mounted in Colab to store and access large datasets during the experiments.

7 Evaluating Model Performance

7.1 Output and Evaluation

1. Prediction Labels:

- After running the experiments, you will find the prediction labels for each image in the **output** folder.
- These prediction labels are saved in .txt format, corresponding to the images on which the experiment was run (typically the test set).

2. Post-Processing for DETR/RT-DETR Models:

- Phase 1:
 - After obtaining the prediction labels, run the postprocess_detr_step1.py script.
 - Input Required:
 - * The original folder containing the prediction labels.
 - * A new empty folder where the post-processed labels will be stored.
 - The output folder from this step will contain labels ready for metrics evaluation using detr_phase1_postprocess_step1.py.
- Phase 2:
 - After obtaining the prediction labels, run both detr_phase2_postprocess_step1.py and detr_phase2_postprocess_step2.py.
 - Step 1:
 - * Input the original folder containing the prediction labels.
 - * Specify a new empty folder where the post-processed labels from step 1 will be stored.
 - Step 2:
 - * Input the folder containing the post-processed labels from step 1.
 - * Specify another new empty folder where the final post-processed labels will be stored.
 - The output folder from step 2 will contain labels ready for metrics evaluation using calculate_metrics.py.

3. Running Evaluation Metrics:

- To calculate the evaluation metrics, run the calculate_metrics.py script.
- Input Required:
 - Ground Truth Labels: The actual labels for the test set.

- Prediction Labels: The labels generated by the model, located in the output folder or the post-processed folder.
- Run the script
- The script will output the evaluation results, which include metrics such as mAP, Precision, and Recall.

8 Results Reproduction

1. Evaluation Metrics:

- Ensure that you evaluate the models using the same metrics used in the thesis (e.g., mAP, Precision, Recall).
- Compare the results with those reported in the thesis.

2. Reporting Results:

• Document any deviations from the original results and analyze potential causes.

• Common Issues:

- GPU Memory Errors: Consider reducing batch size or using a smaller model variant.
- Dataset Format Errors: Ensure the dataset is in the correct format as required by the model.

9 Appendix

I this section, you can find the full results of the experiment. The original file can be found in the Google Drive "Detailed Output Runs" folder. Link.

9.1 Phase 1 and 2 Results:

Phase	Model_Archi	Model_Size	Pararra (N Class	▼ 0A	2 🖬	Precision 🔽 P	ecal 🔽 F	1 🗖 🕅	48 🔽 IP.	THE IS		Average Interence	Time (m
1810 1	YOL O-WORLD	yokov@-workb/2	43.7	0	0.292335	0.737979	0.402504	0.520976	0.597406	1366	485	2027	
hase 1	YOL O-WORLD	yolov@-workb/2	43.7	1	0.205553	0.768473	0.20339	0.321649	0.79661	156	47	611	
hase 1	YOLD WORLD	yolov8i-workb/2	48.7	2	0.317872	0.862014	0.424444	0.598812	0.575556	1087	174	1474	
hase 1	YOL O-WORLD	yolov8i-worldv2	48.7	3	0.299565	0.697552	0.317928	0.435782	0.682072	399	173	856	
fakie 1	YOLD-WORLD	yolov@-workh/2	43.7	5	0.403945	0.899557	0.58794	0.700559	0.41206	117	28	82	
diame 1	YOL O-WORLD	yolov@-workh/2	43.7	7	0.200579	0.837209	0.313043	0.455696	0.699957	108	21	237	
Trase 1	YOLO-WORLD	yolov8-workb/2	43.7	9	0.283719	0.495177	0.399906	0.412107	0.630094	354	407	903	
thase 1	YOL O WORLD	yolov8i-worldv2	48.7	10	0.490705	0.575472	0.530435	0.552036	0.499565	61	45	54	
1 94667	YOLD-WORLD	yolov@-workb/2	43.7	16	0.676327	0.818182	0.684783	0.745562	0.315217	63	14	29	
Taxue 1	YOLD-WORLD	yolov@-workh/2	43.7 Overall		0.367522								18.3
Phase 1	YOLO-WORLD	yolov&eworldv2	68.2	0	0.300171	0.723996	0.412801	0.525804	0.587199	1406	536	2000	
thase 1	YOLO WORLD	yolov8x-worldv2	68.2	1	0.230097	0.744493	0.222076	0.342105	0.777924	169	58	592	
Thase 1	YOLD-WORLD	yolov@x-worldv2	68.2	2	0.31881	0.899005	0.408028	0.554702	0.591972	1047	162	1519	
Takie 1	YOLO-WORLD	yolovite-worldv2	68.2	3	0.2999901	0.701874	0.325949	0.445165	0.674051	412	175	852	
Taxae 1	YOLO-WORLD	yolovite-worldv2	68.2	5	0.452376	0.045588	0.569307	0.690473	0.430693	115	21	87	
Passe 1	YOLO-WORLD	yolov8x-worldv2	68.2	7	0.274644	0.804511	0.305714	0.443064	0.694286	107	26	243	
Phase 1	YOLO-WORLD	yolov8x-worldv2	68.2	9	0.293867	0.451501	0.405602	0.427322	0.594386	391	475	573	
Phase 1	YOLD-WORLD	yolov@e-worldv2	68.2	10	0.495735	0.612245	0.526316	0.599038	0.473684	60	38	54	
Pfasse 1	YOL O-WORLD	yolovite-worldv2	68.2	16	0.092850	0.099567	0.714256	0.783123	0.285714	65	20	26	
Phase 1	YOLO-WORLD	yolovike-worldv2	68.2 Overall		0.372829								19.3
Phase 1	YOLO-WORLD	yokov@m-worldv2	25.9	0	0.290232	0.735388	0.408863	0.525536	0.591137	1384	496	2001	
Thase 1	YOLD-WORLD	yolov@m-worldv2	25.9	- 1	0.198103	0.681373	0.181226	0.286303	0.818774	139	65	628	
Takie 1	YOLD-WORLD	yolov@m-worldv2	25.9	2	0.315204	0.852021	0.434960	0.575922	0.565031	1117	194	1451	
Pixson 1	YOL O-WORLD	yolov@m-worldv2	25.9	3	0.206202	0.681275	0.274038	0.390857	0.725962	342	160	906	
11359 1	YOLO-WORLD	yoin/am-worldv2	25.9	- 5	0.421766	0.849154	0.552764	0.669663	0.447236	110	20	89	
Phase 1	YOLD-WORLD	yolov@m-worldv2	25.9	- 7	0.250463	0.826087	0.270655	0.407725	0.729345	95	20	256	
Phase 1	YOLD-WORLD	yolov@m-worldv2	25.9	2	0.262675	0.463127	0.330526	0.385749	0.003474	314	364	636	
Pfasse 1	YOU O-WORLD	yolov@m-worldv2	25.9	10	0.465432	0.508772	0.513274	0.511013	0.495726	58	56	55	
413359 1	YOLO-WORLD	yoinv@m-worldv2	25.9	16	0.651777	0.885714	0.681319	0.770186	0.318681	62		29	
Phase 1	YOLO-WORLD	yolov@m-worldv2	25.9 Overall		0.349873								16.7
Phase 1	YOLD-WORLD	yolov8s-worldv2	11.2	0	0.260713	0.730117	0.334328	0.45884	0.665672	1120	414	2230	
Phase 1	YOLD-WORLD	yolov@s-worldv2	11.2	1	0.145536	0.735506	0.133784	0.226545	0.895216	20	35	641	
Pfagge 1	YOL O-WORLD	yolovilis-worldv2	11.2	2	0.277987	0.054496	0.323252	0.470555	0.676748	823	129	1723	
Phase 1	YOLO-WORLD	yolov8s-worldv2	11.2	3	0.22107	0.653012	0.224152	0.333744	0.775848	271	144	938	
Phase 1	YOLO-WORLD	yolov8s-worldv2	11.2	5	0.349133	0.778761	0.449701	0.567742	0.553299	88	25	109	
Phase 1	YOLD-WORLD	yolovds-worldv2	11.2	7	0.189426	0.795181	0.19186	0.309133	0.93514	05	17	278	
Pfusse 1	YOLO-WORLD	yolov@s-worldv2	11.2	9	0.209923	0.454196	0.252654	0.324693	0.747346	238	286	704	
11359 1	TULIEWORLD	ycezvas-worldv2	11.2	10	0.0433316	0.550459	0.5x85714	0.542966	0.494286	90	49	92	
Trase 1	YOLD WORLD	ycezvas worldv2	11.2	16	0.623186	0.830986	0.641304	0.723926	0.358666	59	12		
Thase 1	YOLD-WORLD	yolovits-worldv2	11.2 Overall		0.303288								15
					-								

Phase	Model_An	hi Vodel_Size	Parants (N Class		rAP 🗖 F	Precision 🔽 F	lecal 🔽 F.		NB TE	■ FP:	- EN	 Average 	inference Time (/
Phase 1	YOLO	yolov8l	43.7	0	0.308661	0.746968	0.454812	0.565384	0.545188	1550	525	1858	
Phase 1	YOLO	yolov81	43.7	- 1	0.228015	0.748031	0.245161	0.359291	0.754839	190	64	585	
Phase 1	YOLO	yolov81	43.7	2	0.337451	0.765854	0.54556	0.637204	0.45444	1413	432	1177	
Phase 1	YOLO	yolov8l	43.7	3	0.284563	0.659744	0.32571	0.436114	0.67429	413	213	855	
Phase 1	YOLO	yolov8l	43.7	5	0.481322	0.824324	0.600985	0.695157	0.399015	122	26	81	
Phase 1	YOLO	yolov81	43.7	7	0.355916	0.87	0.490141	0.627027	0.509859	174	26	181	
Phase 1	YOLO	yolov81	43.7	- 9	0.284175	0.429392	0.387565	0.407407	0.612435	374	497	591	
Phase 1	YOLO	yolov8l	43.7	10	0.563768	0.767442	0.573913	0.656716	0.426087	66	20	49	
Phase 1	YOLO	18volov	43.7	16	0.714487	0.906977	0.8125	0.857143	0.1875	78	8	18	
Phase 1	YOLO	yolovBl	43.7 Overall		0.395373								13.9
Phase 1	YOLO	yolov8x	68.2	0	0.306875	0.718157	0.465457	0.564831	0.534543	1590	624	1826	
Phase 1	YOLO	x0/cv/8x	68.2	1	0.224315	0.703297	0.246154	0.364672	0.753846	192	81	588	
Phase 1	YOLO	xBiolog	68.2	2	0.343296	0.779173	0.573133	0.650457	0.426867	1489	422	1109	
Phase 1	YOLO	volcyda	68.2	3	0.287508	0.656696	0.361569	0.466363	0.638431	461	241	814	
Phase 1	YOLO	volov8x	68.2	5	0.507678	0.848584	0.635468	0.726761	0.364532	129	23	74	
Phase 1	YOLO	x0/cv/8x	68.2	7	0.346996	0.846512	0.504155	0.631944	0.495845	182	33	179	
Phase 1	YOL O	xBoolog	68.2	9	0.297327	0.406445	0.404762	0.405602	0.595238	391	571	575	
Phase 1	YOLO	volovita	68.2	10	0.55522	0.727273	0.62069	0.669767	0.37931	72	27	44	
Phase 1	YOLO	volov8x	68.2	16	0.728328	0.921348	0.854167	0.886485	0.145833	82	7	14	
Phase 1	YOL O	voice.Bx	68.2 Overall		0.399727								14
Phase 1	YOL O	volcofilm	25.9	0	0.292957	0.722787	0.440059	0.547052	0.559941	1494	573	1901	
Phase 1	YOLO	volov8m	25.9	- 1	0.202875	0.742358	0.219638	0.338963	0.780362	170	59	604	
Phase 1	YOLO	voice.8m	25.9	2	0.3245	0.765537	0.523773	0.621988	0.476227	1355	415	1232	
Phase 1	YOLO	voice/8m	25.9	3	0.270763	0.67053	0.320565	0.433851	0.679335	405	199	858	
Dhone 1	YOLD	winder	25.9	- 6	0.47821	0.852113	0.60192	0.2055322	0 32601	121	21	80	
Phone 1	YOLD	volceßen	25.9	- 2	0.326355	0.858596	0.44382	0.585185	0.55618	158	26	198	
Phase 1	YOLO	voice@m	25.9	9	0.251101	0.412545	0.35625	0.382337	0.64375	342	487	618	
Phase 1	YOL O	voice/8m	25.9	10	0.565126	0.741925	0.6	0.653462	0.4	69	24	46	
Dhone 1	YOLD	winder	25.9	16	0.672009	0.854198	0 744581	0.8	0.255319	20	11	24	
Phose 1	YOLD	volceßen	25.9 Overall		0.377099								11.7
Phase 1	YOLO	voice@n	3.2	0	0.238345	0.719575	0.296556	0.42003	0 703444	973	379	2308	
Dhone 1	VOL 0	winde	3.2	- 1	0.122597	0.6975	0.105191	0 102464	0.004100	27	35	1255	
Phone 1	YOLD	volcedin	3.2	- 2	0.284387	0 749158	0.345255	0.491068	0.634745	923	300	1604	
Ohone 1	YOL O	wia da	2.2	- 2	0.171021	0.696376	0.152206	0.240392	0.947504	175	90	67.4	
Dhore 1	VOL 0	windo	2.2	6	0.294421	0.991304	0.419367	0.559454	0.591622	92	10	114	
Dhone 1	VOLO	viciality	32	7	0.223539	0.771186	0.259231	0 209123	0.710769	91	27	247	
Phone 1	YOLD	vinde	3.2	à	0 140447	0.415301	0.167401	0.238619	0.832599	152	214	756	
Ohone 1	VOL 0	wia Ro	2.2	10	0.505724	0.796667	0.641394	0.641304	0.459716	60	16	50	
Dhore 1	VOLO	vialan	3.2	16	0.595122	0.91//296	0.626274	0.209075	0.373525	57	12	24	
Those 1	MOL O	youron	330-	10	0.000110	0.014100	0.0100714	0.100010	0.010464			~	0.4
Obote 1	YOL O	and an disc	51.2	0	0.080492	0.219466	0.220200	0.450804	0.610601	1977	174	2020	0/4
Dhate 1	YOL O	volution	11.2		0.160281	0.696913	0.162200	0.353997	0.926501	195	67	640	
Obern 1	NOL O	yaarda	11.0	- 2	0.21246	0.000015	0.100303	0.550570	0.5203.47	1007	220	1051	
Phone 1	YOLO	volcedla	11.2	- 1	0.226833	0.656414	0.411003	0.356495	0.2564	295	149	916	
Obote 1	VOLO	youves	11.2	-2	0.426072	0.2292221	0.656701	0.652569	0.442300	108	20	96	
Dhate 1	VOLO	voluda	11.2	- 2	0.935052	0.936479	0.320701	0.024505	0.612916	122	26	216	
Chase 1	NOL O	300,005	11.2	- 6	0.200002	0.030478	0.002104	0.044000	0.021010	203	20	817	
Phone 1	NOL O	yuuvos	11.2	10	0.203376	0.4109253	0.276202	0.0001640	0.721745	201	305	617	
Obote 1	VOLO	yours	11.2	10	0.600032	0.975	0.2369/2	0.391.949	0.362168	20	10	16	
Chase 1	100.0	yuuvus	11.2	*0	0.041040	0.075	0.120042	0.8	0.400100	10	20	4.0	0.0

10 Conclusion

By following this manual, you should be able to replicate the experimental setup

References