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Abstract
Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation
tasks. Frontal theta oscillations are thought to play an important role in spatial navigation andmemory. Electroencephalography
(EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However,
multiple analytical methods are available to examine complex data structures, especially machine learning-based techniques.
These methods have shown high classification performance, and their combination with feature engineering enhances their
capability. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data.
Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first,
last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods on
classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process
the EEG data contribute to classification performance. We compared the classification performance of each trial with data
gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found
that more machine learning methods perform better classification using coordinate-based data. However, only deep neural
networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest
that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner
subjects in a spatial learning task.
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Introduction

Navigating from one place to the next is a complex cognitive
skill that relies on the brain’s ability to represent spatial infor-
mation and retrieve it from memory. Studies in rodents and
other animals have been instrumental in uncovering foun-
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dational mechanisms of spatial cognition and memory. The
hippocampus, entorhinal cortex, and parietal cortex form the
core of a widespread navigation circuit. Theta oscillations in
the 4-8Hz frequency range have been shown to play a critical
role in spatial learning and memory during navigation tasks.
Accumulating evidence has demonstrated the role of frontal
midline theta in spatial learning and exploration (Chrastil et
al., 2022a; Crespo-García et al., 2016; Du et al., 2023; Liang
et al., 2021a; Roberts et al., 2013; Thornberry et al., 2023)
as well as successful retrieval (Buzsáki, 2005; Greenberg et
al., 2015; Herweg et al., 2020; Kaplan et al., 2014, 2012;
Klimesch et al., 1997; Lin et al., 2017; Roberts et al., 2013).
It is possible that frontal theta oscillations facilitate commu-
nication between the hippocampus and the cortex to support
the encoding of spatial memories (Buzsáki, 2005; Buzsáki &
Moser, 2013; Herweg et al., 2020; Kerrén et al., 2018; Liang
et al., 2021a; Mitchell et al., 2008).
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However, analysing human scalp-EEG data collected
during real-world or virtual spatial navigation poses chal-
lenges, due to the complexity and high dimensionality of the
data. Machine learning techniques offer promising solutions
by leveraging large datasets and automating the discov-
ery of informative features. The Support Vector Machine
(SVM) approach has proven useful in extracting features
of theta oscillations involved in working memory reten-
tion (Johannesen et al., 2016). The conformal kernel-based
fuzzy support vectormachine (CKF-SVM) has demonstrated
high classification accuracy using frontal theta oscillations
to differentiate between individuals with Mild Cognitive
Impairment (MCI) & healthy controls (Hsiao et al., 2021).
Interestingly, event-related potentials (ERPs) elicited from a
working memory auditory task were not predictive of cog-
nitive performance. However, ERPs from a visual working
memory task predicted information processing speed inMul-
tiple Sclerosis patients and healthy controls (Kiiski et al.,
2018). Considering spatial navigation is highly visual, and
oscillatory activity, as opposed to event-related potentials,
shows greater promise in predictive ability (Vahid et al.,
2018), for this paper we have focussed primarily on theta
(4-8 Hz) during a spatial learning and memory task.

In this study, we aimed to develop an approach using
hiddenMarkovmodels andmixedmodels to extract informa-
tive features from frontal midline theta EEG data collected
during a virtual water maze task. We then evaluated multi-
ple machine learning algorithms’ ability to classify between
learning and non-learner subjects based on the engineered
theta features from early (encoding) and late (remembered)
trials. Our goal was to determine a preprocessing and
machine learning pipeline that can best decode neural signa-
tures of spatial learning from EEG. We hope that this work
will provide methodological advances and a more standard-
ised, streamlined approach for analysing complexneural time
series data without the need to evaluate various approaches.
This work investigates the effectiveness of hidden Markov
and linear mixed-effect models to extract features from theta
EEGdata.Wehope to provide a standardised approach to pre-
dictive EEG analysis using spatial learning tasks to reduce
time for neuroscientists and researchers in clinical settings.

Methods

Experimental Procedure

Fifty adults (36 F, 14 M) aged between 18 and 45 (mean =
21.7) were recruited via the Maynooth University Depart-
ment of Psychology and externally via social media and
othermethods. All participants gave informed consent before
starting the experiment and were given a full briefing on

the experiment and the exclusion criteria. Some participants
from Maynooth University received course credit for par-
ticipation. The experiment received ethical approval from
the Maynooth University ethics committee. All participants
undertook a computer-based spatial learning task which
took place in a darkened, electrically-shielded and sound-
attenuated testing cubicle (150 cm× 180 cm)with access to a
joystick for navigating. The spatial navigation task used was
NavWell (see Commins et al. (2020) for in-depth details),
which consisted of a medium circular environment (15.75
seconds to traverse the arena, calculated at 75VirtualMetres)
through which participants could navigate. To aid navigation
two cues were used and were located on the arena’s wall: a
yellow square (northeast quadrant wall) and a light of 50%
luminance. A square goal was hidden in the middle of the
floor and was 15% of the total arena size and consisted of a
bright blue square that only became visible when the partic-
ipant crossed it. Participants underwent 12 trials to try and
find the hidden target. Participants were divided into two
conditions, learner (n = 25) & non-learner group (n = 25).
The learner group had a maximum of 60 seconds per trial
to find the hidden goal. There was a 10-second inter-trial
interval between each trial to allow for rest. The non-learner
group also had to navigate the arena but did not have a hid-
den goal. The non-learner group trials were time-matched
to the average trial time of the learner group for accurate
comparison and EEG signal processing. The X-Y coordinate
data was recorded by the NavWell software from which dis-
tance, path length, idle time and other behavioural measures
were extracted (see analysis below). Speed was kept constant
across both conditions. The starting position for all trials was
also kept constant across both conditions. For analysis, we
only focussed on two trials (of the 12) for both groups - trial 1
(where neither group had learned the task) and trial 12 (where
only the learner group should have learned the task).

EEG Data Recording & Extraction

A BioSemi ActiveTwo system (BioSemi B.V., Amsterdam,
Netherlands), which provided 32 Ag/AgCl electrodes, was
positioned according to the 10/20 system, an international
system denoting EEG electrode layout. This is themost com-
mon layout, meaning that the electrodes are either a distance
of 10% or 20% from each other. Event triggers were sent for
when participants began their trial and when they reached the
goal or their trial ended. BioSemi-designed caps using the
32-electrode international 10-20 layout were also used. Eye
movements and blinks were monitored using four external
electrodes placed on the face. Raw EEG data were sampled
at 1024 Hz but were down-sampled offline to 512 Hz.

The data were processed offline using the MATLAB-
based software Brainstorm 12 (Tadel et al., 2011). Data were
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pre-processed using a 1-40Hz band-pass filter andwere visu-
ally inspected for bad segments. Independent Component
Analysis (ICA)was used to remove and/or correct artefacts in
the data. EEG data were then referenced to the average of the
32 channels. Artefact-free datawere then epoched for partici-
pants’ full trial length, taking the entire time between the first
two start/end events and the last two start/end events (cross-
checked via the time reported in NavWell). These differed
for the learner group but were standardised in the non-learner
group due to the time-matching. We used a Morlet wavelet
time-frequency analysis, with a central frequency of 1 Hz, a
full-width half maximum time resolution of 3 seconds, and
a linear frequency definition from 4 to 8 Hz (4:1:8). We then
averaged across this frequency band and extracted the theta
power at each time-point across the epoch for each participant
at the frontalmidline (averaged F3, Fz, and F4 electrodes) Du
et al. (2023); Liang et al. (2021b); Thornberry et al. (2023).

Feature Engineering

The frontal theta waves dataset was composed of the total
time the individual travelled in the experiment, the raw mid-
line value of the theta wave, the subject ID, the group (learner
or non-learner), and the trial indicator (trial 1 or trial 12).
Moreover, the dataset containing the coordinates comprised
the subject ID, the total time, T , the individual walked during
the experiment, the x coordinate, the y coordinate at time t
(each coordinatewas recorded every 0.25 seconds), the group
(learner or non-learner) and the trial (1 or 12).

Using the coordinates dataset, for each subject, we com-
puted the total idle time (the time that a subject did notmove),
total path length (the journey’s distance of the subjects), total
angle shift (the total angle changes for each subjects’ step,
calculated by the sum of absolute differences in angle shift,
i.e.

T∑

t=3

∣∣∣∣tan
−1

(
yt − yt−1

xt − xt−1

)
− tan−1

(
yt−1 − yt−2

xt−1 − xt−2

)∣∣∣∣
180

π
,

where {xt } and {yt } are the time series of x and y coor-
dinates for subject position), and average speed (the total
path length divided by the time to find the target). As an
exploratory analysis, to identify differences among trials and
groups, we first fittedGeneralizedAdditiveModels for Loca-
tion, Scale and Shape (GAMLSS) (Rigby & Stasinopoulos,
2005; Stasinopoulos et al., 2017) for each engineered feature.
We modelled the location and scale parameters of a Gamma
GAMLSS using the total angle shift, average speed, total
idle time and total angle shift as predictors.

Let xt be the recorded theta power at time t, t = 1, . . . , T .
We rescaled the theta power values using two types of stan-

dardisation. The first (minmax) constrained the values to be
between 0 and 1 through

xminmax
t = xt − min(x)

max(x) − min(x)
.

The second involves a Z-score transformation, such that

xZ-scoret = xt − x̄

s
,

where x̄ is the mean and s is the standard deviation of the
sample.

For the xt , xminmax
t , and xZ-scoret data, we extracted and

engineered a set of different features.Wecomputed the height
and curvature (calculated by taking the second-order differ-
ence of xk−1, xk, xk+1, where k is the time where a peak
occurred) of each peak within the EEGs for each subject. Let
yi j and xi j be, respectively, the j−th observed peak height
and curvature for participant i . We fitted a linear mixed-
effects model (LMM) to the peak heights, including random
intercepts and slopes over peak curvature per participant,
which may be written as

Yi j |b0i j , b1i j ∼ N
(
μi j , σ

2
)

μi j = b0i + b1i xi j

b0i ∼ N
(
β0, σ

2
0

)

b′
1i ∼ N

(
β1, σ

2
1

)

Corr(b0i , b1i ) = 0

where b0i and b1i are, respectively, the individual-level ran-
dom intercepts and slopes. We then extracted the predicted
b̂0i and b̂1i (i.e. one intercept and slope per each participant)
and used them as features in the machine learning methods
described in the later sections.

In addition to that, to extract additional features from the
EEG theta signals for each participant, we fitted Gaussian
Hidden Markov models (HMMs) Zucchini and MacDonald
(2016) to each EEG. HMMs can be used to model time series
data assuming there are latent states which determine the
mean and variance of the time series at different stages. Let
Ct ∈ {S1, S2, . . . , SM } be a categorical variable with M cat-
egories, describing the latent state of the series at time t . We
assume the Markov property of order 1, which means that
the state of the series at t − 1 influences the state at time t .
In algebraic notation, we have

P(Ct = ct |Ct−1,Ct−2, . . . ,C1) = P(Ct = ct |Ct−1),
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i.e. the current stateCt is dependent on the history of previous
states, which is summarised by only the previous state Ct−1.
We then formulate a HMM with M = 4 possible states to
be used to analyse the EEG data. Let xt be the observed
EEG intensity at time t . The HMM assumes that the random
variable Xt is dependent on its previous value Xt−1, as well
as its latent state Ct , which may be written as

Xt |Xt−1,Ct ∼ N (μ(Ct ), σ
2(Ct )),

i.e. themean and variance of the time series Xt are dependent
on the latent state Ct . This gives the mean μt = μ(Ct ) and
variance σ 2

t = σ 2(Ct ) of the EEG time series process at time
t .

One important feature of HMMs is the transition proba-
bility matrix P that is estimated from the data. This matrix
governs the likelihood of switching from one state to another,
or remaining in the same state, given the state at the previous
time point. Since we are assuming 4 states, we have

P =

⎛

⎜⎜⎝

π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34

π41 π42 π43 π44

⎞

⎟⎟⎠ ,

where πi j is the probability of the series switching from state
i to state j , i, j ∈ {1, 2, 3, 4}.

For each subject presented in the study, we estimated the
means and variances for all four states, as well as the tran-
sition probabilities. This totals us eight parameter estimates
(four means and four variances) per participant. In addition,
we calculated how frequent each state was in the series for
each participant, adding three extra features for states 1, 2
and 3 (since the frequency for state four is one minus the fre-
quencies for states 1, 2 and 3). The choice of four states was
made based on previous exploration of model fits through the
Akaike information criterion (AIC); we present the results
for other values of M as Supplementary Material. Estima-
tion was done using the EM algorithm implemented through
package depmixS4Visser andSpeekenbrink (2010) available
for R software R Core Team (2022).

Learner and Non-learner Classification

We created two primary datasets to train different machine
learning methods to classify the EEG time series as arising
either from a participant in the non-learner or learner group.
The EEG data contains the time series features, HMM and
LMMparameter estimates. The coordinates data solely con-
tains variables obtained from the coordinates dataset.

To identify the effect of the selected features on the
classification performance, we used 3rd order Polynomial
Support Vector Machines (Poly SVM), Non-linear Support

Vector Machines (Non-linear SVM), Random Forests (RF)
with one thousand trees and a depth of 5, K-Nearest Neigh-
bours (KNN) with one neighbour, elastic net regularisation
in logistic regression with α = 0.98 (constant that multiplies
the L2 regularisation), and Deep Neural Networks (DNN)
with eight layers containing 100, 150, 200, 150, 46, 20, 10
and one neuron per layer. We evaluated the performance
of each machine learning algorithm using Leave-One-Out
Cross-Validation (LOOCV).

After selecting the best model trained with the EEG
dataset, we used the Local Interpretable Model-agnostic
Explanations (LIME) algorithm to extract feature impor-
tance. To visualise the feature importance for each prediction
of the best learning algorithm within the step of LOOCV, we
obtain the feature importance for every prediction related to
a subject in our dataset. Finally, with this list of features’
importance per subject, we list the top three most frequent
ones for both trials and groups.

Results

In Section 3.1, we present the results of the analysis of the
engineered features based on coordinates data and the EEG
data. We also present the overall performance of all machine
learning algorithms for each number of states, M , of the hid-
den Markov Model. In Section 3.2, we present the detailed
performance of the machine learning algorithms for classi-
fying non-learner and learner subjects using M = 4.

Analysis of Engineered Features

Figure 1 illustrates the effect of trials and groups on the engi-
neered features based on the coordinates data. After fitting
the Generalized Additive Models for Location, Scale and
Shape for each feature, our results showed that, for all engi-
neered features, modelling the mean and dispersion of the
Gamma distribution as a function of trial and group is best,
based on AIC. For the total angle shift (Fig. 1a), a significant
difference between trials (LR = 72.32, df = 1, p < 0.01), no
differences between groups (LR = 2.19, df = 1, p = 0.13)
and no interaction between trial and groups (LR = 1.49, df =
1, p = 0.22) were found.

For the path length (Fig. 1b), no interaction was found
for the mean of the Gamma distribution (LR = 0.46, df = 1,
p = 0.49). Also, differences between trials (LR = 193.42,
df = 1, p < 0.01) and groups (LR = 4.74, df = 1, p =
0.029) were found. For the average speed (Fig. 1c), we found
differences between trials (LR = 102.83, df = 1, p < 0.01),
no difference between groups (LR = 1.35, df = 1, p = 0.24)
and no interaction between groups and trials LR = 3.66, df
= 1, p = 0.056). Finally, for idle time (Fig. 1d), there is an
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Fig. 1 Behavioural findings based on the coordinate data: a) Total angle shift; b) Path length (Vm); c) Average speed; d) Idle time. The coordinates
of all participants are presented from trials one and twelve, and the colour indicates the groups of the groups

interaction between trials and groups for the mean parameter
of the Gamma distribution (LR = 4.09, df = 1, p = 0.043).
There is difference between trials (LR = 22.47, df = 2, p <

0.01) and groups (LR= 10.13, df = 2, p < 0.01). For subjects
in trial 1, there is no difference between groups (LR = 0.011,
df = 1, p = 0.91) and for trial 12, there is a difference
between groups (LR = 10.21, df = 1, p = 0.001). For non-

learners, there is a difference between trials (LR = 20.49, df =
1, p < 0.01), and for learners, there is no difference between
trials (LR = 2.16, df = 1, p = 0.14).

We then fitted the hidden Markov models for each par-
ticipant for the respective groups and trials using EEG data.
Figure 2a shows the performance of the Gaussian hidden
Markov model based on AIC. It illustrates no clear differ-

Fig. 2 a) Box plots of the computedAkaike information criterion (AIC)
from the hidden Markov models using M = 2, 3, 4, 5. Each point of
the plot represents an AIC value for a hiddenMarkov model fitted using

the EEG data of a subject. b) Average AUROC for all machine learning
algorithms using the EEG data for each value of M
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Fig. 3 a) Z-score scaled theta time series from trial 12 for a non-learner (top) and learner (bottom). b) A scatter plot of the peak and curvature
values extracted from each theta wave time series for the two subjects in a)

ence among the different values of M . Also, Fig. 2b shows
that the average AUROC of the machine learning algorithm
using different features based on the number of states M
also showed no clear difference. This finding supports the
decision to solely present the performance of the selected

learning algorithms with M = 4. The additional plots and
code for reproducing them are available at https://github.
com/GabrielRPalma/UnderstandingLearningWithML.

Finally, the association between the peak and curvature of
the peak obtained from the Z-score scaled theta time series

Fig. 4 Area under the ROC (AUROC) curve obtained using all machine learning algorithms when classifying non-learner and learner subjects for
Trial 1 and 12 solely using the coordinates data. * represents methods that achieved AUROC > 0.8
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was obtained using a linear mixed-effects model. The fea-
tures used to fit the linear mixed-effect model are illustrated
in Fig. 3. The slope and intercept of the model will be used as
features for themachine learning classification of non-learner
and learner (learner) groups in Section 3.2.

Classifying Learning

Figure 4 show the performance of the selected learning algo-
rithms to classify non-learner or learner participants for both
trials based solely on combined coordinate data. Here, we
find that most machine learning algorithms perform well
(with the exception of Ridge) at classifying whether a partic-
ipant is a learner or non-learner. Random forests (RF), deep
neural networks (DNN) and non-linear SVM perform partic-
ularlywell (allwith anAUROClarger than0.8). Furthermore,
the algorithms were better at classifying participants on Trial
12 compared to Trial 1. Finally, pre-processing the coordi-
nates data using the Z-score and minimum and maximum
standardisation improved most algorithms’ performances,
especially when compared to the raw data.

Figure 5 shows the performance of the machine learning
algorithms using the EEG dataset. Compared to using the
coordinates data, the algorithms perform much worse. On
Trial 1, most ML algorithms achieve AUROCs lower than
0.5 irrespective of the dataset used. While there is a general
improvement across all algorithms onTrial 12, only theDNN
achieved an AUROC larger than 0.8. This is noted particu-
larly when using Z-score scaling to pre-process the data.

The findings that DNN can discriminate between learn-
ers and non-learners on Trial 12 suggests that there might be
something within the EEG pattern that can help distinguish
between the two groups. To this end, we used the Local Inter-
pretable Model-agnostic Explanations (LIME) method in an
attempt to determine the key features (coordinate and EEG)
that may help with the classification for both Trial 1 and Trial
12. Table 1 presents the top 3 most frequent features with the
relative weights selected for both groups and the two trials.
On Trial 1, both EEG and coordinate features are ranked
highly, specifically the random slopes from the linear mixed-
effects model and total distance, respectively. By Trial 12,
only the random slopes of the EEG data are ranked in the top
3. This feature emerges for both the learner and non-learner
groups. Figure 6 shows a scatter plot of the features the LIME
algorithm indicates.

Discussion

In this paper, we proposed using hidden Markov and linear
mixed-effect models to extract features from EEG theta time
series. Our analysis showed promising results of deep neu-
ral networks for classifying non-learner and learner groups
based on the engineered features collected from the EEG
data. This finding points towards using deep learning-based
methods for classifying spatial learning and memory pro-
cesses based on theta time series. In addition, our findings
indicate that the pre-processing method influences the learn-

Fig. 5 Area under the ROC (AUROC) curve obtained using all machine learning algorithms when classifying non-learner and learner subjects for
Trial 1 and 12 solely using the EEG data. * represents methods that achieved AUROC > 0.8
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Table 1 Top 3 features with
higher weights based on Local
Interpretable Model-agnostic
Explanations (LIME) method
algorithm for the decision of the
deep neural network trained
with the Z-score scaled EEG
data combined with the
coordinate data

Group Trial Feature LIME coefficient

Linear mixed-effect model’s slope 0.52

Non-learner Trial 1 Path length (Vm) 0.38

Path length (Vm) 0.34

Linear mixed-effect model’s slope 0.53

Learner Trial 1 Linear mixed-effect model’s slope 0.52

Path length (Vm) 0.46

Linear mixed-effect model’s slope 0.75

Non-learner Trial 12 Linear mixed-effect model’s slope 0.45

Linear mixed-effect model’s slope 0.40

Linear mixed-effect model’s slope 0.58

Learner Trial 12 Linear mixed-effect model’s slope 0.50

Linear mixed-effect model’s slope 0.40

ing algorithm selection for this task. Therefore, the Z-score
transformation combined with deep neural networks allows
for better performance when compared to the other machine
learning methods. Other papers have demonstrated the effec-
tiveness of deep learning algorithms for classification tasks
based on EEG data (Nirabi et al., 2021; Tang et al., 2022),
which agree with the findings reported here.

Based on our experimental paradigm, we would expect
machine learning algorithms to perform worse classifying
subjects on Trial 1 compared to Trial 12. In Trial 1, both
groups of subjects are randomly searching for the target, since
they have no prior experiencewith the task.However, byTrial
12 the learner group have learned and can successfully recall

the target location, whereas the non-learner group have had
no exposure to a target and are still randomly searching.

The deep neural network was the only machine learn-
ing approach that could accurately demonstrate this expected
pattern of poor Trial 1 classification performance with accu-
rate Trial 12 classification performance. Other models were
not accurate enough to capture the underlying neural changes
reflecting learning usingEEGdata in isolation,withmost still
not improving with the addition of coordinate data.

Therefore, the ability of the DNN to accurately match
the expected neural changes demonstrates the potential of
deep learning methods. As learners transition from ran-
dom searching to spatial memory-guided navigation, deep

Fig. 6 Scatter plot of the linear
mixed-effect model slope and
path length (Vm) for all subjects
of trials 1 and 12. The slope was
obtained based on the Z-score
scaled EEG data. The colours
represent the groups of each
subject
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neural networks appear to detect associated EEG changes.
Recent studies have shown deep learning models can predict
learning-related performance across trials using EEG data
(Kang et al., 2020; Żygierewicz et al., 2022). Our findings
fit with this literature, suggesting the potential of deep neu-
ral networks and hidden Markov models to decode spatial
learning and memory processes.

In regards to model interpretation, the Local Interpretable
Model-agnostic Explanations (LIME) method was selected
to obtain a local fidelity interpretation for the decision made
by the deep neural networks algorithm, given its best perfor-
mance for classifying non-learner and learner using solely the
proposed features based on the EEG dataset. Given that the
LIMEmethod provides a local regression based on K-Lasso,
we presented the coefficients with higher weight provided by
the method and the respective features used for classifying a
subject.

Other researchers have reported variable importance
based on LIME (Ribeiro et al., 2016), and it was well
received by the machine learning community. Other explain-
able artificial intelligence (XAI) methods are constantly
being developed, given the active research community built
around this area (Longo, 2023). However, our goal in this
paper was to provide a list of possible important variables
used for a decision made by a deep neural network algo-
rithm, and LIME was suitable for such a task.

Finally, our findings would support the theory that frontal
midline theta power is involved in spatial learning and mem-
ory processes. For example,Du et al. (2023) recently reported
that frontal-midline theta is involved in the early encoding of
spatial information during active navigation (also seeChrastil
et al. (2022b)). In addition to Du et al. (2023), we also report
that there is enough information contained within frontal
midline theta during active spatial learning and subsequent
memory-based navigation to facilitate accurate classifica-
tion of learner and non-learner subjects. Importantly, frontal
midline theta may provide a non-invasive detection method
for spatial memory or cognition difficulties. This would
be incredibly useful as an early detector of spatial impair-
ment for those with pre-clinical Alzheimer’s disease, as
this symptom is often reported early before formal diagno-
sis (Coughlan et al., 2018, 2020; Kunz et al., 2015). Relative
theta power at rest has been used to discriminate between
Alzheimer’s disease patients and healthy controls (Musaeus
et al., 2018). However, including a greater age demographic
and analysis of other regions known to contribute to spatial
memory using our proposed technique would be required
to validate our findings. Additionally, task-related or goal-
directed FM-theta may only be useful in predicting spatial
learning. The method proposed in this paper should be
applied to other tasks and experimental paradigms to sup-
port our findings further.

Conclusion

A new approach was proposed to extract features from EEG
theta time series based on linear mixed-effects and hidden
Markov models. We showed that the z-score type transfor-
mation of EEG theta time series combinedwith the flexibility
of deep neural networks can achieve better performance for
classifying non-learner and learner individuals. Therefore,
recommendations on feature engineering of EEG data and
pre-processing approaches onEEGbased on theta time series
can be given to researchers who aim to classify the learning
stages using a machine learning approach. This work forms
a basis for further studies interested in investigating learning
effects based on EEG theta time series.
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