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Abstract
Citations in scientific literature act as channels for the sharing, transfer, and development
of scientific knowledge. However, not all citations hold the same significance. Numer-
ous taxonomies and machine learning models have been developed to analyze citations,
but they often overlook the internal context of these citations. Moreover, it is worth not-
ing that selecting the appropriate word embedding and classification models is crucial for
achieving superior results. Word embeddings offer n-dimensional distributed represen-
tations of text, striving to capture the nuanced meanings of words. Deep learning-based
word embedding techniques have garnered significant attention and found application
in various Natural Language Processing (NLP) tasks, including text classification, senti-
ment analysis, and citation analysis. Current state-of-the-art techniques often use small
datasets with fixed window sizes, resulting in the loss of contextual meaning. This study
leverages two benchmark datasets encompassing a substantial volume of in-text cita-
tions to guide the selection of an optimal word embedding window size and classifica-
tion approaches. A comparative analysis of various window sizes for in-text citations is
conducted to identify crucial citations effectively. Additionally, Word2Vec embedding is
employed in conjunction with deep learning models and machine learning models such
as Convolutional Neural Networks (CNNs), Gated Recurrent Units (GRUs), Long Short-
Term Memory (LSTM) networks, Support Vector Machines (SVM), Decision Trees, and
Naive Bayes.The evaluation employs precision, recall, F1-score, and accuracy metrics
for each combination of window sizes. The findings reveal that, particularly for lengthy in-
text citations, larger citation windows are more adept at capturing the semantic essence
of the references. Within the scope of this study, window sizes of 10 achieve superior
accuracy and precision with both machine and deep learning models.
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1 Introduction
Scientific advancements are intrinsically tied to the cumulative body of research within a par-
ticular domain, and this interconnection is formally conveyed through citations. Citations
testify to the influence and validity of prior research and have conventionally been gauged by
their sheer quantity, known as citation counts. Consequently, citations have assumed a piv-
otal role in academic evaluation, including the ranking of academic institutions [1–6], the
allocation of research funding and awards[7–11], and various decision-making processes[12–
15] in the scientific community. In recent times, however, a growing body of scholars has
posited that not all citations are created equal, challenging the conventional wisdom that
treats all citations uniformly [3,16]. This perspective contends that each citation made by a
researcher serves a distinct purpose, thereby questioning the blanket utility of citation counts
as a measure of research quality. Indeed, numerous studies have confirmed that a significant
proportion of references in scholarly works can be characterized as perfunctory or less influ-
ential [17,18]. In light of this, an emerging consensus suggests that citations should be eval-
uated in a nuanced manner, acknowledging their varying degrees of importance [7,8,16].
Several classification schemes have been developed to discern the nature and significance
of citations qualitatively [17,18]. These range from content-based [16] and metadata-based
approaches [7,19,20] to count-based [21], sentiment-based methodologies [22] and sentiment
analysis [23]. Finney [24] was the first researcher who proposed an automatic model to clas-
sify citations into seven categories. Garfield [25] summarized 15 reasons for citing papers.
The classification of citations into categories such as important and non-important has been
pursued vigorously. Zhu et al. [17] performed the pioneer binary classification of citations.
This work was enhanced by Valenzuela et al. [16] by utilizing contextual features and catego-
rized the citations into non-important and important categories. Qayyum and Afzal et al. [7]
used the Meta-data approach and enhanced the results further. Wang et al. [26] introduced
the syntactic and contextual-based approach.

The classification of citations is generally formulated as a machine learning classifica-
tion problem, where features are extracted from citation contexts and employed in diverse
machine learning models. Machine learning, particularly text classification, has gained promi-
nence as a tool for this purpose, with an array of studies striving to enhance its performance.
Recent developments have seen the integration of deep learning techniques, including deep
neural networks, recurrent neural networks, and convolutional neural networks, into sen-
timent analysis and citation classification tasks. These deep learning models, when coupled
with traditional text representation methods like TF-IDF and word embeddings, have exhib-
ited promising results. Word embeddings, in particular, has become indispensable in rep-
resenting textual data and is utilized as inputs for machine learning models. These embed-
dings are, initially popularized by Word2Vec utilizing Neural Networks was published in
2013 [27] and later expanded upon by models like BERT, offer the advantage of encoding
semantic meaning into words, enabling mathematical operations on word representations.
However, it’s noteworthy that many studies that employ deep learning and word embed-
dings in citation analysis often emphasize metrics like overall accuracy, F-score, precision,
and recall while overlooking the influence of word embedding size. Additionally, these eval-
uations frequently involve a small size of datasets. This paper seeks to address these gaps by
designing and evaluating three deep learning models using the Keras framework and word
embedding approaches. Moreover, it explores the impact of different window sizes on cita-
tion classification, aiming to determine the optimal window size that maximizes classifica-
tion model performance. The window size directly influences the amount of context consid-
ered when classifying citations. A very small window may not provide enough contexts, while

PLOS ONE https://doi.org/10.1371/journal.pone.0309862 March 24, 2025 2/ 28

https://doi.org/10.1371/journal.pone.0309862


ID: pone.0309862 — 2025/3/24 — page 3 — #3

PLOS ONE Optimizing window size of semantic of classification model

a too-large window may introduce noise. Identifying the optimal size strikes the right bal-
ance, ensuring that relevant information is considered. To ensure fair analysis, dataset bal-
ance is a crucial consideration, as imbalanced training datasets can mislead machine learn-
ing classifiers [28]. As such, this study preprocesses the dataset to achieve balance This paper
contributes to the field in the following ways:

• An examination of three deep learning models and machine learning including Convolu-
tional Neural Network (CNN), and Long-Short Term Memory (LSTM) layers,Gated Recur-
rent Units (GRUs), SVM, Naive Bayes and Decision Tree for the identification of important
citations.

• Identifies the optimal window size for classifying in-text citations into important and not
important categories. This aspect of our research is crucial as it helps to fine-tune the clas-
sification process and improve the overall performance of our models.

• An evaluation of the use of word embedding,specifically Word2Vec and identification of
optimal window size for the task of identifying important citations within scholarly articles

• A comparative analysis of deep learning models against common baselines typically used in
text classification tasks, shedding light on their efficacy in citation analysis

Overall, our identification of the optimal window size represents a valuable contribution to
the field of citation analysis and text classification, offering practical insights that can be lever-
aged by researchers, institutions, and organizations seeking to improve their citation assess-
ment processes. The rest of the paper is organized as follows. Sect 2 discusses important works
related to the current study. Sect 4 presents an overview of the methodology adopted for the
current research as well as a detailed description of the dataset and models used for experi-
ments. Results are discussed in Sect 5, while the conclusion and future work are provided in
Sects 6 and 7.

2 Related work
The analysis of sentiment in scientific paper citations represents an emerging area of research,
with a growing body of work addressing the challenge of detecting important citations
within scholarly articles. This shift in focus stems from a realization that each citation made
by a researcher serves unique purposes, rendering a one-size-fits-all approach ineffec-
tive [29]. Garfield [25] was an early pioneer in this field, distinguishing citations by studying
researchers’ motivations, ultimately categorizing them into 15 distinct categories. Building
upon this, Finney [24] introduced a semi-automatic citation classification method that clas-
sified citations into seven types, while Garzone and Mercer [30] took automation further by
classifying citations into an impressive 35 different types. Teufel et al. [31] proposed a super-
vised machine learning approach that divided citations into four categories and 11 subcat-
egories, and Agarwal et al. [32] constructed classifiers employing support vector machines
(SVM) and Multinomial Naive Bayes (MNB) to categorize citations. Jurgens et al [33] intro-
duced a machine-learning approach aimed at categorizing citations into seven distinct cat-
egories. Hamedani et al. [34] undertook the task of classifying citations into six different
classes based on an analysis of the keywords within those citations. Bakhti et al. [35] proposed
a novel classification model that combined ontology with convolutional neural networks
(CNNs) to categorize citations into six distinctive classes

In recent years, there has been a growing interest in alternative methods of citation clas-
sification, particularly in exploring the impact of citations [36]. Bi et al. [37] distinguished
between two types of citations, direct citations and indirect citations, to discern the influence
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of a citation. Zhu et al. [17] presented a model designed to identify citations with significant
academic influence on the papers citing them. They introduced the concept of binary citation
classification to differentiate between influential and non-influential citations. This classifica-
tion process involved the use of diverse features, such as in-text count-based, similarity-based,
context-based, position-based, and miscellaneous attributes. Their experiments employed
a dataset comprising 100 papers from the ACL anthology, which was then transformed
into 3,143 paper-reference pairs, with annotations provided by the authors themselves.
Notably, their results demonstrated that the in-text citation count feature outperformed other
attributes with a Precision score of 0.35. Valenzuela et al. [16] further refined the binary cita-
tion classification concept, categorizing citations as either important or non-important, and
employed a supervised learning approach to identify the significant citations. Their dataset,
drawn from the ACL anthology, consisted of 465 paper-citation pairs, with annotations by the
authors. They employed 12 distinct features and utilized SVM and Random Forest classifiers.
Their system achieved an impressive F-measure of 0.65, surpassing the performance of the in-
text citation count feature, which achieved a Precision score of 0.37 Faiza et al. [7] proposed
an innovative technique for classifying citations into categories of importance, particularly
useful in cases where the content of papers is not freely accessible. They utilized two anno-
tated datasets and evaluated them using machine learning classifiers, including SVM, KLR,
and Random Forest.

In comparison to a previous study that relied on an extensive list of content-based fea-
tures for classification, Faiza et al. [7] demonstrated superior Precision results of 0.68, utilizing
freely available metadata. However, it is important to note that the binary classification results
in the state of the art were deemed insufficient for making informed decisions regarding cita-
tions. Building upon this work, Aljuaid et al. [22] expanded the concept by incorporating sen-
timent analysis into the citation classification process, achieving a remarkable precision value
of 0.83. Subsequently, Nazir et al. [21] made further contributions to the citation classification
domain, increasing precision results to 0.84.

Several researchers have highlighted the potential benefits of considering citation con-
text information to enhance classification performance [38,39]. Additionally, the signifi-
cance of the similarity between titles and abstracts in assessing the value of citations has been
explored [3,7,17]. Zeng and Acuna [40] proposed a bidirectional long short-term memory
(Bi-LSTM) network with an attention mechanism and contextual information to identify
citation worthiness. Wang et al. [26] leveraged syntactic and contextual information from
citations to identify important citations based on two annotated datasets.

Citation sentiment analysis, an emerging field, focuses on evaluating the sentiments
expressed by authors toward the papers they cite. An extensive survey by Author [30] delved
into the sentiment analysis process, discussing challenges faced by existing methods and pre-
senting an analysis of these methods and their classifications. They concluded that machine
learning is the most commonly used method for analyzing citation sentiments in scientific
papers. They also noted the limitations of this approach, suggesting that deep learning meth-
ods could effectively address the challenge of analyzing sentiment polarity in scientific paper
citation[41].

Numerous studies have concentrated on developing robust models to tackle the increas-
ing complexity of big data, applying sentiment analysis to a wide array of applications,
from financial forecasting [42] to marketing strategies [43], and even medical analysis [44].
However, there remains a paucity of research dedicated to the evaluation of different deep
learning techniques, providing practical evidence of their performance[42,45,46].

Deep learning relies on numerical representations of text; therefore, word embeddings play
a pivotal role in capturing the semantic context of citations. Word embeddings facilitating
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the automatic extraction of linguistic features from citations within research articles, prod-
uct reviews, service evaluations, and news articles. Automatic feature extraction is essential,
as manual feature extraction, particularly from scholarly articles, can be time-consuming due
to the complex structure and grammar. Word embeddings have been extensively explored
for sentiment analysis as given in Table 1. word embedding enabling the examination and
categorization of reviews, opinions, and attitudes in various domains [47].

Navigating the selection of an optimal word embedding and deep learning strategy for
text analysis can pose substantial challenges, primarily stemming from the varying sizes of
datasets, window sizes, and ultimate objectives. selection of optimal window size of embed-
ding is a time-consuming and hard process .Utilizing a window size that is too similar may
result in the omission of significant contextual information, potentially limiting the effective-
ness of the model. Conversely, opting for a larger window size may lead to an increased like-
lihood of negative sampling, thereby impacting the overall performance and efficiency of the
language processing system. Striking the right balance between window size and context is
pivotal for achieving optimal results in various NLP tasks, such as sentiment analysis, infor-
mation retrieval, and machine translation. This research introduces an innovative content-
centring approach to address these challenges in the context of binary citation classification,
with a specific focus on sentiment analysis within in-text citations.

3 Problem formulation
The problem addressed in this paper revolves around selecting the optimal window size
for embedding and deep learning models to classify citations into two distinct categories:
“Important” and “Not Important.”

The mathematical representation of this problem can be denoted as follows:

R ∶ (C, t,w)→ l, w∈ {2, 3, 5, 8, 10, 12, 15}

Where:

C represents a citation,
t signifies the citation intent,
w corresponds to the window size.

The objective is to construct a deep learning model, denoted as 𝛾, that maps the input
(C, t,w) to an output l. Here, l is a binary label taking values from the set {0, 1}. It essentially
indicates whether the citation intent t within citation C is deemed important (i.e., l equals
1) or not (i.e., l equals 0).where w indicate citation window size, by window size we means
here the size of the left/right context window, indicating a specific number of words preced-
ing and following a target word.The literature review reveals a lack of clear consensus on the
appropriate window size for linguistic analysis. Some researchers employed a fixed window
length, while others experimented with various window sizes tailored to their specific tasks.
The default window size, often set at 5 [62], was used by some researchers. Caselles et al. [62]
investigated multiple window sizes, ranging from 3, 7, 12, 15, highlighting the task and dataset
dependence for optimal window selection. Adewumi et al. [63] achieved favorable results with
a window size of 8, chosen from options of [4,8]. Conversely, Levy et al. [64] advocated for a
window size of 5 to capture broad topics, while smaller sizes like 2 offered more focused infor-
mation, albeit potentially missing crucial details; a view corroborated by Mikolov et al.[65],
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Table 1. List of studies on citations intent analysis using deep learning.
No Year Study Method Assessment
1 2017 Paredes et al. [48] CNN + Word2vec Precision = 88.7%, Fixed window size may not

capture contextual variations in text.
2 2017 Ain et al. [49] CNN, RNN, DNN Deep learning networks outperform SVMs, but

the comparison is limited to one dataset, reducing
generalizability

3 2017 Gupta et al. [50] LSTM-based deep
learning

LSTM-based model improves emotion classification,
but moderate inter-annotator agreement (0.59) sug-
gests inconsistencies in labeling, which may affect
model training. Struggles with context-dependent
meanings.

4 2018 Jangid et al. [51] CNN, LSTM, RNN F1 score = 0.69, but reliance on pretrained
embeddings could introduce biases

5 2018 Zhang et al. [52] CNN, DNN, RNN,
LSTM

Proposes solutions to improve traditional embed-
dings, but lacks practical benchmarks or exploration
of real-world challenges, such as multilingual or
domain-specific applications

6 2018 Schmitt et al. [53] CNN, LSTM CNN + fastText embeddings produce strong results,
but the use of only one dataset (GermEval 2017).
Window size not explored.

7 2018 Li et al. [54] SRN, LSTM, and
CNN

Attention mechanisms may improve model per-
formance, but increased complexity is not always
beneficial.

8 2018 Sohangir et al.[55] LSTM, doc2vec, CNN CNN outperforms other models, but does not
explore more recent transformer-based models,
which could potentially outperform CNN

9 2019 Yang et al. [56] Coattention-LSTM,
Coattention-
MemNet,

Coattention mechanism improves sentiment fea-
ture extraction, but struggles with complex word
relationships like negation and implicit sentiments.

10 2019 Abid et al. [57] CNN, RNN Accuracy = 90.59% across datasets, but heavy
reliance on pre-trained embeddings and high
computational cost may limit scalability.

11 2019 Do et al. [58] CNN, LSTM, GRU Deep learning reduces reliance on feature engi-
neering, but does not address challenges such as
computational costs or the need for large labeled
datasets.

12 2020 Dang et al.[59] RNN, CNN, LSTM CNN is efficient in terms of accuracy and compu-
tational cost, but does not explore the window size
parameter

13 2020 Cen et al.[60] RNN, CNN, LSTM CNN achieves 88.22% accuracy, but the paper lacks
critical analysis of accuracy implications and how
text is converted to numerical form.

14 2022 Karim et al. [61] CNN, LSTM, Fasttext CNN + fastText achieves 93.7% accuracy, but CNN
may overfit if not tuned, and window size is not
discussed.

https://doi.org/10.1371/journal.pone.0309862.t001

who found a window size of 15 outperformed 5. MacAvane et al. [66] found poor perfor-
mance with a window size of 5 but success with 2. Lin et al. [67] determined that a win-
dow size of 1 was optimal among 1, 2, 4, 8, 16. Bansal et al. [68] concluded that a window
size of 10 yielded superior results from options 1, 2, 5, 10. [69,70] reported enhanced senti-
ment analysis results with a window size of 3. Galea et al. [70] emphasized dataset-dependent
hyper-parameter choices within 3, 5, 8. Agrawal et al. [71] reported substantial improvements
with a window size of 5 chosen from 3, 5. Levy et al. [72] achieved precision enhancement
with a window size of 2. Uygun et al. [73] identified a window size of 3 as optimal among 2,
3, and 5. Rengasamy et al. [74] saw improved system performance with a fixed window size
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of 8.Based on the aforementioned findings, we opted to select the window size that demon-
strated the best performance in our experiments. The purpose is to test the models rigorously
and identify the optimal window size.

In simpler terms, this approach entails training independent binary classifiers for each cita-
tion label. When presented with an unseen sample, each of these binary classifiers predicts
whether the underlying citation holds importance or not. The combined model subsequently
predicts all labels for this sample for which the respective classifier yields a positive result.

By creating these models for various citation intents t, the paper evaluates the performance
of the proposed solutions with the ultimate aim of identifying the combination of deep learn-
ing layers and word embedding window sizes that can most effectively capture the distinctive
characteristics of text to identify important citations.

4 Research methodology
In this section, the fundamental model of the proposed approach for the identification of
important citations is presented. Additionally, the word embedding and citation classifica-
tion techniques employed to discern citation intent are elucidated. Fig 1 illustrates the archi-
tecture of the innovative citation intent labeling technique. To populate the dataset, research
articles were gathered and meticulously selected for relevance. From these articles, the cita-
tion context was extracted, specifically focusing on in-text citations. Subsequently, the citation
sentences were subjected to a comprehensive pre-processing regimen. Word embedding tech-
niques were then harnessed, experimenting with various window sizes, to craft citation con-
text vectors. In the ultimate phase, these embedding vectors were input into the classification
techniques for further analysis and assessment.

4.1 Proposed algorithm

Purpose: The purpose of this algorithm is to find the

optimal window size by trying different window sizes

using deep and machine learning models for important

citation identification. The algorithm selects the window

size on which the model achieved the best precision and

accuracy.

Input:

1. Dataset D containing citations.

2. Parameters: window_sizes, deep_learning_models.

Algorithm:

1. selected_citations ← [] // To store selected

citations.

2. for each citation c in D:
i. if meets_selection_criteria(c):
(i) preprocessed_citation ← preprocess_citation(c)
(ii) for each window_size in window_sizes:
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(A) numeric_representations ←
convert_to_numeric_representations (prepro-

cessed_citation, window_size)

(B) balanced_dataset ← balance_dataset

(numeric_representations)

(C) for each model_type in deep_learning_models:
(D) model ← initialize_model(model_type)
(E) trained_model ← train_model(model, balanced_dataset)
(F) predicted_labels ← []
(G) for each unseen_citation C′ in D_unseen:
(H) preprocessed_unseen_citation ←

preprocess_citation(C′)
(I) numeric_representation←convert_to_numeric_

representation (Unseen_citation, window_size)

(J) prediction ← predict_label(trained_model,

numeric_representation)

(K) predicted_labels.append(prediction)
(L) store_results(predicted_labels)

(iii) else:
(A) // Handle cases where the citation does not

meet the selection criteria

(B) continue // Skip to the next citation

3. return best_results() // Return the results with the

best precision and accuracy

The dataset is iterated through, each citation is reprocessed, different window sizes are exper-
imented with, the dataset is balanced, various deep learning models are trained, labels for
unseen citations are predicted, and the results are stored. Finally, the best combination of
model, window size, and pre-processing is returned based on the evaluation criteria.

4.2 Dataset description
In this phase of the study, data extraction is carried out using two widely recognized bench-
mark datasets: ACL-ARC and SciCite, which are extensively employed for citation classifica-
tion tasks.

4.2.1 SciCite The first dataset utilized is SciCite, originally developed by Cohen et al. [75].
Several factors influenced our choice of the SciCite dataset:

1. It is a well-established, publicly accessible dataset specifically tailored to the domain of
computer science citations

2. The dataset boasts a substantial volume of data, which greatly contributes to robust
analysis.

3. SciCite has a well-documented history of use in cutting-edge approaches for citation
classification tasks.
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Fig 1. The architecture of the proposed methodology for in-text citation sentiment analysis for identification of important
citation.

https://doi.org/10.1371/journal.pone.0309862.g001

However, it’s worth noting that the SciCite dataset presents an imbalanced class distribu-
tion. Furthermore, it provides rich details, including the section name housing the in-text
citation, the IDs of both citing and cited papers, the citation context, and crucially, the class
label for citation intent. The class labels of dataset are “background,” “result,” and “introduc-
tion”. However, these labels are further transformed into binary classes, represented as 0 and
1, following the definition of important and not important classification provided by Valen-
zuela et al. [16].

4.2.2 ACL-ARC. The second dataset employed is ACL-ARC, assembled by Valenzuela
et al. [16]. This dataset encompasses roughly 465 records and offers invaluable insights for
analysis. It includes comprehensive information such as citation context, in-text citation loca-
tions, paper IDs, publication years, paper titles, author IDs, section titles, section numbers,
the phrase preceding the citation context, and, significantly, the citation purpose. Citation
purposes are defined through class labels like background, usage, comparison, inspiration,
extension, and future work. The dataset is accessible at https://allenai.org/data/data-all.html.
Annotators categorized citations into four distinct groups based on their significance. Group
0 represented related work, group 1 represented comparisons, group 2 indicated utilization
of the work, and group 3 suggested extensions of the work. These four groups were subse-
quently amalgamated into two categories. The consolidation of categories 0 and 1 resulted in
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Table 2. Details of intext-citation sentiment corpus.
Attribute No of Records
SciCite Dataset
No of in-text Citations 7779
No of important instances 3276
No of Not important instances 4503
ACL-ARC Dataset
No of in-text Citations 465
No of important instances 398
No of Not important instances 67

https://doi.org/10.1371/journal.pone.0309862.t002

label 0, denoting non-important work, while the merger of categories 2 and 3 yielded label 1,
signifying important citations.the detail of datasete is listing in Table 2.

4.3 Addressing imbalanced data.
The initial dataset exhibited a pronounced class imbalance, with a significantly higher num-
ber of instances in the majority class compared to the minority class. This imbalance posed a
challenge for model training, as it could lead to biased predictions favoring the majority class,
thereby compromising the model’s performance on the minority class. To mitigate this issue,
the Synthetic Minority Oversampling Technique (SMOTE) was employed as the primary
method for balancing the dataset.

SMOTE is widely regarded as the “de facto” standard for handling imbalanced datasets
due to its simplicity and robustness across diverse problem domains. Since its introduction
in 2002, SMOTE has demonstrated success in various applications. The algorithm addresses
class imbalance by generating synthetic samples for the minority class. Specifically, it iden-
tifies the k-nearest neighbors for each instance in the minority class and generates new syn-
thetic examples by interpolating between the instance and its neighbors along the connecting
line segments.

In this study, k = 5 was used to generate synthetic samples, meaning that for each minority
instance, five synthetic samples were created. The SMOTE algorithm was implemented using
the *imbalanced-learn* library in Python, enabling seamless integration into the data pre-
processing pipeline. This approach significantly improved class balance within the training
dataset, enhancing the model’s ability to learn effectively from both classes.

The impact of SMOTE on imbalanced datasets has been validated in prior research.
For instance, [85] applied SMOTE for toxic comment detection and reported an accuracy
improvement of 97%, demonstrating the technique’s efficacy in addressing class imbalance
challenges. In a prior study [76], researchers employed sampling techniques like SMOTE-
ENN to mitigate the effects of imbalanced data.

4.4 Citation context pre-processing
Pre-processing plays a pivotal role in text classification tasks and involves several essential
steps to prepare the text for further analysis. Uysal and Gunal [66] extensively discussed four
common text classification steps: stop word removal, tokenization, case conversion, and stem-
ming/lemmatization. In our specific context, we focus on citation contexts extracted from
research papers within our dataset.

Tokenization is the first step in pre-processing, which involves breaking down text, such
as paragraphs and sentences, into individual words or tokens. This is essential for conduct-
ing a more detailed analysis of the text, enabling us to understand the linguistic relationships
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between words. Tokenization provides the foundation for various subsequent tasks in natural
language processing (NLP), such as sentiment analysis, which can depend on the arrangement
of words in a sentence.

Following tokenization, punctuation removal is performed. This step involves identifying
and removing punctuation marks such as periods, commas, semicolons, and parentheses.
While punctuation is important for sentence structure and readability, it does not significantly
contribute to the meaning when processing text for NLP tasks like citation context analysis.

Next, stop word removal is applied. Stop words are words that appear frequently in text but
are typically irrelevant to the main topic, such as prepositions, conjunctions, and articles. Stop
word removal is language-specific, and in our case, we used the Natural Language Toolkit
(NLTK) [67] in Python, which provides an extensive list of predefined stop words in 16 lan-
guages. We also supplemented NLTK’s list by adding certain numbers and special characters
that do not affect sentence meaning.

The next step involves case conversion and function word removal. This process converts
all uppercase words to lowercase, ensuring uniformity in the dataset, regardless of the words’
positions or forms. This step eliminates inconsistencies that may arise from different casing
conventions, such as distinguishing proper nouns from regular words.

Finally, stemming or lemmatization is performed. While stemming reduces words to their
root forms (e.g., “running” becomes “run”), lemmatization ensures that the resulting word
is a valid dictionary word. Stemming is language-specific, and various algorithms exist to
perform it effectively [70]. In our study, we opted for the WordNet Lemmatizer from NLTK,
which yielded better results compared to stemming. Stemming or lemmatization significantly
impacts the effectiveness of word embedding techniques, as it ensures that different forms of a
word are treated as the same word, improving the representation.

After completing these pre-processing steps, we were ready to apply word embedding
techniques to generate vectors that represent the cleaned citation contexts.

After completing the pre-processing stage, we were well-prepared to apply the word
embedding technique to generate vectors representing the cleaned citation context.

4.5 Word embedding
To quantify the relationships between individual words within a citation context and across
citation sentences, we transform textual representations into numerical forms. This con-
version allows for the effective application of machine learning algorithms to text. Word
embedding plays a pivotal role in this process, representing words numerically in a dense
format where similar words share similar learned representations. Word embedding con-
stitutes a significant advancement in applying deep learning to natural language processing
tasks. The selection of an appropriate word embedding method is crucial as a pre-processing
step in natural language processing tasks, such as text classification. Baroni et al. [77] con-
ducted a comparison of frequency-based and prediction-based approaches, validating the
claim that prediction-based methods excel in various scenarios. Hence, we exclusively opt for
prediction-based word embedding techniques, including Word2Vec.

4.5.1 Word2Vec. Word2Vec is a widely used method for text representation that pre-
dicts the likelihood of word distributions based on neighboring words. It comprises two deep
learning architectures: the Continuous Bag of Words (CBOW) and the Skip-Gram model. In
the CBOW architecture, the probability of neighboring words is predicted based on a cen-
ter word, whereas the Skip-Gram model predicts the probability of the center word based on
its neighboring words. The architecture of the Word2Vec model is illustrated in Fig 2. Eq 1
describes how word probability estimation is performed using neighboring words, and Eq 2
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Fig 2. General architecture model (based on conventional frameworks). The CBOW model architecture predicts the current word
based on the context, and the Skip-gram model predicts surrounding words given the current word.

https://doi.org/10.1371/journal.pone.0309862.g002

demonstrates the representation process in Word2Vec.

f(x) = 1
T

T–k
∑
t=k

log p(wt ∣wt–k,… ,wt+k) (1)

y =U ⋅ h(wt–k,… ,wt+k;W) + b (2)

To prepare the text for processing, it is converted into a numeric representation using
Word2Vec with varying window sizes, including 2, 3, 5, 8, 10, 12, and 15.

4.6 Modeling methods
Three deep learning models are presented that utilize CNN, GRU, and LSTM, along with
three machine learning models, SVM, Decision Tree, and Naive Bayes. All of these models
are available within the Keras framework1. Each model features the same number of layers
to ensure a fair comparison of their performances based solely on the type of neural network
they employ.

Machine learning (ML) and deep learning (DL) models differ significantly in their
methodologies and performance across varying datasets. ML models typically depend on
manual feature engineering and employ relatively simpler algorithms, such as decision trees
and support vector machines, with their effectiveness largely influenced by the quality and
relevance of the engineered features. Conversely, DL models utilize multi-layered neural

1 https://keras.io/. Accessed on 11th February 2021.
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networks that automatically learn hierarchical feature representations from raw data, mak-
ing them particularly well-suited for tasks involving large datasets and complex patterns.
The performance of these models varies based on dataset characteristics: ML models often
exhibit superior performance on smaller datasets, as DL models require substantial data to
prevent overfitting. However, DL models excel on large datasets, as they can capture intri-
cate patterns without relying on extensive feature engineering. Moreover, ML models tend
to perform better on structured datasets with clearly defined features, while DL models are
more effective in processing unstructured data, such as images and text, due to their ability to
model complex and nuanced relationships. For instance, Alqahtani et al. [78] employed ML
and DL algorithms, including long short-term memory (LSTM), artificial neural networks
(ANN), and gated recurrent units (GRU), for text classification tasks. Their findings indicate
that LSTM achieved an accuracy of 92%, outperforming other models and baseline studies.
Arshad et al. [79] utilized a deep learning model for the identification of important citations
and achieved a precision score of 97% using a Convolutional Neural Network (CNN).

It is important to note that the input and output layers among these models are identical to
facilitate a direct performance comparison. More precisely, the input layer is an Embedding
layer responsible for mapping the words from the input text to their respective word embed-
dings. The final layer is a Dense layer that translates the intermediate model outputs into a
single label, which can only assume the values 0 and 1.

4.6.1 Convolutional Neural Network (CNN). Convolutional Neural Networks (CNNs)
are powerful deep neural networks known for their effectiveness in handling large-sized
data [80]. CNNs efficiently learn complex features through the application of convolution,
nonlinear activation, dropout, and pooling layers [81]. In CNNs, training occurs in an end-
to-end fashion, which enhances efficiency. To encode semantic information, fully connected
layers are employed at the end of the model. CNNs are feed-forward networks in which filters
are applied to the output of the preceding layer to map features. The primary components of
a CNN model include convolutional layers, pooling (or sub-sampling) layers, a flatten layer,
an activation function (often ReLU), a dropout, and a fully connected layer. Convolutional
layers extract local and high-level features by assigning weights to kernels during training.
Pooling layers reduce overfitting by reducing the dimensionality of features mapped by con-
volutional layers. Common types of pooling layers are max-pooling and average-pooling, with
max-pooling selecting sharp features over average-pooling. In this study, the rectified linear
unit (ReLU) activation function is used is given in Eq 3 :

y =max(0, i) (3)

where y represents the activation output and i represents the input. Convolution layers extract
local and high-level features by assigning weights to the kernel during the training phase. For
binary classification tasks, the cross-entropy error is often used as the loss function. This has
also been used in this study, computed as given in Eq 4.

cross-entropy = –(i ⋅ log(p) + (1 – i) ⋅ log(2 – p)) (4)

where i represents the indicator of class labels, a log is a natural log, and p represents the prob-
ability that is predicted. While CNNs were originally designed for image classification, they
have found applications in text categorization, including text sentiment analysis [82], text
summarization [83], and text report classification [84]. In this study, CNNs are utilized for
citation classification.
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Fig 3. Architecture of LSTMModel used for citation analysis.

https://doi.org/10.1371/journal.pone.0309862.g003

4.6.2 Long Short-termMemory (LSTM). Fig 3 illustrates a model that employs the
LSTM layers for binary text classification. LSTMs extend the capabilities of Recurrent Neu-
ral Networks (RNNs) and are specifically designed to work with sequences. They use mem-
ory blocks to capture the state of computation, enabling them to learn temporal dependen-
cies within data sequences [51]. LSTMs are proficient at associating the current data chunks
with previously processed data chunks, allowing them to infer semantic patterns describing
the history of input data [52]. This addresses a common limitation of standard RNNs, which
heavily rely on the most recent input data..

4.6.3 Gated Recurrent Unit (GRU). It is another variant designed to mitigate the van-
ishing gradient problem associated with standard RNNs. GRUs exhibit similar design prin-
ciples to LSTMs and can achieve equally impressive results in various applications [57]. All
three models—CNN, LSTM, and GRU—are utilized in this study, and their performance is
compared.

4.7 Experimental setup
The main goal of this study was to compare the performance of various deep learning and
machine learning models across different window sizes for classifying citations as either
important or not important. To maintain consistency across experiments, all models were
trained using the same pre-processed datasets, which included citation contexts extracted
from research papers. The evaluation focused on the models’ ability to accurately classify
citation importance.

The pre-processing steps, including tokenization, stop word removal, punctuation
elimination, case normalization, and lemmatization, were applied uniformly to all cita-
tion contexts to ensure the data was ready for model input. This pre-processing aimed to
provide clean and standardized input for both the deep learning and machine learning
models.

4.7.1 Hyper-parameter settings. For consistency across all models, the following hyper-
parameter settings were applied:
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• Learning Rate: A learning rate of 0.001 was used for all models to balance convergence
speed and stability.

• Batch Size: A batch size of 32 was selected to ensure efficient training while preventing
memory overload.

• Epochs: Each model was trained for 100 epochs, with early-stopping applied if the valida-
tion accuracy did not improve for 5 consecutive epochs.

• Optimizer: The Adam optimizer was used for all models due to its robust performance in
handling sparse gradients.

• Dropout Rate: A dropout rate of 0.5 was employed in CNN, LSTM, and GRU models to
mitigate overfitting.

4.7.2 Evaluation metrics. Model performance was assessed using standard evalua-
tion metrics such as accuracy, precision, recall, and F1 score, which are commonly used
in classification tasks. These metrics were calculated based on the confusion matrix, which
includes true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN):

Accuracy = Tp+Tn
Tp+Tn+Fp+Fn (5)

Precision = Tp
Tp+Fp (6)

Recall = Tp
Tp+Fn (7)

F-Measure = 2×(Precision×Recall)
Precision+Recall (8)

Categorizing TP, FP, TN, and FN as the metrics for true positive, false positive, true neg-
ative, and false negative, respectively, these values are obtained from the confusion matrix
of each classifier. Ultimately, we conducted a performance evaluation across various model-
embedding combinations and meticulously examined the outcomes to pinpoint the config-
uration that demonstrated the highest levels of accuracy, precision, and predictive reliability
concerning citation importance.

5 Results and discussion
For experimentation, the Kaggle environment was used, utilizing a GPU T4*2 accelerator. To
implement the deep learning models, the Keras2 and TensorFlow3 libraries were leveraged,
both renowned for their capabilities in machine learning tasks. The experiments involved the
deployment of CNN, LSTM, and GRU models, as well as classical machine learning mod-
els such as SVM, Naive Bayes, and Random Forest with varying window sizes, as previously
detailed. This comprehensive approach allowed for a thorough analysis of the performance of
these algorithms when combined with word embeddings and different window sizes. Across
all experiments, key parameters were consistently configured. Specifically, the number of
epochs was set to 50, the batch size to 32, and the vector dimension to 300. These settings
ensured a rigorous and systematic evaluation of the models’ performance.

To gauge the effectiveness of the models, a set of well-established metrics was relied upon.
These metrics encompassed accuracy, precision, recall, and the F1-score. Additionally, since

2 https://keras.io.
3 https://www.tensorflow.org/.
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Table 3. Experimental settings combining different embedding, window size and classification.
Setup Embedding Window Size Classification Algorithm
1 Word2vec {2,3,5,8,10,12,15} CNN
2 Word2vec {2,3,5,8,10,12,15} LSTM
3 Word2vec {2,3,5,8,10,12,15} GRU

https://doi.org/10.1371/journal.pone.0309862.t003

the F1-score derives from precision and recall, these two measures were included for refer-
ence purposes. Collectively, these metrics provide a comprehensive overview of the models’
performance.

The initial focus was on the Sci-Cite dataset, which contains a substantially larger volume
of in-text citations compared to other datasets. To systematically assess the performance of
the models, a detailed analysis was conducted. Specifically, different subsets of this dataset
were created, each comprising varying percentages of the initial data, ranging from 10% to
100%.

As depicted in Table 3, the experiments encompassed a wide array of combinations
involving different window sizes for word embedding and various deep learning techniques.
Through this rigorous evaluation, the study aimed to answer critical questions: Which win-
dow size for embedding and deep learning models demonstrates optimal performance in the
task of identifying important citations? Are the models useful, and how well do they general-
ize to other datasets?

5.1 Comparison of predictive performance of models using dataset-1
Extensive experiments have been carried out for citation sentiment analysis. Efforts are
underway to develop an efficient method for in-text citations’ sentiment analysis. Machine
learning models and deep learning models used in the experiments are CNN, LSTM, GRU,
SVM, Decision Tree, and Naive Bayes. Word embedding techniques, namely Word2Vec and
their various combinations, are investigated for citation sentiment analysis.

An exhaustive series of experiments was conducted to delve into the realm of citation sen-
timent analysis. The overarching objective was to craft an efficient methodology for dissecting
the sentiment within in-text citations. To achieve this, a diverse array of machine learning and
deep learning models, including CNN, LSTM, GRU, SVM, Decision Tree, and Naive Bayes,
was harnessed.

Additionally, the investigation delved into word embedding techniques, specifically focus-
ing on the renowned Word2Vec and FastText approaches. The key focus lay in uncovering the
optimal combinations of these techniques for enhancing citation sentiment analysis.

These experiments represent a robust exploration into the domain of sentiment analy-
sis within citations, and their outcomes are instrumental in advancing the understanding of
effective methodologies in this critical area.

5.2 Evaluation of word embedding models with different window sizes
Initially, the models underwent training using Word2Vec word embedding with various win-
dow sizes, as summarized in Table 3. A consistent trend emerged across all machine learn-
ing models, highlighting the beneficial impact of enlarging the window size on the obtained
results. However, this effect diminishes when the window size becomes smaller than the
length of the sentences.

In this specific study, the model exhibited optimal performance with a window size of 10.
Notably, the classical machine learning model, Support Vector Machine (SVM), displayed a
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Fig 4. Accuracy of machine learning models with word embeddings across different window sizes, highlighting performance
trends.

https://doi.org/10.1371/journal.pone.0309862.g004

remarkable spike in accuracy at this window size. Nevertheless, as the window size exceeded
this threshold, the model’s performance started to decline, as shown in Figs 4, 5, 6, and 7. Sim-
ilarly, the decision tree algorithm achieved commendable accuracy at a window size of 10.
Both the SVM and decision tree algorithms also attained high precision values at this window
size, as shown in Fig 5.

These empirical findings were substantiated by the results of the deep learning models, fur-
ther solidifying the hypothesis that an increased window size positively influences results,
as long as it corresponds to or surpasses the sentence length. Strikingly, a window size of 10
emerged as the most favorable choice for identifying significant citations, as shown in Figs 10
and 11. The CNN models showcased impressive accuracy with a window size of 10, while the
GRU and LSTM models’ accuracy began to decrease after this point, though they excelled in
precision at this setting.

This consensus regarding the favorable window size of 10 remained consistent across both
machine learning and deep learning models, reinforcing the robustness of this window size
selection and its effectiveness in this research context.

5.3 Predictive performance of models using dataset-2
Expanding and enhancing the scope of the research, the analysis was extended beyond
Dataset-1 to incorporate the “ACL-ARC” dataset. This expansion allows for rigorous valida-
tion of the findings obtained from the classification algorithms when applied to the domain
of in-text citation sentiment analysis, with a specific focus on the identification of important
citations.
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Fig 5. Precision of machine learning models with word embeddings across different window sizes, highlighting performance
variations.

https://doi.org/10.1371/journal.pone.0309862.g005

Fig 6. Accuracy of deep learning models with word embeddings across different window sizes, highlighting performance trends.

https://doi.org/10.1371/journal.pone.0309862.g006
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Fig 7. Precision of deep learning models with word embeddings across different window sizes, highlighting performance
variations.

https://doi.org/10.1371/journal.pone.0309862.g007

A series of extensive experiments were conducted, leveraging all the features that were
instrumental in Dataset-1. The results, detailed comprehensively in Table 12 and onwards,
once again underscore the exceptional performance of the proposed model. As demonstrated
in the previous dataset, a window size of 10 emerges as the optimal choice, thereby reinforcing
the robustness of the approach across different datasets.

5.4 Evaluation of word embedding models with different window sizes
In a manner consistent with the approach for Dataset 1, model training was conducted using
varying window sizes, specifically {2, 3, 4, 8, 10, and 15}, for Dataset 2. Both traditional
machine learning models, such as Support Vector Machine (SVM), Naive Bayes, and Decision
Tree, as well as deep learning models, including Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), were employed to classify
in-text citations into two classes: important and not important. This classification was based
on the evaluation metrics of precision, and accuracy.

The results mirrored those obtained for Dataset 1, with Support Vector Machine (SVM)
once again demonstrating exceptional performance at a window size of 10. At this window
size, SVM achieved notably high precision and accuracy, as shown in Figs 8 and 9. Simi-
larly, Naive Bayes and Decision Tree exhibited high accuracy at a window size of 10, as shown
in Fig 8. All models achieved high levels of accuracy and precision at a window size of 10.
Among the deep learning models, CNN achieved remarkable accuracy when employing a
window size of 10, as shown in Fig 10. The accuracy of the models started decreasing after a
window size of 10. Both the LSTM and CNN achieved high levels of precision at a window
size of 10, as given in Fig 11.
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Fig 8. Accuracy of machine learning models with word embeddings across different window sizes using Dataset2, highlighting
performance trends.

https://doi.org/10.1371/journal.pone.0309862.g008

Fig 9. Precision of machine learning models with word embeddings across varying window sizes, highlighting performance
patterns.

https://doi.org/10.1371/journal.pone.0309862.g009
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Fig 10. Accuracy of deep learning models with word embeddings across different window sizes using Dataset2, highlighting
performance trends.

https://doi.org/10.1371/journal.pone.0309862.g010

Fig 11. Precision of deep learning models with word embeddings across varying window sizes, highlighting performance patterns.

https://doi.org/10.1371/journal.pone.0309862.g011
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Table 4. Performance metrics of deep learning models on different window sizes.
Model Window Size Accuracy Precision
CNN 2 0.59 0.51

3 0.64 0.65
5 0.64 0.67
8 0.60 0.68
10 0.70 0.90
12 0.56 0.50
15 0.50 0.47

LSTM 2 0.60 0.40
3 0.62 0.43
5 0.62 0.60
8 0.64 0.70
10 0.66 0.80
12 0.60 0.60
15 0.52 0.54

GRU 2 0.50 0.50
3 0.55 0.45
5 0.56 0.65
8 0.56 0.69
10 0.63 0.80
12 0.57 0.57
15 0.43 0.51

https://doi.org/10.1371/journal.pone.0309862.t004

Table 5. Performance metrics of machine learning models across different window sizes.
Model Window Size Accuracy Precision
SVM 2 0.62 0.63

3 0.63 0.65
5 0.64 0.63
8 0.65 0.64
10 0.67 0.65
12 0.65 0.63
15 0.63 0.61

Naive Bayes 2 0.53 0.55
3 0.56 0.57
5 0.56 0.57
8 0.55 0.54
10 0.57 0.58
12 0.56 0.55
15 0.55 0.54

Decision Tree 2 0.49 0.48
3 0.51 0.50
5 0.54 0.53
8 0.52 0.52
10 0.52 0.54
12 0.51 0.53
15 0.50 0.50

https://doi.org/10.1371/journal.pone.0309862.t005

The results indicate that a window size of 10 is the optimal choice for classification when
employing embeddings, as illustrated in Tables 4 and 5. However, it is essential to empha-
size that this window size must remain smaller than the length of the sentence to prevent any
adverse effects on model performance.

5.5 Discussion
In this section, outcomes and insights derived from the exploration of state-of-the-art
machine learning and deep learning models, combined with word embedding techniques
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employing varying window sizes, for the purpose of classifying citations into “important” and
“not important” categories are presented. The evaluation of word embedding techniques at
each window size was conducted using standard performance measures.

It is evident from Fig 4 that when it comes to accuracy, classical machine learning mod-
els utilizing word embeddings with varying window sizes, SVM in particular, excel when
the window size is set to 10, outperforming other models. Conversely, the accuracy of
SVM, Decision Tree, and Naive Bayes models tends to decrease after a window size of 10, as
depicted in Figs 4 and 8.

In a similar vein, other machine learning models and the voting classifier demonstrated
moderate performance results when trained with embedding at a window size of 10. SVM
also exhibited the highest precision and accuracy when the embedding window size was set
to 10. Notably, both precision and accuracy for all machine learning models decreased as the
window size exceeded 10, as shown in Figs 8 and 9.

In the context of deep learning models, CNN achieved high accuracy when trained with an
embedding window size of 10. However, the accuracy decreased as the window size exceeded
10. Furthermore, the precision of all the deep learning models increased notably when trained
with an embedding window size of 10 and decreased after window size 10 as shown in Fig 11.
Similarly, both the LSTM and CNN models exhibited the highest precision at a window size
of 10 as shown in Fig 11.

This consistency in findings across both machine learning and deep learning models
underscores the significance of a window size of 10 as the optimal choice for classifying
citations.

To validate the findings of the first dataset, the same classification models with embedding
techniques were applied to the second dataset D2. The results showed that the accuracy of all
machine learning models improved as the window size increased to 10 but declined beyond
this point, as illustrated in Fig 8. Similar to the results from the first dataset, SVM exhibited
the highest precision at a window size of 10, as seen in Figs 5 and 9. Both Naive Bayes and
Decision Tree also achieved their highest precision at a window size of 10. In the case of deep
learning models, CNN, GRU and LSTM models achieved their highest precision at a win-
dow size of 10 and saw a decrease in precision when the window size exceeded 10, as shown
in Fig 11.

In summary, the discussion emphasizes that, in the case of classical machine learning
models, SVM performs exceptionally well with an embedding window size of 10, excelling
in terms of accuracy and precision for the classification of citations into “important” and
“not important” categories. Meanwhile, for deep learning models, CNN, LSTM, and GRU
models achieve the best performance with a window size of 10 for this classification task. It
is worth noting that the dataset used for model training was initially imbalanced and was
subsequently balanced using SMOTE techniques. Additionally, the optimal embedding
size was explored for effectively classifying citations into “important” and “not important”
categories.

6 Conclusion
This research highlights the crucial role of window size in optimizing word embeddings for
citation classification, identifying a window size of 10 as the optimal choice for balancing
semantic context and noise reduction. Through systematic evaluation, the study demon-
strated that this window size consistently delivers the best performance, enabling models like
CNN and SVM to achieve the highest accuracy and precision. Smaller window sizes lacked
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sufficient context, reducing model effectiveness, while larger ones introduced excessive noise,
compromising reliability. These findings emphasize the importance of tailoring embedding
techniques to the specific needs of citation analysis and optimizing input features for both tra-
ditional machine learning and deep learning models. By advancing the understanding of how
context length impacts model performance, this research offers critical insights into parame-
ter selection and establishes a strong foundation for refining citation analysis methodologies
in future studies.

7 Limitations and future research directions
This study has made significant progress in sentiment analysis and citation importance identi-
fication, but acknowledges several limitations and opportunities for future research. Ensemble
models combining different neural network architectures could improve performance, while
alternative embeddings like FastText and GloVe may enhance text representation by captur-
ing diverse linguistic features. Expanding the focus beyond in-text citations to include entire
research papers and metadata could provide valuable context, and incorporating multi-modal
data, such as visual and structural elements, may yield richer insights. Furthermore, address-
ing the imbalance in dataset through advanced sampling techniques, class weighting, or spe-
cialized loss functions could improve model generalization and reliability. Addressing these
areas can significantly enhance the accuracy and robustness of models in this field.
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