""‘-
\ National

Collegeof
[reland

Enhancing Stock Market Predictions with
Deep Neural Networks and Time Series
Analysis

MSc Research Project
Data Analytics

RAKESH PIDUGU
X22167706

School of Computing
National College of Ireland

Supervisor: Abdul Shahid

‘-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: RAKESH PIDUGU
Student ID: x22167706
Programme: Msc in Data analytics Year: 2023-2024
Module: Research Project
Lecturer: Abdul Shahid
Submission Due
Date: 25/04/2024
Project Title: Enchancing Stock Market Predictions with Deep Neural Networks

And Time Series Analysis
Word Count: 756 Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: RAKESH PIDUGU

Date: 25/04/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

CONFIGURATION MANUAL

RAKESH PIDUGU
x22167706

1. Introduction

This manual situates that, how to perform the developments to run the code which was
implementation for prediction of Microsoft Stock prices . The code is written in Python
language where we keeped the all pre-requestiques for running of the developed program.

2. System Specification

The development of the forecasting of the Microsoft Stock prices was developed throughout
the following hardware configurations:

Process: Intel i5 10 generation
Operating System: Windows 11
Ram: 8 GB

Solid State Drive (SSD): 512GB

3. Softwares Used:

The following tools are used which helps in the development of this project of Microsoft
stock prices prediction:

e Python
e Anaconda
® Jupyter

4. Steps to Download and Install the Software:

The sections describes how to install the anaconda

e Download and install the Anaconda from their official website:
https://www.anaconda.com

e Click on Download to download the anaconda to your operating system.

https://www.anaconda.com/

ANACONDA Enterprise Pricing Resources About

Free Download

Everything you need to get started in data science on your workstation.

Free distribution install
Thousands of the most fundamental DS, Al, and ML packages
Manage packages and environments from desktop application

Deploy across hardware and software platforms

Get Additional Installers

LK)

& P V)

Open Source User-friendly Trusted

Access the open-source software you need With our intuitive platform, you can easily Our securely hosted packages and artifacts
for projects in any field, from data visualization search and install packages and create, load, are methodically tested and regularly updated.
to robotics. and switch between environments.

e After downlaoding the anaconda from their offical website.
e Follow the instructions to install through steps provided on the website.

® Open downloaded anaconda’s setup application to install the software

3 Anaconda3 2023.09-0 (64-bit) Setup — >

Welcome to Anaconda3d 2023.09-0
(64-bit) Setup

Setup will guide you through the installaton of Anaconda3
2023.09-0 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

) ANACONDA

.
L
t

b

e Now Click on Next as depicted to the above image illustration to proceed with next
step

2 Anaconda3 2023,09-0 (64-bit) Setup — >

Choose Install Location

J ANACONDA Choose the folder in which to install Anaconda3 2023.09-0
(54-bit).

Setup will install Anaconda3 2023.09-0 (64-hit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Mext to continue.

Destination Folder

| C:\Usershanaconda3 Browse...

Space required: 5.7 GB
Space available: 97.0 GB

<onc carcel

® Specify the path where you wants to install the application and then click on “Next”
till nex to install the application as depicted to the above image illustration

5. Dataset Source

The dataset for this study, | used the dataset from kaggle which is known for collaborates
with other users and publishes the dataset. So | chosen the dataset for historical Microsoft
Stock dataset which is from 1986-2021

Dataset Source: Micosoft Stocks (Historical Dataset)

6. Execution of the Code Implementation

Open the jupyter from the anaconda’s navigator and then open the files to run that
development of the Microsoft Stocks prices prediction

As the information represented are the process or step to execute the code implementation for
Microsoft Stock prices.

A. Import the required libraries

https://www.kaggle.com/datasets/varpit94/microsoft-stock-data/versions/5?resource=download

#import the required Libaries

import numpy as np

import pandas as pd

import seaborn as sns

import tensorflow as tf

import plotly.express as px

import matplotlib.pyplot as plt

import plotly.graph_cobjects as go

from keras.models import Sequential, Model

from sklearn.preprocessing import MinMaxScaler

from keras.layers import Dense, LS5TM, Dropout, GRU, SimpleRNM, Reshape, Add, concatenate
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

import warnings

warnings.filterwarnings{“ignore")
%matplotlib inline

B. Load the fetched dataset from the kaggle to the jupyter environment/

In [2]: |#Lload the Microsoft previous data
dataFrame = pd.read_csv("M5FT.csv")

This dataset appears to contain information related to Microsoft (MSFT) price and trading data. Each row in the dataset
represents a specific timestamp and includes the following columns:

Column Description
Date The date and time in a human-readable format {e.g., "1986-03-13").
Open The opening price of Microsoft stock at that date.
High The highest price of Microsoft stock during the time period covered by that date.

Low The lowest price of Microsoft stock during the same time period.
Close The clozing price of Microsoft stock at that date.

Volume The volume of Microsoft stocks traded during that time period, measured in MSFT {Microsoft).

This dataset we use to analyze the historical price and trading activity of Microsoft Stocks in relation to the U.S. dollar over
specific time intervals

In [3]: #view the first 5 values of the attributes
dataFrame.head()

Date Open High Low Close Adj Close Volume

0 1935-03-13 0.088542 0101562 0.082542 0097222 0061378 1031723200
1 1986-03-14 0097222 0102431 0097222 0100694 0063570 308180000
1986-03-17 0100694 0.103299 0.100694 0102431 0064667 133171200
1926-03-18 0102431 0.103299 0.0930958 0099326 0.083022 67766400

LD M

1986-03-19 0.099826 0.100694 0.097222 0092090 0.061925 47894400

#basic information about the dataset
dataFrams.info()

<class 'pandas.core.frame.DataFrams’ >
RangeIndex: 9888 entries, & to 9887
Data columns (total 7 columns):

Column Mon-Hull Count Dtype
8 Date 8888 non-null object
1 Open 8868 non-null floated
2 High 8862 non-null floated
3 Low 8888 non-null floatsad
4 Close 58688 non-null float6d
§ Adj Close ©9@88 non-null floatéed
& Volume 8862 non-null inté4d

dtypes: floatéd(5), inté4d({l), object(l)
memory usage: 492,85+ KB

The dataset contains the 9008 rows with 9 different columns

C. Preprocess the dataset

In [12]: # Convert the 'Date' column to a datetime format
dataFramz['Date’'] = pd.to_datetime(dataFrame['Date’])

In [13]: # Reset the index of the DataFrame

dataFrams = dataFrame.reset index(drop=True)

Now view the preprocessed dataset

#view the processed dataframe first five attributes
dataFrame.head()

Date Open High Low Close Adj Close Volume

0 1986-03-13 0088542 0101553 0.088542 0097222 0.061378 1031785300
1 1986-03-14 0097222 0102431 0087222 0100694 0063570 303160000
1986-03-17 0100694 0103299 0100694 0.102431 0.0684867 133171200
1986-03-18 0102431 0103299 0.093953 0.099326 0.063022 67785400

o M

1986-03-19 0.099826 0100694 0.097222 0093090 0.061926 47394400

D. After the dataset is get preprocessed it is now ready for the further
steps includes splitting of dataset

Splitting of Dataset

= Here the dataset is get splitted in the training and testing dataframes

Prepare the data for deep learning models
def prepare_data(data, look_back):
X, y = [1. []
for i in range(len{data)-loock_back):
X.append(data[i: (i+look_back), &])
yv.append(datal[i+look_back, @])
return np.array(X), np.array(y)

look_back = 58
X, ¥ = prepare_data(scaled data, look_back)

Reshape data for LSTM
X = np.reshape(X, (X.shape[e], X.shape[1], 1))

Splitting the dataset into training and testing sets
train_size = int(len(X) * 8.95)

X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]

Scaled Close Prices - Training vs Test

Lo { — Taining set
—— Testset

o8

o
=

Scaled Close Price

E
o

o0

o 2000 4000 5000 3000
Time

E. Now initialize and train the deep learning models.

1. Long-Short Term Memory (LSTM)

Model Initialization & Training

+« Model Development: Various deep learning architectures, including LSTM, GRU, ResNet, and RNN, are
implemented and trained on the historical stock price data. These models are designed to capture temporal
dependencies, nenlinear relatienships, and complex patterns present in financial time series data.

Long-Short Term Memory Model (LSTM)

In [39]: # Build the LSTM model
model = Sequential()
model.add(LSTM({128, return_sequences=True, input_shape=(X_train.shape[1], 1))}
model.add(LSTM{64, return_sequences=False))
model. add(Dense(25))
model.add(Dense(1)})

WARNING: tensorflow:From c:\Users\rohit\anaconda3‘lLib\site-packagesikeras\src\backend.py:873: The name
tf.get_default_graph is deprecated. Please use tf.compat.vl.get_default_graph instead.

In [4@]: # Compile the model
model.compile(optimizer="adam', loss='mean_squared_error')

WARNING: tensorflow:From c:\Users\rohit\anaconda3\Lib\site-packages\keras\srch\optimizers__init__.py:3
29: The name tf.train.Optimizer is deprecated. Please use tf.compat.vl.train.Optimizer instead.

In [41]: # Train the model
model.fit(X_train, y train, batch_size-1, epochs=1)

WARNING: tensorflow:From c:\Users\rohit\anaconda3‘Lib\site-packagesikerasisrchutilsi\tf_utils.py:492: T
he name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.vl.ragged.RaggedTensorvValue i
nstead.

8508/8508 [===== ==] - 118s 13ms/step - loss: 2.5587e-84

L5TM Model Predictions

350
= Actual

— Predicted

300

250

200

Close Price USD (5)

2020-04 2020-07 202010 2021-01 202104 202107 2021-14 2022-01

Date
2. Gated Recurrent Unit (GRU)

Gated Recurrent Unit Model (GRU)

Build the GRU model

model_gru = Sequential()

model gru.add(GRU(128, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model_gru.add(GRU(B4, return_sequences=False})

model gru.add(Dense(25))

model gru.add(Dense(1))

Compile the GRU model
model_gru.compile{optimizer="adam’, loss="mean_squared_error")

Train the GRU model

model gru.fit(X_train, y_train, batch_size=1, epochs=1)

B85AB/8508 [===================s=s==========] - 1175 14ms/step - loss: 1.1285e-84
<keras.src.callbacks.History at 8x1a239445718>

Predictions using GRU model

predictions_gru = model gru.predict(X_test)
predictions_gru = scaler.inverse_transform(predictions_gru)

] - 1s 9ms/step

GRU Model Pradictions

350
= fctual

— Predicted

300

250

200

Close Price USD (5)

150

2020-04 2020-07 202010 2021-01 202104 202107 2021-14 2022-01

Date

3. Residual Network (ResNet)

Residual Network Model (ResNet)

Build the ResNet model

model_resnet = Sequential()

model resnet.add(LSTM(128, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model resnet.add(LSTM(64, return_sequences=True))

model_resnet.add(Reshape{(-1,)))

model resnet.add(Dense(25))

model_resnet.add(Dense(1))

Compile the ResNet model
model _resnet.compile(optimizer="adam’', loss="'mean_squared_error’)

Train the ResNet model
model resnet.fit(X_train, y_train, batch_size=1, epochs=1}

25pa/85e8 [====] - 1145 13ms/step - loss: 2.9508e-84

<keras.src.callbacks.History at @xla22aS2ddoa>

Predictions using ResNet model
predictions_resnet = model_ resnet.predict(X_test)
predictions_resnet = scaler.inverse_transform(predictions_resnet)

14/14 [==============================] - 1s 1lms/step

ResNet Model Predictions

3501 — Actual

—— Predicted

w

=1

=]
L

250 1

200 1

Close Price USD (%

150 1

2020-04 2020-07 2020-10 2021-01 2021-04 2021-07 2021-10 2022-01

Date

4. Recurrent Neural Network (RNN)
Recurrent Neural Network Model (RNN)

Build RNN model

model _rnn = Sequential()

model rnn.add(SimpleRNN(128,return_sequences=True, input_shape = (X _train.shape[1], 1}))
model rnn.add(SimpleRNN(&4, return_sequences=False})

model_rnn.add(Dense(25))

model_rnn.add(Dense(1))

Compile the RNN model
model_rnn.compile(optimizer="adam', loss="mean_squared error')

Train the RANN model

model rnn.fit(X_train, y_train, batch_size=1, epochs=1)

B5PO,/8588 [==============================] - 765 Bms/step - loss: B8.1843e-84
<keras.src.callbacks.History at 8xla2326@3158>

Predictions using RNN model

predictions_rnn = model_rnn.predict(X_test)
predictions_rnn = scaler.inverse_transform(predictions_rnn)

1 - B85 Sms/step

RNMN Model Predictions

350

¥]
ES 8

Close Price USD (5)

Metrics Results of Deep learning models

2020-08

2020-07

2020-10

2021-01 202104

Date

202107

2022-01

LSTM

GRU

RNN

ResNet

233.30

233.40

238.47

246.16

229.24

229.54

2 Y

241.68

Close LSTM Predictions GRU Predictions RMNN Predictions ResMNet Predictions

Date
2020-02-28 162.009995 169268890 160.877731 154 434311 179.350037
2020-03-02 172.7899493 166481445 162.881531 155267242 178 885635
2020-03-03 164.509995 166.995728 170.545700 173.281296 178.705261
2020-03-04 170.550003 166.444656 164.981628 1678958895 178.608826
2020-03-05 166.270004 167059341 169.817184 170.085500 178.607208

Model Predictions Comparison

350 11— actual
—— LSTM Predicted
—— GRU Predicted
= ResNel Predicted
— oredi
— 300 RMN Predicted
vt
~—
@]
5
250
u
2
e
a
s
200
Lo
9]
150

202008 2020-07 2020-10 2021-01 202‘1'04 202107 JDZi 10 2022-01

Date

Hybrid Model

Hybrid Model

« Building upon the insights gained from individual models, hybrid models are developed by integrating multiple deep learning architectures.
These hybrid models aim to leverage the complementary strengths of different architectures to improve prediction accuracy and robustness.

Define input shape
input_shape = (X_train.shape[1], 1)

Define LSTM branch

lstm_branch = Sequential()

lstm_branch.add(LSTM(128, return_seguences=True, input_shape=input_shape))
1stm_branch.add(LSTM(54, return_sequences=False))

Define GRU branch

gru_branch = Sequential()

gru_branch.add(GRU{128, return_sequences=True, input_shape=input_shape))
gru_branch.add(GRU{&4, return_sequences=False))

Define ResNet branch

resnet_branch = Sequential()

resnet_branch.add(LSTM({128, return_sequences=True, input_shape=input_shape)}
resnet_branch.add(LSTM(64, return_sequences=True))
resnet_branch.add(Reshape((-1,)))

resnet_branch.add(Dense(25))

#Define RNN branch

ron_branch = Sequential()

ran_branch.add(SimpleRNN(128, return_sequences=True, input_shape = input_shape))
rnn_branch.add(SimpleRNN(64, return_sequences=False))

rnn_branch.add(Dense(25))

rnn_branch.add(Dense(1))

Concatenate branches
combined _model = concatenate([lstm_branch.output, gru_branch.output, resnet_branch.output, rnn_branch.output])

Additional Dense Layers
combined_model = Dense(25)(combined_model)
combined_model = Dense(l)(combined_model)

Create model
hybrid_model = Model(inputs=[lstm_branch.input, gru_branch.input, resnet_branch.input, rnn_branch.input], outputs=combined_model

Compile the model
hybrid_model.compile(optimizer="adam', loss='mean_squared_error')
4 3

Train the model
hybrid_model.fit([X_train, X_train, X_train, X_train], y_train, batch_size=1, epochs=1)

85e6/85689 [] - 21@s 24ms/step - loss: 1.5448e-84

10

This plot demonstrates the predictions of hybrid model after integrating the multiple deep
learning models.

Hybrid Model Prediction

350 +
— Actual
—— Hybrid Predicted
. 300
ek
a s
[%2)
Dz W/’” v
(0] . AN
- \
a A +
b M / &M
8 200 - ’ .
O
150 1
2020-04 2020-07 2020-10 2021-01 2021-04 2021-07 2021-10 2022-01
Date
Close LSTM Predictions GRU Predictions RMNN Predictions ResNet Predictions Hybrid Predictions
Date
2020-02-28 162 009995 168 268890 160.877731 154 434311 179.350037 160.027878
2020-03-02 172.789993 166.481445 162.881531 155.267242 178.885635 160.841934
20200303 1645090585 166.995728 170.545700 173.281206 178.705261 168.110443
2020-03-04 170550003 166.444656 164 981628 167.808895 178.608826 163.759842
2020-03-05 166.270004 167.059341 169.817184 170.085800 178.607208 167.407547

This configure manual provides the a comprehensive guide for configuring, execution of
code , and understanding the Bitcoin future price forecasting implementation.

References

Anaconda: https://docs.anaconda.com/free/anaconda/install/windows/
Kaggle Dataset Source:Micosoft Stocks (Historical Dataset)

11

https://www.kaggle.com/datasets/varpit94/microsoft-stock-data/versions/5?resource=download

