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Ensemble Machine learning to Detect Exoplanets

Vishal Petkar
x21216461

Abstract

In last 6 decades the exploration of space has unveiled some of the most pro-
found mysteries of our universe, revealing multitudes of celestial objects and won-
ders, which includes distant exoplanetary systems. Leveraging on the vast data that
was obtained by the earlier Kepler and K2 missions, this report aims to present an
approach to detect exoplanets by analysing the fluctuations of light curves with a
combination of data from the Kepler, K2 and TESS missions. Four models will be
trained — Convolutional Neural Network (CNN) utilizing GPU acceleration, Sup-
port Vector Machine (SVM), K-Nearest neighbour and Random Forest to identify
the subtle signatures of exoplanetary transits within the fluctuations of light. Post
the models achieving a satisfactory performance, an ensemble script combining 3
models was used to evaluate its performance in identifying exoplanets from the
light curve data obtained from all 3 sources with test data that the models had
never analyzed. The results of this research showcases that an ensemble model
with CNN, K-NN and Random forest achieved an accuracy of 0.62, precision of
0.66, recall(sensitivity) of 0.70, specificity of 0.51 and an F1 score of 0.68. This
indicates that the ensemble approach, particularly leveraging KNN, exhibits prom-
ising performance in accurately identifying exoplanets from the analyzed light curve
data, thus contributing significantly to the field of exoplanetary research.

1 Introduction

For centuries, scientists and the common masses have been fascinated over the vast ex-
panse of space. One of the aspects of space that has captured everyone’s curiosity is the
thought of if there were other planets present outside our solar system. Interestingly,
the first ever exoplanet (2 in this instance, named Poltergeist and Phobetor) that was
officially discovered in recorded history was just discovered 32 years ago in 1992, and
were found orbiting a pulsar. |Wolszczan and Frail (1992)) The first exoplanet that was
discovered orbiting a solar-like star was discovered in 1995 named 51 Pegasis b, which was
a massive planet and at the time due to the limitation of technology, only such massive
planets could be detected. |Queloz and Alsari (2020))

There has been a drastic improvement in technology in the last 3 decades. Both
ground based and space based telescope like Kepler and Hubble have contributed greatly
in the discovery of exoplanets and in the overall understanding of the universe. The
Kepler mission was designed to be a statistical mission to find as many earth sized planets
outside our solar system, which are present near or within a stars habitable zone. |Malik
et al.| (2021)) In its complete mission’s lifespan, the Kepler and K2 were able to observe
approximately 530,506 stars continuously for several years. The mission finally ended



in 2018 when the spacecraft ran out of fuel. Following in the success of the Kepler/K2
missions, NASA had launched another mission named the Transiting Exoplanet Survey
Satellite (TESS) in 2018. Unlike its predecessor Kepler, TESS was able to cover a much
wider area of the sky in its observation and was able to observe a much broader range of
stars. Its main mission objective is to survey the closest and brightest stars around earth
for transiting exoplanets. The mission was designed to last for 2 years, but continues to
operate even now. By mid-November 2023, it has managed to discover 6977 exoplanet
candidates of which 402 are confirmed as exoplanets. []

The method employed in this research paper to find exoplanets, would be by using
the Transit method. The term ‘transit’ in astronomy context can be defined as the event
when a planet passes in front of a star, which is being observed from earth. The Figure
shows how a transit light curve occurs in space. When this event happens, the light of
the star appears to dim. By measuring this dip in the brightness of a stars luminosity,
scientists can determine if the dip in brightness is due to an orbiting planet or due to
stellar debris.

light curve
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Figure 1: Light curve of a planet transiting its Star [

This can be determined by plotting the light curve of the star. When the brightness
of the star dips below a certain threshold indicating a transit event, it is termed as a
Threshold Crossing Event (TCE). A threshold is often determined based on statistical
considerations, such as signal to noise ratio (SNR), which means that if there is a high
SNR threshold then only light curves with more significant dips in brightness are con-
sidered as potential transits. McCauliff et al.|(2014) For example, an astronomers might
set a threshold value such that any decrease in brightness exceeding, 3 to 5 times the
standard deviation of the noise in the light curve is considered a potential transit event.
This research project holds vital importance within the field of exoplanetary science, by
building upon centuries of scientific curiosity and technological advancements. The his-
torical context provided above underscores the transformative impact of recent decades
of developments, particularly in the detection of exoplanets. Leveraging the cutting-edge
machine learning and data analysis techniques, this research aims to significantly en-
hance our capacity to detect exoplanets accurately and efficiently. By contributing to
the ongoing exploration of space, the discovery of exoplanets continues to broaden our

Thttps:/ /exoplanets.nasa.gov/tess/
2Source: https://exoplanets.nasa.gov/resources/280/1light-curve-of-a-planet-transiting-its-star/
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understanding of the universe and the prevalence of planetary systems beyond our own.
The methodology employed, particularly the use of the transit method, which repres-
ents a powerful tool for identifying exoplanets and probing their fundamental properties.
Through meticulous analysis and validation, this study not only advances our under-
standing of exoplanetary systems but also refines and optimizes detection techniques for
future missions.

The process of vetting the light curves of each of the stars observable from earth is a
long and tedious one. To tackle this, it is necessary to work with multiple sources of data
and make use of multiple machine learning methods that can systematically analyse the
data, remove any misleading sources by using pre-set parameters such as TCE values,
generate the light curves and is able to classify if the generated light curve is in-fact
representative of the presence of an exoplanet or not.

From the above given research problem, the main objectives of this research paper is
to answer the below questions.

1. How much does the combined utilization of Convolutional Neural Network (CNN),
Support Vector Machine (SVM), k-Nearest Neighbors, and Random Forest models provide
an improvement in exoplanetary signature detection in terms of evaluation metrics such
as accuracy, specificity, recall and F1 Scores?

2. To what extent does the integration and simultaneous utilization of multiple datasets
from Kepler, K2, and TESS contribute to the enhancement in accuracy and reliability of
exoplanetary signature detection and classification, as evidenced by comparative perform-
ance metrics against data obtained from individual sources?

This research paper is organized as follows: Section 2 provides a review of related
work and contributions in this domain. Section 3 introduces the research methodology
and explains the steps taken during exploratory data analysis. Section 4 defines the
implemntation of the different machine learning models that were utilized in this research.
The evaluation of the ensemble models are presented in Section 5. Section 6 discusses on
the results obtained from the different case studies. And finally, Section 7 concludes the
research and discusses on possible future works.

2 Related Work

In this section, the various research approaches in using machine learning to detect exo-
planets will be discussed

2.1 Machine learning advancements in Astronomical data-analysis

Salinas et al| (2023) In their approach introduced a deep learning architecture that was
specifically designed to analyse light curves from astronomical data. It utilized a self-
attention mechanism that was inspired by Transformer models which enabled to capture
significant features and provide interpretability. In their research they addressed the
limitations of traditional CNNs, and put forth their deep learning approach which had
simplified manual examination of transit light curves and had achieved competitive results
which in turn offered a promising direction for further research in exoplanet science. In
all their experiments involving SVM and multilayer perceptron, both models did not



exceed a precision threshold over 0.6. Although their approach was promising, it still
had drawbacks. Their approach suffered from scalability issues in the analysis of longer
light curves and suffered from potential challenges in generalizing other classifications of
astronomical events. In contrast to this, an alternative research was done Schanche et al.
(2019)which had focused on ground based wide field transit survey data. Particularly
the data from the Wide Angle Search for Planets (WASP) program. They employed a
combination of ML methods that included Random Forest Classifiers (RFCs) and CNNs
to automate signal classification. Their research achieved an accuracy of approximately
90% in the identification of exoplanets, thereby emphasizing the efficiency and scalability
of Machine Learning architectures in handling huge datasets. It also aided in the rapid
classification and in reducing manual analysis labour on human observers. While they had
achieved high accuracy rates, their approach had still exhibited a very notable fraction
of false positives. Additionally their reliance on just using the WASP dataset may limit
the quality of classification based on the data available. Both research papers highlight
the importance of machine learning techniques in tackling challenges such as the large
volume and complexity of astronomical data.

2.2 Exoplanet Detection: Kepler

In a similar way, |Cuéllar et al.| (2022)) the research focused on deep learning techniques
that particularly employed convolution neural networks (CNNs), that enhance transit
detection within the Kepler Telescope light curves. The model they made was trained
on a combination of real and synthetic data which made use of 2D phase folding which
was used for feature extraction. Their approach had achieved a superior performance
when compared to other existing methods, thereby emphasizing the usefulness of incor-
porating synthetic data. Their proposed model achieved an accuracy of 0.98, precision
of 0.97 and recall of 0.99 in their test. The synthetic data had improved the model’s
knowledge and performance. However, their approach also consisted within them some
drawbacks, such as being limited to single-transit detection. They also required their
results to be validated on datasets beyond the Kepler data. In contrast, a research study
was done Malik et al.| (2021)) that introduced a novel machine learning based approach
that diverged from the standard deep learning methodologies. Their study utilized the
TSFRESH time series analysis library and a gradient boosting classifier. It showcased
a competitive performance when it came to detecting exoplanets and had particularly
demonstrated a reduction in predicting false positives when compared to conventional
algorithms. Their approach also offered an increase in computational efficiency without
the need for specialized software. While their approach does offer computational be-
nefits, it still needs the assistance of human supervision and validation on the unseen
data. Both these studies represent a significant advancement in the detection of exo-
planets, the former highlights the scalability and accuracy achieved from deep learning
techniques, while the later showcased the lightweight nature and practical applicability
of ML methods. At the same time, both these methods suffer challenges in generalising
to data from a broader dataset and requires more refinement with the validation of their
results.

More research was done on exoplanet detection and validation. In one study the re-
searchers focused on the development of techniques for the identification of background
false positives in Kepler data. They approached this problem by utilizing centroid ana-
lysis, PRF-fit technique and photometric centroid technique. Bryson et al.| (2013) PRF-fit



stands for Point Spread function fit and is a technique that is used in astronomy to model
and analyse the shape and intensity of light sources in an image. Although the mentioned
methods make significant contribution to the reliability of the Kepler exoplanet candidate
list, they still exhibit certain limitations such as breakdown in low signal to noise scen-
arios, its sole reliance on the photometric data obtained from Kepler which potentially
restricts its application in other datasets. Alternatively, the research done by [Armstrong
et al. (2021) proposes a novel approach of planet validation through the use of machine
learning. Particularly the researchers used a method known as Gaussian process classifier
(GPC) as an alternative to the more popular VESPA algorithm, which showed promising
results in differentiating between confirmed planets from false positives in the Kepler TCE
catalogue, thereby providing rapid validation of thousands of unseen planet candidates.
Specifically, the study highlights the precision achieved by machine learning models such
as random forest classifiers (RFC), Gaussian process classifiers (GPC), extreme tree clas-
sifiers (ET), and multilayer perceptrons (MLP), with AUC metrics ranging from 0.998
to 0.999. However the researchers also identified discrepancies with VESPA algorithm
when their model was applied on several candidates, thereby raising concern about re-
lying solely on a single validation method. This limitation cautions against the use of a
single validation method which may introduce biases into the model which would lead to
misclassification. Therefore, continued research and validation against known datasets is
essential to evaluate the reliability and robustness of proposed approach.

2.3 ML with TESS Data

A research study was done which discussed on the potential of the Transiting Exoplanet
Survey Satellite (TESS), in its capability to observe the solar system objects and exploring
the implications of studying minor planets. Pal et al.| (2018]) Their study highlighted the
capabilities of TESS in providing timeseries imaging data and compares its optical setup
with that of the Kepler/K2 mission. Thus emphasizing the larger net expanse of TESS
and its differences with Kepler/K2 in data acquisition principles. Their study presented
statistics for minor planet transits which affect target star light curves, demonstrating
the impact of ecliptic latitudes on the number of encounters. Despite the promising
photometry achievable for thousands of minor planets, their research paper acknowledges
limitations in detecting fainter objects and the potential confusing effects of minor planet
transits on stellar photometry.

Further research was done in the utilization of machine learning methodologies for
the detection of exoplanets within NASA’s TESS dataset. One study was done using
a specific convolutional neural network (CNN) which was named Astronet-Triage-v2.
Tey et al.| (2023) It was designed to distinguish between eclipsing candidates and other
phenomena’s within the TESS Full-frame Image (FFI) light curves that were obtained
from the TESS data. This network was trained on high-quality data that was curated from
the Primary mission and the 1st extended mission of TESS. The Astronet-triage-v2 had
exhibited remarkable performance, achieving a recall of 99.6% for transiting events with a
precision of 75.7%. It notably outperforms its predecessor, Astronet-Triage. In contrast,
a research study was done which introduced a novel Al technique that was developed by
ThetaRay, Inc., which combined multiple algorithms that were trained on Kepler data
and subsequently validated with confirmed exoplanets before application to TESS data.
Ofman et al. (2022)) Their research employed the use of semi supervised and unsupervised
ML techniques. The ThetaRay system was able to analyse the TESS lightcurves and



was successful in identifying approximately 50 exoplanetary candidates. Although both
of these approaches demonstrated a potential for quick identification of exoplanetary
candidates, they have some shortcomings. The astronet-triage-v2 lacks the ability to
distinguish between transiting exoplanets and eclipsing binaries. Eclipsing binaries are a
dual star system where in they orbit each other and periodically eclipse or pass in front
of each other from the perspective of earth. This drawback limits the astronet-triage-v2’s
utility in classification. Conversely, the ThetaRay Al technique need manual validation
in order to reduce false positive results. This indicates the need for further optimization
and development. Also, its reliance on semi supervised and unsupervised techniques may
introduce uncertainties into the model which could cause misclassification.

Another study had focused on classifying exoplanet candidates through transit sur-
veys. |Osborn et al| (2020) This was done by leveraging high fidelity simulations that
were used to train deep learning models for accurate classification. Their method, while
achieving impressive precision of 97.3% and an accuracy of 92% of planets in three-class
model, particularly in low signal to noise scenarios, it posed limitations due to their reli-
ance on simulated data which did not fully capture the complexities of real TESS data.
This led to necessitating further validation and refinement through training on confirmed
TESS planets. On the contrary, the research study done by |Vida et al. (2021) tackled
the detection of stellar flares in space borne photometric data using recurrent neural
networks with LSTM layers. Through training and testing various neural network archi-
tectures their study finds that RNNs with LSTM layers perform the best, achieving both
high recall and precision rates slightly greater than 70% in detecting flares. However the
researchers acknowledge there were several limitations and failures encountered during
the experimentation process. Challenges such as model selection, data standardization
and convergence of network architecture. Additionally the use of artificial data for train-
ing neural networks does raise some concerns about generalizability to real observational
data, highlighting the need for further validation on independent datasets, particularly
from TESS observations.

Transit timing variations (TTVs) is another way to determine the transit of an exo-
planet. In this method the timing of a planets transit across its host star’s disk varies over
time due to gravitational influences of other bodies in the systems such as other exoplan-
ets or moons. A study was done in detecting these TTVs in the Kepler field by leveraging
the observations made by TESS. |Jontof-Hutter et al.| (2022]) Despite the successful recov-
ery of transits from multiple systems and the identification of non-transiting perturbers,
their study heavily relies on Kepler data for dynamical constraints, which may limit the
robustness of their findings, particularly given the lower signal-to-noise ratio of the TESS
transits. Additionally, while pixel-level decorrelation (PLD) enhanced transit detection
in noisy TESS data, they faced limitations in detecting transits of faint stars and shallow
transits posed challenges, potentially leading to missed detections or lack of validation for
certain planets. In contrast another research study was performed where the researchers
had evaluated the potential of TESS to detect and characterize planetary systems in
the Kepler field. |Christ et al.| (2019) By modelling the expected transits of confirmed
and candidate planets detected by Kepler, the research forecasts TESS’s ability to detect
these planets and improve our understanding of the planets properties. Their research
predicts that TESS has a high probability of detecting a significant number of planets,
particularly hot Jupiters, and suggests it as a powerful tool for characterizing transit
timing variations (TTVs). However, the study relies on assumptions about TESS’s noise
properties and contamination ratios, which could affect the accuracy of the predictions.



Additionally, while TESS is expected to enhance measurements of planetary parameters
and reduce transit timing uncertainties, there are limitations in detecting multiplanet
systems and tidal orbital decay. The paper discusses strategies for maximizing TESS’s
scientific yield, including extended mission plans, but acknowledges the need for further
validation and understanding of TESS’s performance in the Kepler field. Overall, while
the paper provides valuable insights into TESS’s potential contributions to exoplanet
research, its reliance on assumptions and the complexity of characterizing multiplanet
systems and tidal effects highlight the challenges and uncertainties in predicting TESS’s
performance accurately.

2.4 Takeaways from Related work

There has been a lot of work done by several researchers in the field of astronomy and
in the search of exoplanets. These works range from working upon individual sources of
data such as Kepler, Hubble, JWST etc. to different methods of analysis and processing
of this available data. Various research teams have used many algorithms in their pursuit
of searching and cataloguing new exoplanets. However in most of these study’s the re-
searchers are attempting to compare the performance of different algorithms in achieving
the same tasks. Also, in most of the studies, only individual sources of data worked upon.
Therefore to improve on these two factors, this research study aims to find and showcase
the advantage of using a voting system with a combination of 3 different machine learning
algorithms and make use of a combined source of data.

3 Research Methodology

The related works section discussed the different data sources/datasets and different
algorithms which were used by various researchers in their study to discover exoplanets
through the process of transit light curves. Machine learning algorithms such as Astronet-
Triage-v2, CNN, and even Al such as ThetaRay were used individually in the analysis of
light curve data of stars. In this paper, an ensemble approach is proposed which combines
the outputs of 3 machine learning algorithms and uses a voting system to determine the
final output. The proposed algorithms to be used in this research are CNN, Random
Forest, KNN and SVM. The proposed methodology aims to provide a robust model that
can identify and classify exoplanetary transits by analysing a star’s light curve. The
following sections will discuss on the step by step process of the model creation starting
from data selection as shown in the below Figure

Generating Light

Data Selection |—w Data Exploration | Visualization — Curves

Figure 2: Stages of research methodology

3.1 Data Selection

The NASA Exoplanet Archive was one of the main sources of data used in this research.
The Kepler data and TESS data was obtained in the form of CSV files. The data



downloaded was divided into 2 bundles, one containing data of confirmed exoplanets,
and the other comprising of confirmed false positives. The CSV file contains several
columns of data such as the astronomical names given to stars and planets, the number
of stars and planets in the given system, distance of the system from earth and other
physical data properties of those stars, such as temperature etc are provided.

3.2 Data Exploration

The csv data file is systematically analysed and exploratory data analysis is performed
on it. The “TIC” or “KIC” ID values are initially checked for duplicates and removed.
Then the values of specific columns of interest are checked for NA or NULL values. The
specific columns that were checked are as follows.

1. sy_snum = Number of Stars

2. sy_pnum = Number of Planets

3. discoverymethod = Discovery Method

4. disc_year = Discovery Year

5. plorbper = Orbital Period [days|

6. sy_dist = Distance [pc| (converted to lightyears)
7. st_teff = Stellar Effective Temperature [K]

Once the data has been cleaned of any null values, visualizations were created to
better understand and derive knowledge from the data.

3.3 Data Visualization

The Figure [3| below shows that the majority of the exoplanets discovered in the Kepler
dataset were discovered by the transit method. A total of 1888 exoplanets that were
catalogued were discovered with this approach and remains to be the most widely used
method today.
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Figure 3: Bar plot of discovery methods used to discover planets

In Figure [4] it can be observed that the most number of exoplanets that were dis-
covered were in the year 2016, with a total of 1141 which accounts for 60.15%, followed
closely by 2014 with 16.55%. The steep rise in discoveries in 2016 could be attributed to
the advancement in processor chips and in improved algorithmic performances.
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Figure 4: Bar plot of discovery methods used to discover planets

Figure |5 shows that most of the planetary systems that were discovered mainly con-
sisted of just a single planet orbiting its host star. A total of 74.06% of all confirmed
exoplanets discovered by Kepler comprises of a single star-planet system.
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Figure [6] shows the distance of the exoplanets from earth. Analyzing this data shows
that 20.24% of planets lie in the range of 1 to 1500 light years, 61.57% of planets are
between the ranges of 1500 and 4000 light years and 18.08% of planets are between 4000
and 10000 light years from earth.
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Figure 6: Distance of planets from earth [Light-years]

3.4 Generating Light Curves

Post the initial data exploration, a light curve generating script file was created using
Python and the “TIC” and “KIC” ID’s of stars were given as input. A dataset containing
the various flux values of the given star were then downloaded using the lightkurve python
module from the mast Websiterfl Once the flux data is available, it can be plotted and

3https://mast.stsci.edu/portal/Mashup/Clients/Mast /Portal.html
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worked upon as can be seen in the below Figure [7]
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Figure 7: Light curve of a Star’s luminosity and Flattened Light curve

The light curve is then flattened using the flatten() command to remove any long
term trends. This normalizes the flux values as seen in the Figure [7]

Following this, the to_periodogram() command is used on the flattened lightcurve to
check for periodic signals in the time series data. It helps in identifying how the power
of a signal is distributed across different frequencies, where the higher peaks indicate
periodic signals at those frequencies. In the context of astronomy, periodograms are
often used to search for exoplanets by detecting the periodic dimming of a star’s light
caused by transiting planets. Then the period of max power is calculated which indicates
the best fit period of the signal. In the given example, the best fit period is 18.26703
days, which indicates the orbital period of the exoplanet orbiting around this star. Using
this information, the signal can then be folded to this “best fit period” or orbital period
as seen in Figure
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Figure 8: Folded light curve of a Star

The folded light curve shows that there is a significant dip in the flux of star light. To
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make the plot appear cleaner, the binning command is used. Binning involves dividing the
data into groups or bins and computing the statistics for each bin. Here, the binsize=12
implies that the data will be grouped into bins of size 12 data points each. The summary
statistic computed for each bin is typically the mean, median, or sum of the data points
within the bin. The binned light curve plot can be seen below in Figure [9]
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Figure 9: Binned light curve of a Star

It can be observed that upon binning the dip in the light curve flux can be seen
more significantly. This graph falls by more than almost 20 units from 1.0000 to slightly
below 0.9980. This drop in the flux value is known as Threshold Crossing Event (TCE)
McCauliff et al.| (2014) In this method the light curves are generated for both csv’s of
confirmed planets and for confirmed false positives for Kepler, K2 and TESS data. In the
confirmed planet list only the star systems that consisted of only a single planet were used
to generate light curves. At the end of this process, there were 634 light curve graphs of
confirmed planets and 596 light curves of confirmed false positives from Kepler, K2 and
TESS data sources. Using this data, the machine learning models were trained.

4 Implementation

Once the light files have been generated, they are split into 2 batches for training and
testing, with the train-test ratio’s of 70/30 and 80/20. Once the data has been split, they
are used to individually train the ML models as shown in the Figure [10[ below.
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Figure 10: Machine learning models training and testing stages

4.1 Convolutional Neural Networks (CNN)

The first model that was trained was the CNN model. It made use of the Keras API
with a TensorFlow backend. The CNN architecture comprises of multiple layers that
are designed for image classification tasks. It begins with a convolutional layer with 16
filters, each of size 3x3, employing the ReLLU activation function. This layer processes
input images of size 256x256 pixels. Following convolution, max-pooling operations are
applied to reduce spatial dimensions. The pattern of convolution followed by max-pooling
is repeated several times, with varying numbers of filters (32 and 16) in alternate lay-
ers, this was aimed at capturing hierarchical features within the image. After the final
convolutional layer, a flattening operation is performed to convert the 2D feature maps
into a 1D vector. This vector is then fed into fully connected layers consisting of 256 and
128 neurons, each activated by the ReLLU function, facilitating feature combination and
abstraction. The network concludes with a single neuron output layer activated by the
sigmoid function, which is suitable for binary classification tasks. The Adam optimizer is
employed for training, using the binary cross-entropy loss function which is used to meas-
ure the disparity between predicted and actual classifications. Additionally, the training
process is monitored and visualized using TensorFlow’s TensorBoard utility, with training
and validation data provided for the necessary epochs. The model is trained using the
onboard available system Nvidia GPU.

4.2 Random Forest Classifier

The 2nd model to be trained was the Random forest classifier which was designed to be a
supervised machine learning tasks, particularly for classification. In this model the RF is
instantiated with 170 decision trees and is seeded for reproducibility with a random state
parameter set to 42. To assess the models performance and generalization ability, k-fold
cross-validation is employed where K is set to 20. This ensures comprehensive evaluation
across various subsets of the dataset. The ‘accuracy’ scoring metric was chosen in order
to evaluate its performance. During the cross-validation process, the dataset is split into
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k-subsets and each subset is iteratively treated as a validation set, while the remaining
data is used for training. Performance metrics such as accuracy, precision, recall, and
F1l-score are computed for each fold, which helps in providing a comprehensive insight
into the classifier’'s behavior across different subsets of the data. This approach ensures
robustness and reliability in assessing the classifier’s performance, as it considers multiple
splits of the data for both training and evaluation. Overall, this methodology approach
offers a rigorous evaluation framework for the Random Forest classifier.

4.3 K-Nearest Neighbour (K-NN)

Another model that was trained was the K-nearest neighbour model. It loads the pre-
processed image data, converts the images into flattened arrays and their respective class
labels into one-hot encoded format. Utilizing scikit-learn’s KNeighborsClassifier, the code
proceeds to train the k-NN model using k-fold cross-validation, wherein the data is split
into 20 folds for training and evaluation. Performance metrics such as accuracy, precision,
recall and F'1 score are computed for each of the folds and subsequently averaged to gauge
the overall models performance.

4.4 Support Vector Machine (SVM)

The final model to be trained is the Support Vector machine (SVM). It was used due
to its capability in classification tasks, and due to its ability to employ k-fold cross
validation approach to evaluate its performance. Initially a pipeline is constructed, which
encapsulates both feature scaling through standardization and the SVM classifier itself.
The SVM is configured to utilize a linear kernel and output probability values. Also a 10
fold cross validation strategy was employed, to ensure thorough evaluation of the SVM
model’s performance while also trying to mitigate potential biases in the assessment.
Throughout each iteration of cross-validation, the dataset was split into training and
testing subsets, with the SVM model trained on the former and evaluated on the latter.
Performance metrics including accuracy, precision, recall, and F1-score are computed for
each fold, which provides a comprehensive insight into the classifier’s effectiveness across
diverse data partitions. This rigorous evaluation methodology ensures the robustness
and reliability of the SVM classifier, essential for yielding credible results in research
investigations.

4.5 Ensemble Code

Once all the models are created, they are loaded into an ensemble script. The models are
then tested against the test data that was initially kept separate from them during the
training phase. The models each take the same input file and produce their respective
outputs, which are saved in a file. Predictions are made by each model for every image,
and a voting mechanism is employed to determine the final classification decision based
on the majority vote among the models. Evaluation metrics such as accuracy, precision,
recall, Fl-score, and specificity are computed using sklearn.metrics functions. Finally,
the metrics are printed and visualized through a heatmap of the confusion matrix. This
all-inclusive approach enables thorough assessment and comparison of the three models
performance, ensuring it’s robustness and reliability in the classification task.
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5 Evaluation

Evaluation is the pivotal stage in every machine learning endeavor. It facilitates an
understanding of the model’s performance and verifies it’s intended functionality. To
evaluate the models performance, there are 4 different experiments/case studies that will
be discussed ahead.

5.1 Case Study 1 — 70/30 Train Test split (SVM, CNN, RF)

As discussed in the previous section, the data was split into batches for training and test-
ing. Three models were trained on this 70% training data. Their individual performances
are shown below in Table [1

Table 1: Evaluation Metrics of Different Models

Model Name Mean Accuracy Mean Precision Mean Recall
CNN 0.742 0.733 0.750
Random Forest 0.599 0.613 0.599
SVM 0.581 0.579 0.581

The CNN model shows the most promising results among the 3 models. The loss
function of the CNN model falls as expected, and conversely the accuracy rose during its
training. As can be observed, the loss function has fallen from 0.70 to less than 0.55. In
the same way the accuracy function has risen from 0.5 to 0.7 during the CNN model’s
training, as observed in Figure |11}
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Figure 11: Accuracy and Loss of CNN model

The 3 models are then fed the test data to predict the following confusion matrix in
Figure
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Figure 12: Confusion Matrix of Ensemble model (CNN, SVM, Random forest)

As can be observed from the above confusion matrix, the ensemble of the 3 models
have successfully classified 117 light curves as an exoplanet (represented as 0) and 114
light curves as a True Negative (false positive exoplanet signal represented as 1). The
Table 2 shows the evaluation metrics of the ensemble model.

Table 2: Evaluation Metrics of the Ensemble Model

Metric Value
Accuracy 0.57
Precision 0.68
Recall (Sensitivity)  0.49
Specificity 0.68
F1 Score 0.57

The ensemble model demonstrates a moderate level of performance as observed by
its accuracy of 0.57, which indicates that it was able to correctly predict the outcomes
of 57% of instances. Precision, measuring the proportion of correctly identified positive
cases among all instances predicted as positive, is at 0.68, suggesting that when the
model predicts a positive outcome, it is correct around 68% of the time. However, the
model’s recall, also known as sensitivity, is comparatively lower at 0.49, signifying that it
captures only 49% of all actual positive cases. On the other hand, specificity, representing
the proportion of correctly identified negative cases among all instances predicted as
negative, mirrors the precision score at 0.68. The F1 score, which balances precision and
recall, aligns with the accuracy at 0.57, indicating a harmonious blend of precision and
recall but with room for improvement in capturing true positives and minimizing false
negatives.

5.2 Case Study 2 — 80/20 Train Test split (SVM, CNN, RF)

In the 2nd case study, the training of the models were done with 80% of the data while
keeping 20% hidden away for testing. The evaluation metrics obtained are given in the
below Table [l
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Table 3: Mean Evaluation Metrics of Different Models
Model Name Mean Accuracy Mean Precision Mean Recall

CNN 0.681 0.658 0.806
Random Forest 0.600 0.615 0.600
SVM 0.557 0.558 0.557

Again the CNN model shows the best scores in terms of accuracy, precision and recall.
The loss function drops as expected during the training process and the accuracy increases
as shown in Figure

Accuracy Loss
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Figure 13: Accuracy and Loss of CNN model

The 3 models are then fed the test data to predict the following confusion matrix in

Figure
As can be observed from the above confusion matrix in Figure the ensemble of
the 3 models have successfully classified 81 light curves as an exoplanet (represented as

0) and 59 light curves as a True Negative (false positive exoplanet signal represented as

1).

Table 4: Evaluation Metrics of the Ensemble Model

Metric Value
Accuracy 0.57
Precision 0.66
Recall (Sensitivity) 0.44
Specificity 0.73
F1 Score 0.53

The above evaluation results in Table [ shows that the ensemble model has an accur-
acy of 0.57 indicates that the model correctly predicted 57% of the instances. Precision,
measuring the proportion of correctly predicted positive cases among all instances clas-
sified as positive, is reported at 0.66, suggesting a relatively high accuracy in identifying
true positives. However, the recall, or sensitivity, stands at 0.44, indicating that the
model captured only 44% of all positive instances. Specificity, which reflects the ability
to correctly identify negative cases, is reported at 0.73, demonstrating a notable cap-
ability to avoid false positives. The F1 score, a harmonic mean of precision and recall,
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Figure 14: Confusion Matrix of Ensemble model (CNN, SVM, Random forest)

is calculated as 0.53, indicating a balance between precision and recall. Overall, while
the model demonstrates respectable precision and specificity, improvements are needed
in recall to enhance its ability to capture all positive instances effectively.

5.3 Case Study 3 — 70/30 Train test split (K-NN, CNN, RF)

In case study 3, the K-NN model is used in place if the SVM model. Here all the models
are trained using 70% of the complete data. On substituting the models we get the
following evaluation metrics for the 3 models.

Table 5: Mean Evaluation Metrics of Different Models (CNN, KNN and Random Forest)
Model Name Mean Accuracy Mean Precision Mean Recall

CNN 0.742 0.733 0.750
Random Forest 0.599 0.612 0.599
K-NN 0.527 0.517 0.527

When these 3 models are given the 30% test data, the resulting confusion matrix is
as shown in the below Figure

As observed in the above Table [6] with the accuracy value of 0.62, the model is able
to correctly classify approximately 62% of the instances indicating the overall correctness
of a moderate level. Precision, is reported as 0.66, which measures the proportion of cor-
rectly predicting positive instances among all instances predicted as positive. The recall
or sensitivity stands at 0.70 indicating that the model was able to identify 70% of all
actual positive instances, demonstrating the models capability to capture relevant data
points. Specificity, representing the proportion of correctly predicted negative instances
among all instances predicted as negative, is noted at 0.51, which suggests a relatively
weaker performance in accurately identifying negative instances. Finally, the F1 score,
which combines precision and recall into a single metric, is computed as 0.68, indicating
a balanced trade-off between precision and recall. This ensemble model exhibits a satis-
factory level of performance, with the notable strengths in recall and precision, but with
room for improvement in specificity.
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Figure 15: Confusion Matrix of Ensemble model (CNN, K-NN, Random forest)

Table 6: Evaluation Metrics of the Ensemble Model

Metric Value
Accuracy 0.62
Precision 0.66
Recall (Sensitivity) 0.70
Specificity 0.51
F1 Score 0.68

5.4 Case Study 4 — 80/20 Train test split (K-NN, CNN, RF)

In case study 4, the K-NN model is used in place of the SVM model. These models were
trained using 80% of the main data. The evaluation metrics for these 3 models are given
below in Table [

Table 7: Mean Evaluation Metrics of Different Models
Model Name Mean Accuracy Mean Precision Mean Recall

CNN 0.681 0.658 0.806
Random Forest 0.600 0.615 0.600
K-NN 0.562 0.572 0.562

These 3 models are given the remaining 20% test data which results in the following
confusion matrix as shown below in Figure [16]

According to the obtained evaluation metrics in Table [§] the ensemble model is able
to provide an accuracy of 0.60, which indicates that approximately 60% of the predic-
tions made by the model were correct. The precision also stands at 60%. The recall
or sensitivity is reported at 0.79, demonstrating the model’s capability to capture about
79% of all actual positive instances, showing a strong ability to detect relevant data
points. However, the specificity of the ensemble model is noted at 0.38, which indicates
a relatively weak performance in accurately identifying negative instances. Finally, the
F1 score, which balances precision and recall, is computed as 0.68, indicating a reason-
able trade-off between these two metrics. Overall, the ensemble model exhibits notable
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Figure 16: Confusion Matrix of Ensemble model (CNN, K-NN, Random forest)

Table 8: Evaluation Metrics of the Ensemble Model

Metric Value
Accuracy 0.60
Precision 0.60
Recall (Sensitivity) 0.79
Specificity 0.38
F1 Score 0.68

strengths in recall, but there is room for improvement in specificity to enhance overall
performance.

5.5 Discussion

After comparing the evaluation metrics of all 4 case studies, it is evident that the en-
semble models each demonstrate strengths and weaknesses across the various performance
metrics. The first 2 ensemble models, employing SVM exhibit similar accuracies of 0.57,
with a precision value of 0.68 and 0.66 respectively. However these 2 models vary not-
ably in terms of recall and specificity. The first model is able to achieve a recall of 0.49
which is higher than the 2nd model’s recall at 0.44. Whereas, the first model is able to
achieve a specificity of 0.68 which is lower compared to the 2nd model’s specificity at 0.73.
In contrast to this, the latter two models utilize K-nearest neighbours instead if SVM,
and showcase a higher performance of accuracy of 0.62 and 0.60 respectively, suggest-
ing that their classification performance is better overall compared to the SVM models.
Furthermore the KNN models are able to demonstrate superior sensitivity(recall) values,
which shows their effectiveness in correctly identifying positive instances (light curve is
an exoplanet), with values of 0.70 and 0.79 respectively.

However it is important to also note that the KNN models exhibited lower specificity
values, which suggests higher rate of false positives when compared to the SVM based
ensemble models. Overall considering the comprehensive evaluation metrics, the KNN-
based ensemble models show promising performance, particularly in terms of accuracy
and sensitivity, making them preferable for applications where correctly identifying pos-
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itive exoplanet instances is crucial.
The case studies were designed in such a way to test the following hypotheses and see
if there are any noticeable differences in the final set of models —

1. Would there be any difference in the models evaluation metric values if the data
was trained with 70% or 80% of the complete dataset.

2. As CNN and Random forest algorithms have been used in experimentations/research
such as this before, would the addition of SVM or K-NN add any improvement in the
final results obtained.

3. Between SVM and K-NN algorithm, which algorithm is better suited for classific-
ation of lightcurves.

To check on these hypotheses, the experiment was divided into 4 test cases and the
final results obtained in each test case was compared.

6 Conclusion and Future Work

There is a lot of potential in improving the effectiveness and accuracy of the models
to detect exoplanets and discern them from false positive light signals. According to
the findings of this research, the ensemble models that utilize Support Vector Machine
(SVM) and K-nearest neighbours, in the search for exoplanets using light curves, reveals
intriguing insights. The SVM based models showcase a consistency in accuracy and
precision, but show varying levels of recall and specificity. On the other hand, the KNN
based models exhibit superior accuracy and sensitivity, indicating their proficiency in
correctly identifying positive instances of exoplanets. However, this advantage comes
with a trade-off as they demonstrate lower specificity, potentially leading to a higher rate
of false positives. Considering the evaluation metrics, the KNN based ensemble models
emerge as the more promising model in scenarios where accurately identifying positive
exoplanet instances is paramount.

Secondly, the models that were trained with 70% of the data showed an overall better
performance than the models trained with 80% of the data. This is true in both cases
of ensemble models where SVM and KNN was used. The only exception is that in KNN
ensemble based models, the models trained with 80% data showed better recall of 0.79
compared to 0.70. Hence the train test split ratio of 70/30 is the better choice when
training models.

Because the data used in this study was from different sources, future work can be
done in applying the same ensemble models for a newer dataset such as the JWST dataset.
Additionally, other models such as pretrained models, and other classification models can
be trained and put together in an ensemble network and its performance and accuracy
can be checked against detecting exoplanets in the light curves of distant stars. The
main stakeholders that would benefit from this research would be researchers from the
Astronomical discipline, space agencies such as NASA or ISRO and other data scientists
with an interest in astronomy.

This research has made use of the NASA Exoplanet Archive, which is operated by
the California Institute of Technology, under contract with the National Aeronautics and
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Space Administration under the Exoplanet Exploration Program.
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