===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Yamuna Sai Penumudi
Student ID: x22174851

School of Computing
National College of Ireland

Supervisor: Abdul Shahid

Student Name:
Student ID:
Programme:
Module:
Lecturer:
Submission Due

Date:

Project Title:

Word Count:

‘-
National College of Ireland \ National
Collegeof

Ireland

MSc Project Submission Sheet
School of Computing

Yamuna Sai Penumudi..........cooooiiiiiii e
X221TA8BS L .o
Master of Science in Data Analytics Year: 2023-24...............
MSC RESEAICH Project. .. . v
Abdul Shahid.o
DI 251 2024 ...

Precision Medicine in Neurology: In-depth Investigation and Revolutionizing Brain
Tumor Detection and Treatment

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature: Yamuna Sai Penumudi

Date: 25-04-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project i
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own m
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Yamuna Sai Penumudi
x22174851

1. Introduction

This manual demonstrates all the instructions on setting up and executing the code for
the code implementation of In depth Investigation and Revolutionizing Brain Tumor
Detection and Treatment. The application is implemented in Python and incorporates
advanced neural network method approaches. The following sections guide through the
necessary requirements configurations and tools.

2. System Specification

The classification recommendation system has been developed on these following hardware
configurations:

Process: Intel i7 generation

Operating System: Windows 11 (Home)
Ram: 16 GB (DDR4)

Stroage Hard Drive: 512GB (SSD)

3. Softwares Used:

The following tools which are required to use and development for brain tumor detection and
classification system:

Anaconda

Tensorflow and Keras

Pandas

Numpy

Matplotlib

Seaborn

Sklearn

Jupyter

s

Installation of the Software:

» First download the anaconda from their official website and then start installing to the
operation system website: https://www.anaconda.com

https://www.anaconda.com/

_ Anaconda3 2023.09-0 (64-bit) Setup — e

Welcome to Anaconda3 2023.09-0
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2023.09-0 (54-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue,

B

(") ANACONDA.

.

L)
L]
L

® Chosen it for (Just Me) and then clicked on Next until the installation get started.

_ Anaconda3 2023.09-0 (64-bit) Setup — e

Select Installation Type

J ANACONDA Please select the type of installation you would like to perform for
Anacondad 2023.09-0 (a4-bit).

Install for:

(®) Just Me {recommended)

() All Uzers {requires admin privileges)

e Creates the new virtual environment for the purpose of the application (Brain Tumor
Detection System)

PS D:\new\assignment lefth\application» virtualenv brain_tumor detection
created virtual environment CPython3.11.4.final.e-64 in 4379ms
creator CPython3kindows(dest=D:\new\assignment_left\application\brain_tumor_detection, clear=False, no_vcs_ignore=False, global-False)
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data dir=C:\Users\rohit\AppData\local\pypaivirtualenv)
added seed packages: pip==24.8, setuptools==69.1.1, wheel==0.42.8
activators BashActivator,Batchactivator, Fishactivator,NushellActivator,PowerShellActivator,PythonActivator
PS D:\new\assignment left\application> I

e Activate the new virtual environment and install the required packages to make the
research get done by necessary packages.

5. Source of Dataset

Gather the MRI Scan images dataset which would be suitable for training for deep learning
based neural networks model. Datasets contains the various types of brain tumor mri scan
images on platforms where but | used the Kaggle to choose the dataset.

6. Code Execution

Open the jupyter notebook to start developing or modifying the. ipynb (Integrated Python
Notebook) for the task from the beginning loading the dataset to evaluating the models.

This notebook is focused on precision medicine in neurclogy, specifically investigating and revolutionizing brain tumor detection and treatment using deep
learning technigues. The goal is to build a model that can accurately classify brain tumor MRI images into different categories, enabling early and accurate
diagnosis of brain tumors.

The notebook will cover the Tollowing key steps:
1. Data Preparation:

« Load and preprocess the brain tumor dataset.
« Perform exploratory data analysis (EDA) to understand the dataset.
2. Model Building:

= Build a deep learning model using the EfficientNetB3 architecture for image classification
« Compile the model with appropriate loss and optimizer.
3. Model Training and Evaluation:

= Train the model on the training dataset.

+ Evaluate the model on the validation and test datasets

« Plot training curves to visualize the training and validation performance.
4. Model Testing:

« Test the trained model on sample images from the test dataset.
= Save the trained model for future use.
5. Prediction:

« |Jse the trained model to predict the class of custom brain tumor MRI images

By the end of this notebook, we aim to develop a robust deep learning model for brain tumor detection, which can potentially contribute to advancing precision
medicine in neurology.

Execution to Run the File:

® Import the required libraries.

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/code

1. Imports the Required Libraries

For Data Processing

import numpy as np

import pandas as pd|

from sklearn.utils import shuffle

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix
from PIL import Image, ImageEnhance

For ML Models

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D , MaxPooling2D , Flatten , Activation , Dense , Dropout , BatchNormalization
from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam , Adamax

from tensorflow.keras import regularizers

For Data Visualization

import cv2

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import plotly.express as px

Miscellaneous
import os

import pathlib
import itertools

® | oad the dataset.

Function to create dataframe from data path

def create dataframe(data_path):
Initialize empty Llists for file paoths and labels
filepaths = []
labels = []

Get list of subdirectories (folds) in daota path
folds = os.listdir(data path)

Iterate over each subdirectory (fold)

for fold in folds:
Construct full path to the current fold
fold path = os.path.join(data path, fold)
Get List of files in the current fold
filelists = os.listdir(fold path)

Iterate over each file in the fold

for file in filelists:
Construct full path to the file
filepaths.append(os.path.join(fold path, file)})
Assign Label based on fold name
labels. append{fold)

Create pandas 5eries for filepaths and labels
filepaths series = pd.Series(filepaths, name='filepaths")
labels series = pd.Series({labels, name='label")

Concatenate filepaths and labels Series into a DataFrame
dataframe = pd.concat([filepaths_series, labels series], axis=1)
return dataframe

Define paths for training and testing data

train_data_path = 'Training®

train_dataset_path = pathlib.Path(train_data path)

train_dataset_contains = os.listdir{train_dataset_path)

print(“Training Dataset Contains: ",*train_dataset_contains,sep="\n\t\t\t"')

test_data_path = 'Testing’

test_dataset_path = pathlib.Path(test_data_path)

test_dataset_contains - os.listdir(test_dataset_path)

print("\nTesting Dataset Contains: ",*test dataset contains,sep="\n\t\t\t')

Training Dataset Contains:
glioma
meningioma
notumor
pituitary
Testing Dataset Contains:
glioma
maningioma
notumor
pituitary

Create DataFrame for training data
train_df = create_dataframe(train_data_path)

Create DataFrame for testing data
test df = create dataframe(test data path)

® Exploratory Data Analysis (EDA)

Number of Images in Each Class of the Train Data

Class
B glioma
B meningioma
B notumor
B pituitary

notumor pituitary meningioma

1600

1400

1200

1000

colnt

800

600

400

200

[=]

Class

Number of Images in Each Class of the Test Data

400 Class
M glioma
350 B meningioma
B notumor
300 B pituitary
250
o
C
3
o 200
150
100
50
0 — - "
notumor meningioma pituitary glioma
Class
) (\
P N/
meningioma
notumor
pituitary

Distribution of Pixel Intensity

s Tumor

300 m=m Non Tumor

250

=]
=]

iy
[%a)
o

Frequency

100

20 40 60 80 100 120 140
Pixel Intensity

® Model Selection which contains the feature selection, splitting of dataset and model
initialization and model training.

4. Splitting and Preprocessing of the Brain Tumor Dataset (Preprocess the MRI images (resizing, normalization, etc.).)

Splitting the datae into validation and test sets
valid, test = train_test_split(test_df, train_size=8.5, shuffle=True, random_state=42)

Image Data Generator setup
img_size = (224, 224)
batch_size = 16

Train Data Generator
tr_gen = ImageDataGenerator()
ts_gen = ImageDataGenerator()

Train Data Generator setup
train_gen = tr_gen.flow_from_dataframe(train_df, x_col="filepaths', y_col="label’, target size=img size,
class_mode="categorical’, color_mode='rgb’, shuffle=True, batch_size=batch_size)

Validation Data Generator setup
valid_gen = ts_gen.flow_from_dataframe(valid, x_col='filepaths', y_col="label’', target_size=img_size,
class_mode="categorical', color_mode='rgb', shuffle=True, batch_size=batch size)

Test Data Generator setup
test_gen = ts_gen.flow_from_dataframe(test, x_col-'filepaths', y_col-"label', target_size-img_size,
class_mode="categorical’, color_mode='rgb', shuffle=False, batch_size=batch_size)

Found 5712 validated image filenames belonging to 4 classes.
Found 635 validated image filenames belonging to 4 classes.
Found 656 validated image filenames belonging to 4 classes.

5. Model Building (EfficientNetB2 model)

EfficientNetB3 is a type of deep learning model that is designed to be very effective at understanding and receognizing images.
It's like a super-smart system that learns from lots of examples to recognize things in pictures. The "B3" part refers to the
specific size or complexity of the model, with larger numbers indicating more complex models that can potentially understand
more detailed features in images. Overall, EfficientNetB3 is known for being efficient in terms of its size and computational
requirements, while still being very good at tasks like image classification.

MRI Input

134x224

Crops brain region

Data Augmentation

TaTxlZH0

Saltvay

Fully Connected layer
TaTaa y :

[ENETE N UV ERTER)

TRuIHNAD
Sausand
1EZel12x16 DE2012a24

EfficientNet Rlock

Build the EfficientNetB3 model
base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top=False, weights="imagenet', input_shape=input_shape, pc

Constructing the full model
model = Sequential([
base_model,
BatchNormalization(axis=-1, momentum=@.29, epsilon=8.861),
Dense (256, kernel_regularizer=regularizers.12(1-8.816),
activity_regularizer=regularizers.11(8.086),
bias_regularizer=regularizers.l1(@.886),
activation="relu'),
Dropout(rate=08.4, seed=75),
Dense(num_class, activation='softmax')

Iy

Compile the model
model. compile(Adamax(learning_rate=8.881), loss='categorical crossentropy', metrics=['accuracy'])

Display the model summary
print({“"Model Summary:")
model. summary ()

4

Model Summary:
Model: "segquential 2"

Layer (type) Output Shape Param #
efficientnetb3 (Functional (Neone, 1538) 18783535
)

batch_normalization_2 (Bat (None, 1538) 6144
chNermalization)

dense_4 (Dense) (MNone, 258) 393472
dropout_2 (Dropout) (MNone, 258)]
dense 5 (Dense) (MNone, 4) 1828

Total params: 11184179 (42.66 MB)
Trainable params: 11093884 (42.32 MB)
Non-trainable params: 98375 (353.83 KB)

6. Model Training and Evaluation

Train the model with transformers
history = model.fit(x= train_gen , epochs = 18, verbose = 1, validation_data= valid_gen,validation_steps = None , shuffle = False
13

Epoch 1/1@

357/357 [] - 11885 3s/step - loss: 5.891% - accuracy: @.8838 - val_loss: 3.9216 - val_accuracy:
8.9511

Epoch 2/1@

357/357 [] - 1847s 3s/step - loss: 2.8326 - accuracy: ©.9684 - val_loss: 1.9157
8.9847

Epoch 3/1@

357/357 [] - 1841s 3s/step - loss: 1.4454 - accuracy: @.9743 - val_loss: 8.9608 - val_accuracy:
68.9%24

Epoch 4/1@

357/357 [] - 1@56s 3s/step - loss: @.744% - accuracy: @.9856 - val_loss: 8.5184
8.9%68

Epoch 5/1@

357/357 [] - 1138s 3s/step - loss: @.4327 - accuracy: @.9879 - val_loss: 8.314@ - val_accuracy:
8.9924

Epoch 6/1@

357/357 [
9893
Epoch 7/1@

357/357 [] - 991s 3s/step - loss: ©.2284 - accuracy: 0.9912 - val_less: @.1796 - val_accuracy: @.
9054

Epoch 8/1@

357/357 [] - 1854s 3s/step - loss: @.1924 - accuracy: ©.9942 - val_loss: 8.2891 - val_accuracy:
8.9878

Epoch 9/1@

357/357 [] - 1847s 3s/step - loss: @.1677 - accuracy: @.8932 - val_loss: 8.1504 - val_accuracy:
08,9883

Epoch 18/18

357/357 [] - 18925 3s/step - loss: @.1546 - accuracy: @.9940 - val_loss: 8.112@ - val_accuracy:
8.9969

val_accuracy:

val_accuracy:

—
'

974s 3s/step - loss: ©.2882 - accuracy: ©.9987 - val_loss: 8.2355 - val_accuracy: @.

® Model Evaluation

Loss (Lower Means Better) Accuracy (Higher Means Better)

B == fraining_loss 1.00

== val loss

s=s==_{raining_accuracy
== val_accuracy

1] 2 4] a a 2 4 & a
Epochs Epochs

Training @.1143 1.68868
Validation B.1264 @.9922
Testing B.1347 @.9922

This below illustration contains the classification report for EfficientNetB3 mode:

Classification Report:

precision recall fl-score support

glioma @.99 @.08 @.99 151
meningioma e.c8 1.88 g.99 164
notumor 1.88 1.88 1.8a 132
pituitary 1.8a a.99 8.99 1449
accuracy 8.99 656
macro avg @.99 .99 @.99 656
weighted avg g.c29 a.c%9 g.99 B56

Confusion matrix after evaluation the model prediction

175
Confusion Matrix
0] 0 150

125
0
100
notumaor 0
75
50
- | | ﬂl

& o@tb

e b e,
$ ‘9{\@9 ,:pk"' §
>

glioma

meningioma

True labels

Predicted labels

10

® Model Testing: After the model training and evaluation, there the step comes to test the
model through the random detection of brain tumor through the MRI scans.

7. Model Testing

1 | # Plot actual vs predicted images
def plot_predictions(model, test_gen, num_images=18):

class_names = list(test_gen.class_indices.keys())

images, labels = next(test_gen)

predictions = model.predict(images)

plt.figure(figsize=(15, 15))

for i in range(num_images)
plt.subplot(5, 5, i + 1)
Normalize the image before plotting
image = images[i] / 255
plt.imshow(image)
plt.axis('off")
actual_label = class_names[np.argmax(labels[i])]
predicted_label = class_names[np.argmax(predictions[i])]
color = 'green' if actual_label == predicted_label else 'red’
plt.title(f'Actual: {actual_ label}\nPredicted: {predicted_label}', color-color)

plt.tight_layout()

plt.show()

Plot actual vs predicted images
plot_predictions(model, test_gen)

Actual: pituitary Actual: pituitary Actual: glioma Actual: meningioma

Actual: meningioma
Predicted: pituitary Predicted: pituitary Predicted: glioma

Predicted: meningioma Predicted: meningioma

Actual: notumor Actual: glioma Actual: pituitary Actual: notumor Actual: meningioma
Predicted: notumor Predicted: glioma Predicted: pituitary Predicted: notumor Predicted: meningioma

® Saving the Trained Model to use this for the further deployment or for customization
brain tumor detection.

Save the trained model
model.save("brain_tumor_model.h5")

Python

Load the saved model
loaded model = tf.keras.models.load model("brain_tumor_model.h5™)

Python

This configuration manual provides as a comprehensive exploration for configuring the
installation the required softwares or tools to implementation of the code for understanding
the brain tumor detection system using deep learning based CNN model of EfficientNetB3 on
the Brain Tumors MRI scan images dataset.

11

References

Anaconda: https://docs.anaconda.com/free/anaconda/install/windows/
Kaggle Dataset Source: https://www.kaggle.com/

12

