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Abstract 

 

Practical challenge within a biopharmaceutical organization is addressed in this research that 

specializes in manufacturing a product, crucial for treating life-threatening diseases. The research 

draws data from their research laboratory and aims to predict cell growth in bioreactors by 

leveraging information from both the bioreactors and Raman spectroscopy. Unlike many existing 

studies that solely rely on data from bioreactors or Raman spectroscopy, our approach involves 

combining datasets. This comprehensive dataset will offer the organization a real-time overview 

and enhanced understanding of bioreactor process parameters. Traditional model such as partial 

linear regression (PLS) is built using SIMCA (Soft independent modelling by class analogy) 

software as part of this research. RMSEE and RMSECV performance indicators are used to 

evaluate the performance of the models to predict the cell growth. Predicting cell growth will 

contribute to achieving a batch on the initial attempt, thereby reducing production costs, 

maintaining supply chain demand, minimizing waste, decreasing labour hours, and lowering utility 

expenses.  

 

1 Introduction 
 

Bioreactors play a crucial role in influencing cell growth, differentiation and tissue creation by 

suppling nutrients and biomimetic stimuli under regulated conditions. The main advantage of 

bioreactors lies in their capability to cultivate a significant quantity of cells over an extended 

duration within a consistent environment. Cells that have undergone cultivation are employed 

in the production of biologics, including vaccines, therapeutic proteins, antibodies, and cell 

therapy products. This process has been extensively applied to enhance the proliferation of 

various cell types such as mesenchymal stem cells, induced pluripotent stem cells, CAR T 

cells, and red blood cells. (Stephenson and Grayson, 2018).  In the realm of cell therapy, the 

substitution of impaired cells with fresh, healthy cells occurs, aiming to regulate the function 

of the patient's cells either by influencing gene expression, direct interaction, or eliminating 

disease-causing or malfunctioning cells employing immune cells. (AstraZeneca, 2023).  In 

2018, the combined revenue from the top five best-selling recombinant proteins exceeded 

US$48 billion. The compound annual growth rate (CAGR) for antibody revenue experienced 

a remarkable 20% surge from 2004 to 2014, although sustaining such growth rates becomes 

challenging as the overall market size expands, as reported by BioProcess International (2023).  

 

Cultivating cells in a manufacturing setting is a time-consuming and costly process, extending 

over weeks or months. Given the high cost associated with cell growth, treatments utilizing 
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these cells become prohibitively expensive for many patients. To enhance accessibility for a 

larger patient population, it is crucial to reduce the overall cost of treatments.  

 

This study aims to forecast cell growth. The significance of bioreactor control has increased 

due to challenges in managing the behaviour of living cells within cell culture systems. 

Employing predictive models offers the advantage of a data-driven approach, expediting the 

process development (International BioPharma, 2022). This will enable organizations to 

anticipate any outlier during batch runs and decide on corrective actions quickly in the event 

of failure. Ensuring the accuracy of the batch from the outset will result in lower production 

costs, sustained supply chain demand, waste reduction, decreased labour hours, and reduced 

utility expenses. This will in turn lead to a reduction in product prices, benefiting both the 

organization and the patients by ensuring more affordable treatment options. Furthermore, the 

model will enable the organization to monitor batches in real-time using SIMCA. Any 

deviation in process parameters will trigger real-time alarms or warnings, providing the 

laboratory with timely information to intervene. 

 

The objective is to predict cell growth within the bioreactor, utilizing data from both the 

bioreactor and Raman spectroscopy. While previous research has often relied on either Raman 

spectroscopy or bioreactor data alone, this study integrates parameters from both sources. 

These parameters include the bioreactor's temperature, temperature setpoint, pO2 value, pO2 

setpoint, pH setpoint, and pH value of the media in the bioreactor. A comprehensive list of all 

parameters is provided in the Appendix. The Raman spectroscopy method measures the 

dependent variable, viable cell density (VCD). The organization follows specific rules for 

assessing cell growth determined by the measured VCD values. A conventional model using 

partial least squares regression is developed based on insights from the literature review. 

Performance indicators, namely RMSEE and RMSEECV, will be employed to assess the 

models' effectiveness in predicting cell growth. 

 

 

2 Related Work 
 

2.1 Understanding of cell growth 

 

Anane, Knudsen and Wilson (2021) present a well-structured study on the impact of dissolved 

oxygen (dO2) gradients on CHO cell cultures in a multi-compartment scale-down simulator. 

The inclusion of a plug-flow reactor (PFR) is notable, as it addresses the fragility of mammalian 

cells, which has limited the application of such simulators in mammalian cell cultivation 

processes. The findings indicate a clear switch in CHO cell metabolism in response to dO2 

gradients beyond a residence time threshold of 90s in the PFR. The study observes an 

accumulation of lactate and a decline in viable cell density, impacting the product quality. 

Interestingly, recombinant protein productivity remains unaffected, emphasizing the 

complexity of cellular responses in such environments. Clarity on the relevance of the study in 
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the broader context of bioprocess development and its potential impact on industrial 

applications could be highlighted in the conclusion.  

 

Carpio (2020) highlights the evolution of mammalian cell culture scale-up over the past decade 

and the challenges associated with it. The focus is on the significant advancements in process 

development, particularly the shift from microplates and shake flasks to high-throughput 

automated micro bioreactors and mini bioreactors. These innovations have not only accelerated 

the selection of optimal clones but also doubled average product titers. The importance of 

scaling tools and analytical methods for seamless scale-up is discussed, offering potential 

solutions to improve efficiency and reduce costs. 

 

Using Raman spectral characteristics and a machine-learning model, Yamamoto et al. (2023) 

describe a unique method for predicting the growth/no growth response of unknown bacteria. 

21 strains are isolated from seven fresh-cut vegetables in the study, and each strain's Raman 

spectra and growth/no growth responses are recorded. With 90% accuracy, the created artificial 

neural network (ANN) model forecasts the growth/no growth of 21 unidentified 

microorganisms. This research emphasises the potential of Raman spectroscopy and machine 

learning for the identification of unknown bacterial growth. 

 

Aryani et al. (2015) investigates the impact of strain variability on microbial growth kinetics 

using twenty Listeria monocytogenes strains. The maximum specific growth rate was assessed 

in relation to pH, water activity concentration [NaCl], undissociated lactic acid concentration 

([HA]), and temperature (T). The study employs secondary growth models to estimate cardinal 

growth parameters for pH, [NaCl], [HA], and T. The results emphasize the importance of 

understanding strain variability for realistic predictions of microbial growth kinetics in food 

products. Barbosa et al. (1994) shed information on temperature-dependent differences in 

different serotypes of Listeria, which provides important insights into the growth pattern 

associated with these strains. The results are essential for comprehending how Listeria behaves 

under food processing and storage circumstances. 

 

Coroller, et al. (2012) The model integrates growth, growth/no-growth boundaries, and 

inactivation phases, considering factors like temperature, pH, water activity, lactic acid, and 

sorbic acid. Data from diverse sources were utilized for model development and validation. 

The proposed model demonstrates high accuracy (62%-87% correct predictions) and low 

median errors (<0.34 log10(CFU/mL)). 

 

Dengremont and Membré (1995) employ a predictive microbiological approach to quantify 

Staphylococcus aureus growth in food, considering factors like temperature, pH, and NaCl 

concentration. The linear and nonlinear models are compared. The nonlinear model, addressing 

the complex interactions, outperforms the linear one, offering better fitness and parameter 

interpretability. This paper is well-structured, methodologically sound, and makes a significant 

contribution to predictive microbiology. 
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2.2 A critical survey of techniques in predicting cell growth 

 

Wold, Sjöstróm and Eriksson (2001) provide a comprehensive review of Partial Least 

Squares Regression (PLSR) as a widely used multivariate analysis tool in chemistry and 

technology. PLSR, a two-block predictive PLS model, facilitates the relationship modelling 

between two data matrices, X and Y, handling collinear, noisy, and incomplete variables. It is 

discussed in this paper that underlying model, assumptions, and diagnostics, emphasizing 

PLSR's ability to improve precision with an increasing number of relevant variables and 

observations. 

 

Tulsyan, Garvin and Ündey (2018) propose a novel solution using machine-learning methods 

to generate in silico batches, mitigating the need for historical data. The approach combines 

hardware exploitation and algorithm development, demonstrating efficacy through case 

studies. In contrast to traditional multivariate monitoring, the proposed method detects weak 

signals in real-time, reducing the risk of overlooking critical process deviations using SIMCA 

software. 

 

Gibbons et al. (2021) explore Process Analytical Technology (PAT) tools, specifically Raman 

spectroscopy and chemometric modelling, the research develops Partial Least Squares (PLS) 

regression models for real-time monitoring of glycation and glycosylation profiles. While 

effective at a small scale, challenges arise at manufacturing scale, indicating the importance of 

scale considerations in model development. To enhance model robustness, the study 

incorporates manufacturing scale data, significantly improving predictions, particularly for 

glycosylation. 

 

Banner et al. (2021) conducted a review spanning the decade from 2010 to 2020 to assess the 

application of data analytics in the biopharmaceutical industry. Their findings highlighted a 

prevailing trend toward the utilization of machine learning algorithms within this sector. 

It highlights a shift from traditional multivariate data analysis to a broader use of machine 

learning (ML) algorithms, driven by advancements in bioreactor technologies and the adoption 

of process analytical technology. The study reviews prominent algorithms, such as partial least 

squares (PLS) and neural networks (NN), applied to diverse datasets. The analysis emphasizes 

the prevalent use of PLS, especially in PAT applications, and anticipates continued integration 

of ML for improved process understanding and optimization in biomanufacturing. Alavijeh et 

al. (2022) explores the evolving landscape of bioreactor scale-up in the pharmaceutical 

industry, emphasizing the shift from traditional, rule-of-thumb methods to digital strategies. 

Focusing on the challenges of scaling biological processes, the paper discusses the limitations 

of existing approaches and delves into the potential of digital tools, including knowledge-

driven and data-driven techniques. 

 

Rafieyan et al. (2023) explore predicting cell behaviour on cardiac tissue engineering (CTE) 

using machine learning (ML). A novel software, MLATE, was developed to predict cell 

behaviour on CTE scaffolds based on materials, cell lines, and fabrication methods. ML models 
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demonstrated substantial predictive power, with ensemble techniques achieving 93% accuracy. 

MLATE's efficiency and short prediction run times further enhance its utility. 

  

Rashedi et al. (2022) addresses the challenges that arise in biopharmaceutical process control 

by proposing a Model Predictive Controller (MPC) based on a linear machine learning model. 

The bioprocess aims to maximize cell growth and metabolite production and faces complexities 

such as limited measurements and process variations. The linear MPC is developed using a 

hybrid model combining machine learning and glucose mass balance equations, demonstrated 

a 2% improvement in final protein production compared to traditional methods. 

 

A comparative assessment of various techniques for predicting cell growth in bioreactors was 

conducted, examining methods employed in related studies. Traditional approaches, like 

regression models, were initially employed, but due to their limitations surrounding diverse 

cell type datasets, a global model was subsequently developed using deep learning models. 

Notably, some studies either focused solely on bioreactors or on the Raman system leading to 

suboptimal model performance. This highlights the need to incorporate both systems 

(Bioreactor and Raman) to ensure accurate cell growth (VCD) prediction. SIMCA tool is used 

to build the model and predict the cell growth (VCD). PLS algorithm is used and the 

performance of these models was assessed using common metrics such as RMSEE and 

RMSEECV. 

 

 

3 Research Methodology 
 

The section research methodology is a systematic and structured approach used in the 

experiment of cell growth in bioreactor using Raman spectroscopy. SIMCA software is used 

to make the model to generate precise and accurate results as the tool is used in the organisation 

to build the models.  

 

3.1 Ethical Concerns 

 

The chosen dataset is taken from organisation laboratory and does not include any 

personally identifiable information related to individuals. Also, the dataset does not include 

information about race, religion, and sexual orientation. The dataset only includes data about 

the equipment therefore GDPR does not apply. 

 

3.2 Data Collection 

 

Company data is used in this study. The data is generated in the lab from bioreactors which 

is controlled by DCU (digital control unit). DCU is connected with Modular Fermentation and 

Culture System (MFCS) which analyse/process the bioreactor data, enable trending and 
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provide recipe creation which is widely used in the lab. MFCS is connected to site historian/PI 

(Process Intelligence) server to store and provide data to different systems. MFCS sits on the 

lab network and PI system sits on enterprise network and these are segregated by firewall. PI 

system makes bioreactor data available on enterprise network, which is used by SIMCA online. 

SIMCA online collects the batch data of bioreactor’s parameters and make the data available 

to SIMCA client which sits in the lab. 

 

Additionally, Raman spectroscopy is a standalone equipment in the lab, the probes of the 

Raman are directly connected with bioreactor to measure the VCD. For each batch, VCD is 

measured at a regular interval. The VCD data is exported as comma-separated values (CSV) 

file from Raman system and imported to SIMCA in the lab.  

 

The system architecture of all the systems stated above is shown below. It represents the 

way equipment are connected with each other in the lab and with organisation enterprise 

network, where the data is being generated and how the data is being transferred to different 

systems. 

 

Figure 1: System Architecture 

 

Typically, the data are measured throughout time at regular intervals, such as once a day, 

once an hour, or once a minute. For a number of variables, these intervals frequently vary. 

3.2.1 Biostat B-DCU Bioreactor and MFCS 

 

The Biostat B-DCU (Digital Control Unit) is a specialized bioreactor tailored to meet the needs 

of process optimization and characterization in the biotech and biopharmaceutical sector. With 



7 
 

 

advanced functionality and an unparalleled range of options for cell culture and microbial 

processes, it serves as the optimal scale-down model for large-scale processes Sartorious 

(2023a). 

 

 

Figure 2: Bioreactors with DCU tower & MFCS graphical user interface Sartorious (2023a) 

Sartorious (2023b) 

 

MFCS introduces a new standard in bioprocess data management and automation. With 

dependable data acquisition, effective trend monitoring, and advanced recipe control, it proves 

to be an ideal tool for both upstream and downstream processes, regardless of whether single-

use or reusable systems are favored. In R&D environments, MFCS stands as the solution for 

establishing robust and reproducible processes Sartorious (2023b). 

3.2.2 Raman Rxn2 analyzer 

Effectively leverage the capabilities of Raman spectroscopy with the Raman Rxn2 analyser. 

Tailored for use in analytical laboratories with model transfer functionalities, the Raman Rxn2 

is a trusted tool for routine sample identification, R&D project support, early process 

development, and in situ analysis during scale-up processes. Whether in a benchtop 

configuration or on a mobile wheeled cart, the Raman Rxn2 offers flexibility and portability in 

process development laboratories. The convenience of a single base unit that accommodates 

up to four probes, coupled with an intuitive embedded control software accessible via 

touchscreen or remote interface, ensures reliable real-time in situ measurements Endress + 

Hauser (2023). The analyser’s sequential operation enables swift analysis per channel, and 

programmable channel interrogation transforms acquired Raman spectra into valuable process 

knowledge through integrated multivariate predictors. The Raman Rxn2 is particularly well-

suited for applications in bioprocess monitoring and control, cell culture, fermentation, and 

downstream operations Endress + Hauser (2022). 
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Figure 3: Raman spectroscopy – RXn2 Analyzer Endress + Hauser (2022) Endress + Hauser 

(2023) 

3.2.3 Aveva PI 

 

AVEVA (2023) PI (Process Intelligence) System, formerly known as OSIsoft PI System, 

stands out as a leading data management solution designed specifically to address the 

challenges prevalent in industrial environments. This innovative system enables the collection 

and storage of data from diverse locations and sources, extracting valuable insights rapidly to 

optimize business processes—all within a flexible, no-code environment. Offering deeper 

operational insights, swift analysis of crucial data, and enhanced visibility of remote assets and 

IIoT (Industrial Internet of Things) sensors, AVEVA PI System contributes to more efficient 

and sustainable operations. 

It excels in collecting real-time data from various assets, including legacy, proprietary, remote, 

mobile, and IIoT devices. AVEVA PI System seamlessly connects organizations to their data, 

irrespective of location or format, and has the capacity to store decades' worth of data with sub-

second granularity. 

 

 

 

Figure 4: PI system flow and architecture AVEVA (2023) 

3.2.4 SIMCA 
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 SIMCA (2022) facilitates real-time multivariate process monitoring and control by leveraging 

SIMCA models and data sourced from systems like process historians. SIMCA is a versatile 

software designed for comprehensive multivariate data analysis, capable of handling any data 

that can be converted into numerical form. Executed on a desktop computer, SIMCA conducts 

data analysis using models stored in SIMCA project files (.usp files). 

 

 

Figure 5: SIMCA architecture SIMCA (2022) 

 

3.2.5 Process Parameters 

 

See Appendix for list of parameters. 

3.3 Data processing 

 

In this research, comprehensive data processing was performed using SIMCA software to 

prepare the data to build the PLS model. There are 26 batches used to build the model, each 

batch has 36 process parameters which are generated from bioreactors and imported to SIMCA. 

The process of producing several identical products all at once is known as batch production. 

Every batch passes through each stage of the manufacturing process in tandem with the others. 

For each batch, the value of each parameter is observed every 3 minutes. Since the batches 

were produced during different dates and months, SIMCA created a new parameter called 

‘Time days’, which represents the stage of the batch in a day e.g., 1st day, 4th day, etc, rather 

than on a specific time or day, so all the batches can be compared as time days. SIMCA did 

this in order to process the data and build the model. The below figure shows the “Time days” 

parameter for each batch.  Each colour on the trend represents batch, whereas the x axis 

represents primary id (for each timestamp there is a unique primary id) and the y axis shows 

the number of days the batch ran for.  
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Figure 6: Time days parameter representing each batch’s timeline 

 

Further on, highly corelated parameters such as SUBS A ST PT%, SUBS B ST PT%, 

BASESUB st pt_value difference, SUBSA st pt_value difference and SUBSB st pt_value 

difference are removed from this research. 

Additionally, out of spec data (Outliers) were removed from each parameter (if any) in 

consultation with lab scientist so that the correct value to be fed to model. All the null values 

are auto fill by SIMCA software.  

 

The below figure shows the trend for AIRSP Value parameter, each colour represents the 

value of parameter for each batch. As part of the data cleaning, values greater than 1.2 and less 

than 0.8 were removed as these were the out of spec values. This is one of the examples of 

removing out of spec values from parameters. 

 

 

Figure 7: AIRSP Value for each batch 
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Below figure shows the pH value for each batch. On the left-hand side, all the batches are 

listed with a colour code, the graph shows the pH value for those batches. X axis shows the 

“Time days” parameter and Y axis shows the pH value. 

 

 
 

Figure 8: pH value for each batch 

 

 

Similarly let’s have a look at the JTEMP Value parameters for each batch in below figure. 

 

 

 

 
 

Figure 9: JTEMP value for each batch 

 

 

4 Design Specification 
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Figure. 10 illustrates the architecture for design specification utilized in the study and 

demonstrates the processes carried out in this research from the beginning to the execution. 

Company data is used to conduct this research. Bioreactor data and data from Raman 

spectroscopy are used and imported to SIMCA software. SIMCA software is used to build the 

model.   

 

SIMCA automatically create the ‘Time Days’ parameter once data is imported to calculate 

batch data in time days so that parameters can be trended and analysed with respect to time in 

dates irrespective of the date of the batch. SIMCA software is smart enough to take care of null 

values. Once trends were ready, out of specification data was removed from the parameters for 

each batch, additionally highly correlated parameters are removed from model building. 

 

 

 

 
 

Figure 10: Design specification architecture 

 

To create a model that can predict cell growth, a partial least squares regression model is built. 

 

Partial least squares (PLS) regression is a technique that reduces the predictors to a smaller set 

of uncorrelated components and performs least squares regression on these components, 

instead of on the original data. When there are more predictors than data or when predictors 

are very collinear, PLS regression can be very helpful because, typically least-squares 

regression either yields coefficients with large standard errors or fails entirely. Unlike multiple 

regression, PLS does not presume that the predictors are fixed. As a result, PLS is more resilient 

to measurement uncertainty since the predictors can be measured with inaccuracy. 

Additionally, Partial Least Squares has the ability to model several outcome variables, which 

is a significant advantage. Multiple outcome variables are not something that many machine 

learning and statistics models can handle directly. 

 

The VIP (Variable Importance for the projection) plot summarizes the importance of the 

variable both to explain X axis and to correlate to Y axis. Three different models are evaluated 

based on VIP value. The models are evaluated on the basis of root mean square error of 

estimation (RMSEE) and root mean square error of cross validation (RMSECV) value of the 

models.  
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RMSEE is computed as √(∑(Yobs-Ypred)2/(N-1-A)), where Yobs refers to the observations 

which are imported to the model and Ypred refers to the prediction value of dependent variable 

(VCD). RMSEE measures the fit of the model.  

 

RMSEcv – An alternative predictivity measure for the model is available through summarizing 

the cross-validation residuals of the observations in the dataset. The predictivity measure 

obtained is called RMSECV. 

 

 

5 Implementation 
 

The methods used to complete the assignment for the study are briefly discussed in this 

section. 

 

5.1 Experimental Setup 

 

Organisation’s infrastructure is used to carry out this study. SIMCA workstation in the lab 

is used to configure the task. The lab workstation with the hardware configuration of 64-bit 

Windows 10 OS, Intel(R) Core (TM) i5-10500 CPU @ 3.10GHz Processor and 32GB of RAM 

are used. The model training is done on the local workstation using SIMCA software. 

 

5.2 Implementation of batch level model 

 

Batch level models use information from the process data collected during data pre-

processing. It is combined with batch conditions like offline data from Raman spectroscopy. 

In the batch level, PLS is used to create overview of batch similarities to make predictive 

models for final batch quality attributes. The objective of batch level modelling is to make a 

model of all the batches in order to understand how VCD is influenced by the combination of 

batch conditions and batch evolution. This model will be based on the batch conditions, the 

evolution trace matrix and when applicable the properties and quality of the complete batch. 

 

While building the model, all the processed data is converted to batch level. Further on, the 

process data is combined with offline data from Raman spectroscopy which has VCD value 

for each batch. All parameters from each batch are included in the batch level model. 25 out of 

26 batches are used as train data, one remaining batch is used as test data. When batch level 

model is created, SIMCA automatically converts and rearrange processed data to a batch level 

prediction set.  SIMCA generated 32307 variables/parameters out of processed data.  

 

The VIP (Variable Importance for the Projection) plot summarises the importance of the 

variables both to explain x (all variables) and to correlate to Y (VCD value from Raman 

spectroscopy). The VIP values are calculated for each xk by summing the squares of the PLS 
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loading weights, wak, weighted by the amount of sum squares explained in each model 

component. The sum of squares of all VIP’s is equal to the number of terms in the model, hence 

the average VIP is 1. 

 

5.3 PLS Model based on all VIP value 

 

The X axis of VIP plot shows more than 32000 variables, it is not possible to show the names 

of all the variables due to space constraints. 

 

 

Figure 11: VIP plot 

 

Summary of fit plot – For each model components in a PLS model, plot displays 2 bars, R2 

(Green bar) which is the percent of variation of the training set. R2 is a measure fit, means how 

well the model fits the data. R2 close to 1 is considered as a good model. However, if training 

data is noisy, we can have large R2 value for a model and model can be a poor model. 

Q2 (Blue bar) is the percent of variation of the training set, predicted by the model according 

to cross validation. Q2 indicate how well the model predicts new data, a large Q2 (Q2>0.5) 

indicates good predictivity. We have used two first fit for our models. 

Figure 12 shows the summary of fit for model including all VIP value. R2Y cumulative is 

0.962 and Q2 cumulative is 0.199. This means the model including all VIP values is a good fit 

model as it is close to 1. However, Q2 is way below 0.5 therefore the model does not have very 

good predictivity.  
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Figure 12: Summary of fit plot – all VIP value 

 

5.4 PLS model including VIP above 1 

 

The second model we built using VIP value above 1, that means VIP below 1 were excluded 

to build the model. Once done, there were 9000 variables left as these variables were above 

VIP 1.  

 

 

Figure 13: VIP plot – VIP above 1 

Figure 14 shows the summary of fit for model including VIP value above 1. R2Y cumulative 

is 0.963 which is nearly same as first model and Q2 cumulative is 0.614, far more than first 

model and greater than the ideal value of 0.5. 
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Figure 14: Summary of fit plot – VIP above 1 

 

 

5.5 PLS model including VIP above 0.5 

 

The third model we built using VIP value above 0.5, that means variables which have VIP 

below 0.5 were excluded to build the model. There were more than 16000 variables left as 

these variables were above VIP 0.5.  

 

 

 

Figure 15: VIP plot – VIP above 0.5 

 

Figure 16 shows the summary of fit for model including VIP value above 1. R2Y cumulative 

is 0.968 which is nearly same as first and second model and Q2 cumulative is 0.457, far more 

than first model and less than second model and nearby the ideal value of 0.5. 
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Figure 16: Summary of fit plot – VIP above 0.5 

 

6 Evaluation 
 

To evaluate the model, PLS model was used for all three experiments. We have shown below 

the observed and predicted value of VCD for each batch. Observed value (Y axis) are the one 

which was imported from Raman spectroscopy and model predicted (X axis) the VCD. With a 

good model all the points will fall close to the 45-degree line. The RMSEE in the footer indicate 

the fit of the observations to the model. The RMSECV is the analogous measure but estimated 

using the cross-validation procedure which represents the predictivity of the model. 

 

6.1 Experiment 1 – PLS model VCD prediction based on all VIP value 

 

Figure 17 shows the observed vs predicted plot for all VIP value. The RMSECV value is 

0.171071 and RMSECV value of model is 1.19239. 
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Figure 17: Observed vs predicted plot – all VIP model 

6.2 Experiment 2 – PLS model VCD prediction including VIP above 1 

 

Figure 18 shows the observed vs predicted plot for all VIP value. The RMSECV value is 

0.169278 and RMSECV value of model is 1.25747. 

 

 

Figure 18: Observed vs predicted plot –VIP above 1 model 

6.3 Experiment 3 – PLS model VCD prediction including VIP above 0.5 

Figure 19 shows the observed vs predicted plot for all VIP value. The RMSECV value is 

0.156985 and RMSECV value of model is 1.20109. 

 

 

 

Figure 19: Observed vs predicted plot –VIP above 0.5 model 

6.4 Discussion 

 

There were a few challenges faced during the execution of this research. Batch data is 

transferred from MFCS system to PI system. Scientists in the lab give a unique batch number 

to each batch on MFCS when they start a new batch, and the process parameters are being 

logged into PI system so that data can be made available for different systems. When data was 
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first imported, the model was built using that initial data and then the model was reviewed with 

a lab scientist; it was found that the batch duration was not matching for several batches as 

those batches were run for longer days than the data was showing from PI system to SIMCA. 

We carried out an investigation and crossed checked the data between MFCS (Source) and PI 

and data matched between these two systems. Then, the data was compared between PI system 

and SIMCA and there were discrepancies for batch duration. After further investigation, it was 

found that the trigger set in SIMCA which act as batch finish signal was set up at the higher 

temperature. SIMCA does not have a direct connection with MFCS (Source system) and the 

only way SIMCA understand if the batch is finished is by setting temperature value for a 

duration, if batches temperature goes below that for that duration it is considered as batch is 

finished. The value of temperature was set higher and even without batch was finished, SIMCA 

interpreted that batch finished and stopped further recording the batch. This was corrected and 

SIMCA received full range batch data and research needed to be done again; as a result we lost 

a lot of time in identifying, investigating, and resolving the issue. Finally, when the issue was 

resolved, we were able to build the model and continue this research. 

 

The aim of this research was to predict cell growth in the bioreactor. The selected approach 

was the PLS model using SIMCA software. Three experiments have been conducted and 

evaluated based on the model’s VIP value.  

 

Table 2 shows the results from three models. There is no big difference among the three models 

in the RMSEE value which represents that all three models are good fit. Similarly, the RMSEE 

cross validation value for three models are close enough which represents the predictivity of 

all three models. However, to choose best model, “PLS model with VIP above 0.5” is the best 

fit model and “PLS model with all VIP” has the best predictivity among three models. 

 

Table 1:  Evaluation summary 

 RMSEE RMSECV 

PLS model with all VIP 0.171071 1.19239 

PLS model with VIP above 1 0.169278 1.25747 

PLS model with VIP above 0.5 0.156985 1.20109 

 

 

Further on, we predicted the test model based on one batch data where VCD value was 9.09 

and model predicted 11.88. 

 

 

7 Conclusion and Future Work 
 

This research investigated the cell growth in bioreactor at a research and investigation 

laboratory in a Biotechnology organisation. The research question revolves around cell 

prediction by predicting VCD using Raman spectroscopy.  The research successfully addressed 

the understanding of hierarchical effective representations, building of experimental setups 
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using SIMCA, evaluation and result. The study clearly indicates the impact of Raman 

spectroscopy in predicting cell growth in bioreactors using SIMCA. Our models have shown 

promising results predicting VCD however result can be improved. The result has proven that 

“PLS model with VIP above 0.5” is the best fit model and “PLS model with all VIP” has the 

best predictivity amongst the three models. However, all three models have marginally 

differences between their results; this can be improved by including more batches to the 

research. The model built with SIMCA, creates real time notifications for the lab’s attention if 

the process parameter deviates from the operational range for scientist’s intervention. This 

model will help organisations, first to predict the cell growth and second give organisations a 

real time warning in the event the process deviates from standard parameters. 

 

There was a batch limitation of only 26 batches for this research but in future, ample number 

of batches should be included in this research to have better models and better results. 

Additionally, only one batch could be included for training the model as there was a smaller 

number of batches to build the model. In future, more batches can be used as training models 

to get a precise result. SIMCA software was used to predict the model as a requirement from 

organisation and PLS method was used, moreover other machine learning techniques can be 

used to predict the model and deep learning techniques such as ANN and LSTM can be used 

to predict the cell growth. 
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Appendix 
 

Below are the process parameters used in the research.  

 

Table 2:  Process variables/parameters 

 

Parameter Name Description 

Batch Batch ID 

Observation Date and time observed for each parameter value 

AIRSP Value ccm Air Sparge value 

AIRSP ST PT ccm Air Sparge set point 

BASESUB ST PT % Base pump set point 

BASESUB Value % Indicator of base pump activation from Sartorius MFCS 

BASET Value ml 
Totalizer value indicative of total base additions from Sartorius      

MFCS 

CO2SP Value ccm Value for CO2 gas flow from Sartorius MFCS 

CO2SP ST PT ccm Set point for CO2 gas flow from Sartorius MFCS 

JTEMP Value °C Value for bioreactor jacket temperature 

JTEMP ST PT °C Set point for bioreactor jacket temperature 

O2SP Value ccm Value for bioreactor O2 gas flow 

O2SP ST PT ccm Set point for bioreactor O2 gas flow 

pH st pt Set point for bioreactor pH 

pH Value Value for bioreactor pH 

pO2 ST PT % sat Set point for bioreactor pO2 

pO2 Value % sat Bioreactor pO2 value 

STIRR Value rpm Bioreactor agitator value 

STIRR ST PT rpm Bioreactor agitator set point 

SUBS A ST PT % Pump A set point 

SUBS A Value % Pump A value 

SUBS B ST PT % Pump B set point 

SUBS B Value % Pump B value 

TEMP ST PT °C Bioreactor temperature set point 

TEMP Value °C Temperature value inside bioreactor 

Time days Time in days (Parameter created in SIMCA to represent time in days) 

AIPSP st pt_value 

difference 
Difference between set point and value for air sparger 

BASESUB st pt_value 

difference 
Difference between set point and value for base pump % 

CO2SP st pt_value 

difference 
Difference between set point and value for CO2 

JTEMP st pt_value 

difference 
Difference between set point and value for jacket temperature 

O2SP st pt_value 

difference 
Difference between set point and value for inlineO2 

pH st pt_value difference Difference between set point and value for inline pH 
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pO2 st pt_value difference Difference between set point and value for inline pO2 

STIRR st pt_value 

difference 
Difference between set point and value for bioreactor agitation 

SUBSA st pt_value 

difference 
Difference between set point and value for pump A 

SUBSB st pt_value 

difference 
Difference between set point and value for pump B 

TEMP st pt_value 

difference 
Difference between set point and value for inline temperature 

VCD Viable Cell Density - Cell concentration measured by Raman 

 

 

Table 3:  Batch IDs 

 

Batch ID 

1013.20230215_5079460-0002_Qual Run 1_KCDM 

1014.20230215_5079460-0002_Qual Run 1_KCDM 

1015.20230215_5079460-0002_Qual Run 1_KCDM 

1016.20230215_5079460-0002_Qual Run 1_KCDM 

1017.20230215_5079460-0002_Qual Run 1_KCDM 

1018.20230215_5079460-0002_Qual Run 1_KCDM 

1019.20230215_5079460-0002_Qual Run 1_KCDM 

1020.20230215_5079460-0002_Qual Run 1_KCDM 

1024.20230215_5079460-0002_Qual Run 1_KCDM 

1013.20230315_5081143-0002_QualRun2_KCDM 

1014.20230315_5081143-0002_QualRun2_KCDM 

1015.20230315_5081143-0002_QualRun2_KCDM 

1016.20230315_5081143-0002_QualRun2_KCDM 

1013.20230419_5083369-0002_QualRun3_KCDM 

1014.20230419_5083369-0002_QualRun3_KCDM 

1015.20230419_5083369-0002_QualRun3_KCDM 

1016.20230419_5083369-0002_QualRun3_KCDM 

1014.20230518_5085672_0001_Sat_SubCu_KCDM 

1015.20230518_5085672_0001_Sat_SubCu_KCDM 

1017.20230601_5086805-0001_Sat_IV_ENG_KCDM 

1018.20230601_5086805-0001_Sat_IV_ENG_KCDM 

1019.20230601_5086805-0001_Sat_IV_ENG_KCDM 

1023.20230601_5086805-0001_Sat_IV_ENG_KCDM 

1017.20221003_Sat_SDIV_5074843-0001 

1018.20221003_Sat_SDIV_5074843-0001 

 

 

 


