
Configuration Manual

MSc Research Project
Cyber Security

Arjun Variammattu Sasi
Student ID: x22180770

School of Computing
National College of Ireland

Supervisor: Michael Pantridge

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Arjun Variammattu Sasi

Student ID: X22180770

Programme: MSc Cybersecurity Year: 2024

Module: MSc Research Project

Lecturer: Michael Pantridge

Submission Due Date:

Project Title:
Enhancing Web App Security in CI/CD Pipeline: A DevSecOps Framework with
Open-Source Tools

Word Count: 1555 Page Count: 10

I hereby certify that the information contained in this (my submission) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature:
Date:

Arjun Variammattu Sasi
25/04/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

25/04/2024

Date:
Penalty Applied (if applicable):

1

Configuration Manual

Arjun Variammattu Sasi
Student ID: x22180770

1 Introduction

The configuration manual introduces a comprehensive DevSecOps framework tailored for web
applications, addressing the critical imperative of seamlessly integrating security into CI/CD
pipelines. This framework automates security testing processes, encompassing Static
Application Security Testing (SAST), Dynamic Application Security Testing (DAST), and
manual penetration testing methodologies. Executed on AWS platforms via the GitLab CI/CD
pipeline, it streamlines security assessments and enhances deployment efficiency. A pivotal
feature of this framework is its ability to amalgamate tool outputs, enabling the generation of
unified security audit reports. Empirical evaluations and case studies validate the effectiveness
of this solution in fortifying the security posture of web applications. By presenting a
comprehensive approach to security testing, grounded in practical tools and methodologies,
this thesis contributes significantly to advancing DevSecOps practices, bridging crucial gaps
in existing literature and offering tangible insights for developers and stakeholders alike.

Presentation URL: https://youtu.be/OtH4oUkOi-I

2 Hardware Requirements

Operating System: Windows 11
RAM: 8.0 GB
Processor: 11th Gen Intel Core i5-11320H @ 3.20GHz 2.50 GHz
Storage: 512 GB SSD
System Type: 64-bit operating system, x64-based processor

3 Software Requirements

To execute the specified GitLab CI/CD pipeline effectively, specific versions of the required
software and tools are recommended based on the details provided in your configuration. Here
are the tools along with the suggested versions or version requirements:

• GitLab Runner: Ensure it's compatible with your GitLab version. Generally, using the
latest version is recommended.

• Docker: The pipeline uses images like docker:latest and docker:stable. Ensure your
Docker version supports these images, typically Docker 19.03 or newer.

• Docker-in-Docker (DinD): The service version used is specified in config as
docker:dind and docker:20.10.11-dind, Docker 20.10.11 or a compatible version for
DinD services.

https://youtu.be/OtH4oUkOi-I

2

• Snyk: Use the latest Docker image version of Snyk (snyk/snyk:docker) to ensure up-
to-date vulnerability databases.

• Trivy: The pipeline dynamically fetches the latest version of Trivy. Ensure wget and
tar are available to handle this operation.

• OWASP ZAP: The configuration does not specify a version, but using the latest stable
Docker image (softwaresecurityproject/zap-bare) is advisable.

• Nmap: The pipeline uses apk add nmap without specifying a version, indicating the
latest stable version available in the Alpine package repository is used.

• Amazon AWS CLI: Version 2.15.32 is explicitly used in the pipeline. Ensure this
version or a newer one is used for compatibility with AWS services.

• Node.js and NPM: The pipeline specifies node:lts-alpine3.19, which refers to the
Long-Term Support (LTS) version of Node.js available at the time of the Alpine 3.19
release. It typically includes the latest LTS version of Node.js and npm.

• Python: Version 3.11.9 is used within an Alpine 3.19 image (python:3.11.9-
alpine3.19), so ensure this specific version or a newer compatible version is used for
script execution.

• GNU gettext and wget: These tools are used implicitly without version specifications.
The latest stable versions available in your environment's package manager should
suffice.

• xsltproc: No version specified; use the latest available version that is compatible with
your environment.

4 Configure AWS

4.1 Create AWS Service Role
• Navigate to the AWS Management Console and log in. From the dashboard, select

"Services" and click on "IAM" under the "Security, Identity, & Compliance"
section.

• Within the IAM dashboard, click "Roles", then "Create role".
• Choose "AWS service" as the trusted entity and select the specific service that will

use this role.
• Attach the below listed existing policies to the role

Figure 1:AWS Role Policies

• Give the role the name aws-elasticbeanstalk-service-role and description, then click
“Create role”.

3

4.2 Create an Elastic Beanstalk Application
• In the AWS Management Console, find and open the Elastic Beanstalk service under

the "Compute" section.
• Click Create Application.
• Enter an Application Name as juiceshop and, optionally, a Description. Click Create.
• Select the platform docker as application’s environment.
• Review all settings and configurations and Click on Create environment
• Choose environment tier: Web server environment
• Give Environment name as juiceshop-env
• Select Platform as Docker
• Choose Sample application for Application code
• In the Configure service access, select Use an existing service role and choose aws-

elasticbeanstalk-service-role which was previously created
• Skip to review
• Click on Create environment.

5 Generate a Snyk Personal Access Token
• Log into Snyk account. If you don't have one, sign up at snyk.io
• Access the account settings by clicking on profile or the account icon.
• Navigate to API tokens. Look for a section related to API tokens or security

settings within account or settings page.
• Generate a new token.

Figure 2: Generate Snyk PAT

• Copy the generated token.

6 Configuring Gitlab

6.1 Preparation of Files
Initially, the project files contained within sentinalsecopsartifacts.zip, including .gitlab-
ci.yml, Dockerfile, and the contents of scripts and templates directories, need to be prepared
for upload.

6.2 Accessing the GitLab Repository

4

The user must log into their GitLab account and navigate to the target project repository
where the integration of the OWASP Juice Shop code and additional project files is intended.

Figure 4: Create Project

6.3 Cloning OWASP Juice Shop Repository
• Visit the OWASP Juice Shop GitHub page https://github.com/juice-shop/juice-shop.
• The repository is to be downloaded as a ZIP file.

Figure 3: GitLab Login

https://github.com/juice-shop/juice-shop

5

• Open the Gitlab Repository in WebIDE Editor

Figure 5: GitLab Web IDE

• Upload the Juice Shop files using the WebIDE.

6.4 Creating a Deploy Token for the repository
• Navigate to Your Repository
• Click on "Settings" and then select "Repository".
• Scroll to "Deploy Tokens" and click on "Expand"
• Fill out the form with the token's name as aws, optional expiry date, and scopes

read_repository, read_registry.
• Click on "Create deploy token".
• Copy and securely store the displayed token

6.5 Adding variables to a GitLab CI/CD pipeline
• Go to your project's dashboard.
• Find the Settings: On the left-hand sidebar, expand the Settings menu by clicking on

it.
• Access CI/CD Settings: Inside the settings menu, click on CI / CD to open the CI/CD

settings page.

6.5.1 Add Variables

• Expand the Variables section. Scroll down to find the "Variables" section and click
on "Expand".

• Add the Snyk token as a new variable:
o Click on "Add Variable"
o In the "Key" field, enter the name of variable.
o Make it "Protected" (only available in protected branches or tags) and

"Masked" (hidden in job logs).
• Click "Add variable" to save.

The following variables are to be added to Gitlab

6

Figure 6: Variables

Variable Description
AWS_ACCESS_KEY_ID Access Key ID of User created in AWS IAM

AWS_DEFAULT_REGION Default Region of AWS Services
AWS_S3_BUCKET Name of the S3 bucket created by AWS EBS

AWS_SECRET_ACCESS_KEY Access Key of User created in AWS IAM
PYTHON_SCRIPT_PAT Previously created Gitlab Account PAT for the

python script
GITLAB_DEPLOY_TOKEN Previously created Gitlab Account PAT for aws

deployment
Value format: aws:<tocken>

SNYK_TOKEN Token obtained from snyk.io
AWS_URL URL of deployed AWS web application

Figure 2: Variables and description

6.6 Uploading Project Files
The sentinalsecopsartifacts.zip file needs to be extracted.

• Within the Web IDE, necessary directories (scripts and templates) are to be created by right-clicking
in the file tree area and choosing new directory.

• Upload each project file to its corresponding directory by right-clicking the directory and selecting
Upload file. This includes .gitlab-ci.yml, Dockerfile, issue_creator.py, requirements.txt, auth.json,
Dockerrun.aws.json, and Dockerrun.aws.public.json.

7

Figure 7: File structure

6.7 Committing Changes
• Once all files are uploaded, changes should be reviewed by the user in the Web IDE.
• To commit these changes, the Commit button located in the bottom left corner is clicked.
• Eenter a meaningful commit message, such as “Add OWASP Juice Shop and project files”, in the

commit message box.
• The commit action is finalized by clicking Commit.

6.8 Verification of Files
Exiting the Web IDE, the user should return to the project’s repository view on GitLab to confirm that all
uploaded files and directories are accurately reflected. Go to the Pipeline to see if all the stages are successfull

Figure 8: Pipeline

	1 Introduction
	2 Hardware Requirements
	3 Software Requirements
	4 Configure AWS
	4.1 Create AWS Service Role
	4.2 Create an Elastic Beanstalk Application

	5 Generate a Snyk Personal Access Token
	6 Configuring Gitlab
	6.1 Preparation of Files
	6.2 Accessing the GitLab Repository
	6.3 Cloning OWASP Juice Shop Repository
	6.4 Creating a Deploy Token for the repository
	6.5 Adding variables to a GitLab CI/CD pipeline
	6.5.1 Add Variables

	6.6 Uploading Project Files
	6.7 Committing Changes
	6.8 Verification of Files

