
Enhancing Web App Security in CI/CD Pipeline: A
DevSecOps Framework with Open-Source Tools

MSc Research Project

Cybersecurity

Arjun Variammattu Sasi
Student ID: x22180770

School of Computing

National College of Ireland

Supervisor: Michael Pantridge

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Arjun Variammattu Sasi

Student ID: X22180770

Programme: MSc Cybersecurity Year: 2024

Module: MSc Research Project

Lecturer: Michael Pantridge

Submission Due Date:

Project Title:
Enhancing Web App Security in CI/CD Pipeline: A DevSecOps Framework with
Open-Source Tools

Word Count: 8527 Page Count: 21

I hereby certify that the information contained in this (my submission) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature:
Date:

Arjun Variammattu Sasi
25/04/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

25/04/2024

1

Enhancing Web App Security in CI/CD Pipeline: A
DevSecOps Framework with Open-Source Tools

Arjun Variammattu Sasi

22180770

Abstract

The thesis provides a well thought-out DevSecOps framework for web applications that
specifically addresses the urgent need to integrate security into CI/CD pipeline in an
unobtrusive manner. The framework automates the process of security testing through SAST,
DAST while at the same time adopting manual penetration testing approaches. Implemented
on AWS platforms through the GitLab CI/CD pipeline, it simplifies security assessment and
improves deployment effectiveness. This is facilitated by a major aspect of the framework
which is its capability to combine tool outputs thereby enabling unified security audit report
generation. Empirical evaluation and case studies demonstrate the practicality and efficacy of
the proposed solution in enhancing the security posture of web applications. By developing an
exhaustive approach to security testing based on tools, this thesis advances DevSecOps
practices thus filling an important void in existing literature for developers and stakeholders
with concrete takeaways.

1 Introduction

In today’s digital age, web applications are increasingly important to connect users to a wide
range of services, providing a seamless experience that is nevertheless shrouded in lurking
threats of cyberattack Titled the results of the. This pipeline represents software development
maturity, moving beyond normal coding to a more comprehensive life cycle, which crucially
includes security from the get-go

The paper aims to fill a significant gap in existing research by exploring how open source tools
can be added to the DevSecOps pipeline to not only secure web applications but also enhance
their implementation This need stemmed from the neglect of security early in the development
cycle, which was mostly left until the end; which resulted in a non-committal approach and
reacted to security risks The literature review examines the emergence of DevOps, highlighting
the shift towards agility but still failing to secure a will be integrated quickly. The DevSecOps
concept that incorporates security at every stage of development represents a paradigm shift in
which security is an intrinsic part of the entire software lifecycle.

This study revolves around the important question: How can the addition of open source SAST
and DAST tools to the DevSecOps pipeline improve the security efficiency of web
applications? The CI/CD pipeline developed mirrors the DevSecOps approach, emphasizing
security integration at every step. With automated security tools for dependency scanning and
dynamic application testing, the pipeline continues from build to test, to production phase,

2

using SAST and DAST methodologies for comprehensive security analysis Network the
addition of security scanning further supports the dynamics of the pipeline. This design is
consistent with the evaluation goal of enabling security in the CI/CD workflow, ensuring that
the secure web application is deployed on Amazon Web Services as well, a custom Python
script with a pipeline in aggregates security reports from multiple tools into a single
vulnerability statistics report as well Automates issue creation in GitLab for identified
vulnerabilities, prioritizing them according to how severe This facilitates simple and effective
security responses risks, and increase the use of secure web applications.

It is important to acknowledge the limitations and limitations of the study that may affect the
results. Despite controlled and random sampling efforts, some variables may influence the
results. The learning proceeds through the knowledge of underlying concepts such as the
reliable operation of selected open-source tools.

This report is well structured to guide you through the detailed analysis of security integration
in the CI/CD pipeline. The article begins with the introduction in the first chapter, setting the
initial context and identifying the research question. Chapter 2, Related Work, sets this research
into a larger scholarly discourse by providing a critical literature review. Chapter 3 presents
the methodology and detailed descriptions of qualitative and quantitative methods that were
used. The Design Specification continues in Chapter 4 followed by Implementation in Chapter
5 and finally the results are tested in Chapter 6 Evaluation to measure the effectiveness and
efficiency of the system. In section 6.5, Discussion involves further in-depth analysis while
focusing on meaning, importance and relevance of findings. Finally, concluding remarks and
future work are discussed in Chapter 7 which also points on areas still requiring further research
following this report. This method guarantees clarity as well as logical progression thus
enabling readers to appreciate what research has contributed to the field of cyber security.

2 Related Work

2.1 DevOps vs DevSecOps

In "DevSecOps: A Boon to the IT Industry,"(Mittal et al., 2021) by Kriti Mitta explores how
DevOps can be fortified with security. It suggests transforming CI/CD into CI/CD/Continuous
Security (CI/CD/CS) to weave in security checks throughout development. As their study is
methodological, they use an AppSec pipeline for continuous security. In the thesis written by
Bakary Jammeh called "Enhancing Web App Security in CI/CD Pipeline: A DevSecOps
Framework with Open-Source Tools."(Jammeh, no date) the author stresses that we must
integrate security into CI/CD but emphasizes the use of open-source tools for more automation
and streamlined deployment of secure web apps. The current thesis extends the discussion by
detailing how open-source SAST and DAST tools, alongside container security testing with
Trivy, can be integrated into the pipeline to automate security testing.

Bakary Jammeh's paper "DevSecOps: Security Expertise a Key to Automated Testing in CI/CD
Pipeline"(Ness, Rangaraju and Dharmalingam, 2023) from Bournemouth University delves
into automated testing within a DevSecOps framework. He points out that we need security
expertise throughout and then outlines the principles of DevSecOps. The author argues that
automation is key to matching the speed of DevOps practices when it comes to security testing.
Sakthiswaran Rangaraju and his team focus on cloud security in their paper “Incorporating AI-
Driven Strategies in DevSecOps for Robust Cloud Security.” (Rajapakse et al., 2022). They

3

look at how artificial intelligence (AI) can make this branch of technology even stronger.
Challenges and considerations are discussed to help embed AI-driven tools within these
existing practices so that we can automate as much as possible - all within the workflow defined
by CI/CD. “Challenges and solutions when adopting DevSecOps: A systematic review”
(Rajapakse et al., 2022) by Roshan N. Rajapakse et.al, looks at combining the strengths of
DevOps and security. Their solutions include Interactive Application Security Testing (IAST)
tools, orchestrating other tools for continuous vulnerability assessment, adopting Infrastructure
as Code (IaC), and building a collaborative culture.

2.2 Automated Security Testing in CI/CD Pipelines
Zachary Wadhams et.al's (Wadhams, Reinhold and Izurieta, no date) study discusses Static
Application Security Testing (SAST) tools and their role in identifying and fixing
vulnerabilities in software development lifecycles. They propose an automated process that
integrates SAST tool outputs into developers' issue-tracking systems so they can manage any
vulnerabilities quickly. The thesis tells us that integrating security testing into CI/CD pipelines
is super important, but takes it a step further by exploring open-source tools for automation and
streamlining of secure web application deployment.

Fiorella Zampetti (Zampetti et al., 2021) et.al's study highlights how CI/CD pipelines have
been restructured over time across many open-source projects, going over trends and actions
taken to make code more readable, build matrices simpler, and security more robust. It focuses
on continuous adaptation and improvement of CI/CD processes, which is directly connected to
what this thesis project aims to do. Rammohan Vadavalasa's (Vadavalasa and Vadavalasa,
2020) paper puts machine learning (ML) applications side-by-side with traditional ones as far
as developing, deploying, and continuously improving them goes. It calls for a secure pipeline
that supports continuous integration so ML applications can be delivered and deployed safely.
Rammohan goes through tools and practices for building secure pipelines specifically for ML
apps. Open-source tools are explored here as well as methodologies for securing CI/CD
pipelines in the current thesis.

In "Ambush From All Sides: Understanding Security Threats in Open-Source Software CI/CD
Pipelines," Ziyue Pan (Pan et al., 2024) et.al examines the security threats that CI/CD pipelines
face, especially in open-source software. They also show how vulnerable these pipelines are
when hosted on platforms like GitHub. The results of their study make it clear just how
important a security-first mindset is for web application development and deployment within
a DevSecOps framework, which matches what the current thesis project is all about

2.3 SAST (Snyk) , DAST(ZAP) , Pentesting tools

The paper “To Detect and Mitigate the Risk in Continuous Integration and Continues
Deployments (CI/CD) Pipelines in Supply Chain using Snyk tool” (Sushma et al., 2023)by
Sushma D et.al, introduces Snyk into the CI / CD pipeline to enhance security against
vulnerabilities and attacks. It identifies attack vectors such as malicious code injection and
unauthorized access that can compromise software integrity, confidentiality, and availability.
The system of this study uses CodeQL, Slaying The Software Supply-Chain Dragon (SLSA),
etc., to evaluate vulnerabilities within the pipeline. As a result, it finds unsafe dependencies
and outdated libraries. This study presents how detailed reports from Snyk facilitate a swift
response when problems occur. This research supports the thesis's aim to automate security
within the CI/CD workflow.

4

“Holistic Web Application Security Visualization for Multi-Project and Multi-Phase Dynamic
Application Security Test Results” (Sonmez and Kilic, 2021) by Ferda Özdemir Sönmez et.al
introduces innovative visualization of Dynamic Application Security Testing (DAST) results
to create a web application security visualization system that has not been implemented before.
In this paper, while emphasizing integration with Static Application Security Testing (SAST)
tools and DAST tools in DevSecOps framework, we propose practical visualization tools for
test results that reduce the operational load of administrative managers through efficiency
improvement. “An Analysis System to Test Security of Software on Continuous Integration-
Continuous Delivery Pipeline” (Aparo et al., 2023) by Carmelo Aparo et.al is a modular
architecture that integrates existing AST tools into a Continuous Integration-Continuous
Deployment (CI / CD) pipeline using Docker containerization. In this study, we used the
OWASP Benchmark suite to confirm its effectiveness compared to other systems. This is
different from the current thesis where open source SAST tool and DAST tool are used for
automation of web application security testing.

“Review of the Benefits of DAST (Dynamic Application Security Testing) Versus SAST”
(Sharma, 2021) by Manish Sharma is a paper in which the author discusses the differences
between DAST and SAST. It compares the detection methods, and effects on web application
security based on those detection methods and develops a robust security framework. “An
Empirical Comparison of Pen-Testing Tools for Detecting Web App Vulnerabilities” (Albahar,
Alansari and Jurcut, 2022) by Marwan Albahar et.al is an empirical study that evaluates
commercial and non-commercial Pen-Testing tools for web application vulnerability
identification. In this thesis, by focusing on the open-source SAST tool and DAST tool, we
created a system that can evaluate vulnerabilities at once to achieve automated efficient
security testing.

2.4 Container security

Marwan Albahar’s study titled “An Empirical Comparison of Pen-Testing Tools for Detecting
Web App Vulnerabilities” (Bhardwaj, 2023) highlights the world of penetration testing tools,
both commercial and non-commercial, that are used to locate weaknesses in web applications.
The aim is to ensure that web applications are not exposed to cyber threats. In this survey, Mr.
Albahar studied tools such as Burp Suite Professional and OWASP ZAP. Nevertheless, it is
worth mentioning that our current thesis is different because it focuses on open-source SAST
and DAST tools only. This will include Snyk and OWASP ZAP which are being incorporated
into the DevSecOps framework. In addition, employing a more automated and efficient
security testing process earlier in development shows some promise.

 “Security Analysis of Docker Containers for ARM Architecture” (Haq, Tosun and Korkmaz,
2022) by Md Sadun Haq. It should be noted IoT (Internet of Things) devices as well as edge
computing extensively use Docker containers tailored for the ARM architecture specifically.
However, there has not been enough attention directed towards their security aspect. By doing
this project we help identify these vulnerabilities specific to ARM containers along with other
challenges tied to scenarios concerning edge computing. Based on running a variety of security
tools on official ARM images from DockerHub researchers found from their analysis that 72%
of vulnerabilities across multiple tools have different levels of severity. This led them to
conclude that no one tool could detect at least 80% of all vulnerabilities singly — thus multiple
resources are required to effectively secure these environments in any case. On its part,
however, this work strengthens our discourse by addressing specific issues related to CI/CD

5

pipelines using SAST and DAST with DevSecOps integration through a case study revolving
around ARM-based container testing(Trivy)

2.5 Gitlab CI/CD integration

Jeffery Fairbanks, study “Analyzing the Effects of CI/CD on Open Source Repositories in
GitHub and GitLab” (Fairbanks, Tharigonda and Eisty, 2023) looks at how continuous
integration and continuous delivery (CI/CD) pipelines impact software development practices
of open-source repositories in quantitative terms. By looking over more than 12,000
repositories, they discover that CI/CD raises the velocity of commits by an astonishing
141.19%, and increases reported issues by 321.21%, thereby highlighting its dual effect as a
catalytic mechanism for faster development cycles and prompting rigorous issue identification.
The current thesis project also bears a similar interest to the above but focuses on enhancing
web application security through automated security testing. Even though Fairbanks et al.’s
research speaks to the wider impacts of CI/CD, it indirectly supports the premise of the thesis
that CI/CD can be used to streamline workflows during the development process. Their
findings suggest that while increasing counts of issues could indicate a more proactive
approach towards issue detection within CI/CD, this finding aligns well with DevSecOps’
objective of early identification mitigation for vulnerabilities.

“Continuous Integration Using Gitlab” (Arefeen et al., 2019) is a piece written by Mohammed
Shainsul Arefeeu and Michael Schiller which compels us to understand that GitLab plays a
significant role in supporting agile software development without compromising code quality.
Therefore, insights into GitLab’s CI/CD tools provide views about pipeline optimization aimed
at delivering efficient and secure software as outlined in the thesis. The challenges involved in
configuring CD pipelines are discussed under “Configuration Smells in Continuous Delivery
Pipelines: A Linter and a Six-Month Study on GitLab” (Vassallo et al., 2020) by Carmine
Vassallo et.al where CD-Linter was introduced to detect “CD smells”. This approach to
security testing within CI/CD pipelines matches the perspective of the thesis project, which is
geared towards optimizing pipelines for web application development.

2.6 Security testing in existing Web Application of Choice: OWASP Juice
Shop Over DVWA or DVNA

The aim of the paper "Evaluation of Black-Box Web Application Security Scanners in
Detecting Injection Vulnerabilities" (Althunayyan et al., 2022) by Muzun Althunayyan et.al is
to test out how effective black-box web application vulnerability scanners are against modern
and sophisticated web apps. The researchers put a lot of focus on injection vulnerabilities like
SQLi, NoSQL, and Server-Side Template Injection (SSTI). They run some tests on the
OWASP Juice Shop which is an intentionally insecure web app and try to see how accurately
these five popular black-box scanners can detect any prevalent vulnerabilities. The current
thesis project tries to improve web app safety by adding SAST and DAST tools to the
DevSecOps framework.

In "Evaluation of Static Web Vulnerability Analysis Tools" (Tyagi and Kumar, 2018) taken
from the Distributed and Grid Computing (PDGC-2018) conference by Shobha Tyagi et.al
explore if static analysis tools can be used effectively in identifying web vulnerabilities. They
specifically focus on two open-source tools called OWASP WAP and RIPS using the Damn
Vulnerable Web Application (DVWA) and A Buggy Web Application (bWAPP) as their test
beds. The current thesis plans on integrating tools just like these into CI/CD pipelines.

6

2.7 AWS Elastic Beanstalk for Web Application Deployment

The paper "Implementation and Empirical Assessment of a Web Application Cloud
Deployment Tool" (Mendonça et al., no date) by Américo Sampaio aims to describe how the
authors developed and evaluated a cloud deployment tool referred to as TREXCLOUD, which
is aimed at simplifying web application deployments on infrastructure-as-a-service (IaaS)
clouds. Consequently, this will reduce the complexity of configuring virtual machine images
and application components for cloud deployment. For example, nine participants were
involved in an empirical assessment that included their deploying two Java web applications
which proved that TREXCLOUD can reduce deployment effort by up to 90% in optimal
scenarios. Therefore, one of the major concerns of this study is a reduction in complexities and
manual steps involved in setting up virtual machine configurations and other application details
during cloud deployments. Consequently, this research supports the thesis project goal which
was improvement of website security by showing how cloud deployments can be more
efficient.

This study by Michael O. Ogbole (Nazir et al., 2020) et.al gives a detailed overview of cloud
computing concerning service model classification; evaluation and comparative analysis
between main cloud service providers such as AWS, GCP, and Azure. It also examines various
scalability solutions provided by Google’s App Engine including its peculiarities compared
with those supplied by Microsoft Azure or Amazon Elastic Beanstalk. Furthermore, these
insights should be considered while designing an integrated CI/CD pipeline architecture for
automated tests run against web applications deployed on different platforms such as
WebLogic Server and OpenShift Container Platform connected via Assured SLDC channels
primarily intended for Acme Widgets’ customers that would end up with a unified platform
managed by only one vendor. A comprehensive comparison between CSPs like AWS Oracle
Compute Azure GCP IBM Cloud has been given by Anurag Choudhary Pradeep Kumar Verma
Piyush Rai under “Comparative Study of Various Cloud Service Providers: A Review”
(Choudhary, Verma and Rai, 2022). The importance when choosing a CSP provider depends
on its suitability regarding the type of organization it operates in line with its needs at that
particular time concerning security postures plus operational objectives. Hence, this research
will be helpful in this thesis project for its deployment of web applications using AWS Elastic
Beanstalk in a DevSecOps framework.

3 Research Methodology

3.1 Review of Literature and Framework Formulation

The beginning of this project involved an extensive literature review. The purpose was to figure
out the dimensions of the current DevSecOps ecosystem. This part is important because it
shows how one can build upon existing knowledge and find potential integration of security
measures into Continuous Integration/Continuous Deployment (CI/CD) pipeline internally,
which is a core principle of DevSecOps. To understand how existing security practices are
embedded in software development cycles, multiple sources were used for the literature review.
These sources included academic journals, industry reports, and case studies.

The survey with a large focus on gaps and challenges for organizations in implementing open-
source tools for security audits and penetration testing in their DevSecOps pipeline revealed a
recurring theme: while the intention was clear, practical implementations often weren’t. Many

7

factors led to this gap like difficult configurations and maintenance of security tools, weak
integration with already existing development workflows, and lack of skills as well as
knowledge needed to effectively use these tools for security purposes.

From insights drawn from the literature review, it is clear that there is a need to develop a
DevSecOps framework. This framework was developed to address these challenges but also
leverage power from open-source tools so that they can provide efficient and effective scalable
solutions where a safe environment is considered an integral part of the development process
instead of an afterthought.

3.2 Stages of CI/CD Pipeline

Figure 1: GitLab Pipeline Stages

3.2.1 Pre-Deployment
The pre-deployment CI/CD pipeline lays the foundation for integrating safety and performance
requirements early in the development cycle. The before_script section ensures that the
necessary directories for storing artifacts are created, and sets the stage for a smooth transition
to the Continuous Integration phase. This preparation step is important for planning subsequent
activities and facilitating proper inventory management.

3.2.2 Continuous Integration
The Continuous Integration phase, identified by the build task, involves compiling source code
and building a Docker image, which is then pushed to the registry This phase contains the basic
principles of CI, with code-commit and auto-built testing each leading to immediate success or
failure of the integration process Ensure that responsive Docker architecture processing at this
point is necessary to maintain accuracy and speed up the development process.

3.2.3 Continuous Security
Continuous security is woven through the pipeline, from Snyk for SAST scanning, OWASP
ZAP for dynamic security testing and custom scripts for additional penetration_testing It also
uses Trivy for container scanning, checking that Docker images have no known vulnerabilities.
Integrating these tools directly into the CI/CD pipeline allows for functional security
assessments that align with the DevSecOps philosophy of security embedding throughout the
lifecycle.

3.2.4 Continuous Delivery
Here, AWS Elastic Beanstalk is used to deploy the application to both pre-production and
production environments. This stage ensures that the application, having been built, tested,
deployed at pre-production environment and secured, is deployed to the production
environment, making it available to end-users. The use of AWS Elastic Beanstalk simplifies

8

the deployment process, leveraging AWS’s capabilities for load balancing, auto-scaling, and
application health monitoring, thereby ensuring high availability and reliability.

3.3 Tool Selection and Rationale

The tools for this framework were carefully chosen using input from the literature review. From
having a full security inclusion to being easy to integrate, support for automation, and even
developer friendly. GitLab was the choice of tool because it is so integrated with DevSecOps
features, and has an easy integration with all other security tools. It works well with Docker
and can be continuously integrated and deployed which is essential for this study. Through
GitLab we can also configure the issue tracking system to automate fixing certain
vulnerabilities based on severity levels. Alongside its robust API and documentation making
custom pipeline customization a breeze, such as our Python script for report consolidation.

3.3.1 Web Application of Choice: OWASP Juice Shop Over DVWA or DVNA
Instead of DVWA or DVNA, OWASP Juice Shop was chosen due to its modern technology
stack in Node.js which is widely used currently. The Juice Shop’s architecture provides only
one Docker image that needs deployment within cloud environments—making it simpler than
other web apps we considered like DVWA or DVNA. Those alternatives may require multiple
containers or more complex configurations that would hinder a rapid setup or integration within
our GitLab CI/CD pipeline:

• Modern Technology Stack: OWASP Juice Shop is built using Node.js, representing a
modern and widely used technology stack.

• Ease of Deployment: As a result, deployment of the Juice Shop is simplified by its

architecture which is contained within a single Docker image in cloud environments.
This simplification helps to speed up the process of setting up things quickly and
integrating them into the GitLab CI/CD pipeline. While on the other hand, DVWA and
DVNA might need more complex configuration steps or even multiple containers
before they work properly hence making their implementation in a cloud-based setup
quite difficult

• Comprehensive Vulnerability Coverage: The OWASP Juice Shop’s vulnerabilities

include at least all those listed in OWASP TOP 10, thus providing a full security testing
platform. Thus, for an exhaustive security audit, this wide-ranging vulnerability
coverage is essential since it creates realistic conditions that are difficult to test out how
well SAST integrated with DAST tools perform.

3.3.2 Selection of AWS Elastic Beanstalk for Web Application Deployment
AWS Elastic Beanstalk was chosen over other platforms such as Azure due to its unique mix
of features that line up perfectly with what we want to achieve here: Modern app support
(Node.js), simple deployment process (capacity provisioning, load balancing and auto-scaling
handled by AWS), simple maintenance (Elastic Beanstalk manages application health
monitoring). Not only does it provide an all-in-one solution, but it’s also cost-efficient thanks
to the pay-as-you-go pricing model and free educational tier.

• Modern Application Support: Elastic Beanstalk support for Node.js apps simplifies
the deployment process of modern web applications such as OWASP Juice Shop.

9

• Ease of Deployment: Elastic Beanstalk makes the deployment process easier by taking

it upon itself to carry out deployments, starting from capacity provisioning, load
balancing, autoscaling and application health monitoring.

• Cost-Effectiveness and Educational Tier: A pay-as-you-go pricing plan by AWS

Elastic Beanstalk coupled with an educational free tier is very affordable in terms of
deploying pre-production and production environments.

3.3.3 SAST Tools of Choice: Snyk Over SonarQube

Even though SonarQube provides many great features itself such as code coverage analysis not
found in Snyk, we have decided Snyk will work better for us within this project due to its
ability to identify defects without accommodations at an early stage of development. This
decision was made after considering various factors about both tools: SonarQube’s analysis
capability, Snyk’s ability to predict new security challenges.

• Vulnerability Database: Snyk’s proprietary database is constantly updated with new
security threats, providing unrivalled vulnerability information It is essential to
anticipate the emerging security challenges.

● Integration with the collaboration of developers: Snyk has been designed to integrate

seamlessly into the CI/CD pipeline. This way, security scans do not interrupt
development performance or slow it down. It fits perfectly with DevSecOps philosophy
that includes security as part of the development process without adding much effort
and time-consuming work.

● Automatic fix notifications: Unlike SonarQube, which prioritizes code quality and
code-based vulnerabilities only, Snyk provides real-time alerts and automated
recommendations for fixing detected vulnerabilities. Using this approach will allow
you narrow down risks and respond quickly to safety accidents or incidents.

3.3.4 Container Security with Trivy
Trivy, the tool that was chosen to assess container models for vulnerabilities and
inconsistencies, has been described as a solid choice. In this day and age of packaging, when
it comes to securing those images, you can’t be too careful. The many benefits of

Trivy for Container security are listed below:

• It is great at detecting vulnerabilities across OS packages and application dependencies
• Its ability to integrate with CI/CD pipelines like GitLab makes automated checks a

breeze
• Scanning is said to be fast as all get out which allows developers to gain information

quickly. This quick turnaround time also comes in handy with DevSecOps due to its
need for speed.

• It automatically updates its vulnerability database so you don't have to worry about
checking for them yourself.

10

• When it generates reports, they’re detailed by including both the vulnerabilities found
and their respective fixes. This gives development teams and security teams the
feedback they need to address these issues efficiently

3.3.5 DAST Tool of Choice: OWASP ZAP On Burp Suite

When deciding between OWASP ZAP and Burp Suite for DAST (Dynamic Application
Security Testing), there were a few things that set them apart from each other.

• CI/CD pipeline integration: OWASP ZAP provides easy integration into CI/CD

pipelines with minimal complexity compared to Burp Suite, mainly because no
additional API is required for integration, making it easier for DevOps practices in
addition, ZAP provides pre-built Docker images, with Burp Suite In contrast, it is easier
and more efficient to use in environments, where configuration and integration can be
resource-intensive

• Automation-friendly: This is an automation-friendly tool because it has a good API

and can be customized so it can be used to automate security testing in a DevSecOps
workflow

• Developer and QA access: In addition to security professionals, ZAP has been made

accessible to the developer QA team thus encouraging an integrated approach.

3.3.5.1 Nmap:
The penetration testing stage was selected through a methodological analysis of its relevance
to our security objectives and capabilities

• Thorough scanning: Nmap’s comprehensive scanning capabilities allow

comprehensive network vulnerability assessments.
• CI/CD Integration: Enhances automated security functionality, easily integrated into

the CI/CD pipeline.
• Attack Simulation: Simulates real-world attacks by finding exploitable vulnerabilities.
• Lua Scripting: Lua supports scripting, provides customizable scans and extended

functionality.

3.3.6 Data Analysis and Result Interpretation
Analysing data and interpreting results is key to the DevSecOps framework. By breaking down
and understanding the output generated by Snyk, Trivy, and OWASP ZAP tools we are able to
identify any vulnerabilities that may exist. Both JSON and HTML formats are used in our
analysis of these reports to ensure a smooth process. Our approach is done in two parts- creating
a unified format for security assessment purposes and pinpointing automated tracking issues
for any detected vulnerabilities.

3.3.6.1 Unified Data Format
• Consolidation of JSON Reports: To get an accurate read on where our digital weak

points may be, JSON data from Snyk, Trivy, and ZAP goes through a consolidation

11

process using Python script. This tool picks out info on the detected vulnerability’s
severity, location, and suggested fixes.

• Generation of Unified Report: Extracted data then gets compiled into a unified HTML
report format. This file provides an overview of the application's security posture so we
can clearly see where our immediate attention should go when it comes to patches.

3.3.6.2 Automated Issue Tracking:

• Issue Creation in GitLab: The same Python script runs a check with with GitLab’s
API for each identified vulnerability issue found in order to automatically create issues
in GitLab. This will help us streamline the remediation process so vulnerabilities are
addressed ASAP before deploying anything vulnerable or dangerous into production
stages.

• Severity-Based Prioritization: As part of the sorting process, the script sets priority

levels based on severity ratings from tool reports mentioned above. By doing this it
helps make sure resources are properly allocated by focusing efforts first on mitigating
those most critical vulnerabilities.

3.3.7 Conclusion
The research method chosen for this project was created by using a very detailed literature
review. By selecting the tools like GitLab, AWS Elastic Beanstalk, Snyk, Trivy and OWASP
ZAP our team aimed to make it possible to integrate security within the CI/CD pipeline that is
central to DevSecOps. One of the main focuses was on tool effectiveness and integration ease
and automation. The goal of this methodology was to create a rigorous process of enhancing
software development security with a foundation laid for future cybersecurity research to
improve development pipeline resilience and security.

4 Design Specification & Implementation

4.1 Design Specification
The design specification for the CI/CD pipeline, written in the GitLab CI configuration file,
encapsulates a sophisticated architecture crafted to integrate comprehensive security
assessments seamlessly into the software development lifecycle. This specification details the
underlying techniques, architecture, and framework that drive the implementation, alongside
the associated requirements necessary for its execution.

4.1.1 Architecture Overview:

12

The DevSecOps framework is structured around GitLab's CI/CD pipeline capabilities,
leveraging GitLab's integrated environment to implement continuous integration and
continuous deployment processes. The pipeline architecture is defined in the .gitlab-ci.yml
file, which is divided into distinct stages build, test, pre-prod, dast, review, and prod each
tailored to fulfil specific roles in the continuous integration, delivery, and deployment

Figure 2: Architecture Diagram of Pipeline

processes. This structure facilitates a systematic approach to software development, where
code changes are automatically built, tested, and prepared for deployment, ensuring the
consistent release of high-quality and secure software.
The architecture diagram depicts an advanced CI/CD pipeline for the OWASP Juice Shop,
illustrating a seamless integration of security testing and deployment. Below is a detailed
explanation of each component and its role in the workflow:

• Build Stage: The first stage in the pipeline is built. OWASP Juice Shop’s code is
fetched from its GitLab repository with this build. A Docker image that contains the
application and its environment is built using this code. This image is then stored in the
GitLab Container Registry.

• Static Application Security Testing (SAST): Both Snyk and Trivy scan the Docker

image in this stage for known vulnerabilities. With Snyk, dependencies are checked,
while Trivy scans the container image for vulnerabilities. The JSON scan output
generated by these tools provides a structured record of identified security issues.
HTML reports of snyk result are created using snyk-to-html plugin.

• Pre-Deployment: AWS Elastic Beanstalk deploys the Docker image stored in the

GitLab Container Registry to a pre-production environment automatically in this stage.
Provisioning, load balancing, auto scaling etc processes are managed by this service as
well.

• Dynamic Application Security Testing (DAST): In pre-prod environment, ZAP

performs dynamic scanning to identify potential security vulnerabilities that can be
exploited when app goes live on production environment. It tests the app like an
attacker would do to find weaknesses and exploits them accordingly. Results of
dynamic scanning are saved as JSON scan results.

• Penetration Testing: Network exploration tool Nmap is used during penetration-

testing phase to assess network security posture by simulating a malicious attacker

13

trying to find openings in it. The nmap-bootstrap.xsl creates an HTML report that
details network's security stance in depth.

• Review: Python script issue_creator.py takes Security reports created from SAST &

DAST stages and converts them into actionable GitLab issues, with summarized HTML
report generated. python-gitlab library interacts with Gitlab API securely using its API
token and severity of vulnerabilities decides the priority of these issues. This allows the
team to work on them on a methodical order.

• Deployment: Setup and configuration of pre-prod and prod environments is necessary

for AWS deployment phase. Proper IAM permissions are required to manage and
automate the deployment processes, which is achieved by creating a dedicated gitlab-
ci user in AWS IAM, using aws-cli command integration with GitLab CI/CD service.
Once security issues are resolved after review stage, OWASP Juice Shop is deployed
to prod environment via AWS Elastic Beanstalk, which makes it live for public access
with assurance that all known security issues have been addressed.

This pipeline automates the build, test, and deployment processes. While doing so, it also
embeds rigorous security testing at each stage. By adhering to a DevSecOps approach, it
ensures continuous security considerations throughout the software creation process.

The end result is the enhanced_vulnerability_assessment_report.html and nmap_scan.html
files that give transparent explanations of the application’s security health for users.

4.1.2 Job Dependencies
The dependency diagram of the CI/CD pipeline illustrates the flow and relationship between
various jobs within the GitLab pipeline, showcasing the sequence and conditions under which
each job is executed.

Figure 3: Pipeline Job Dependencies

Job Name Stage Dependency Description

docker-build Build None

Initiates the pipeline by building the Docker
image for the OWASP Juice Shop
application.

snyk_scan Test docker-build

Runs a Snyk vulnerability scan on the
dependencies, using the Docker image built
in the docker-build job.

trivy_container_
scanning Test docker-build

Performs a Trivy scan on the Docker
container alongside the Snyk scan, requiring
the Docker image from docker-build.

14

snyk_to_html Test snyk_scan

Converts the JSON results from the Snyk
scan into a readable HTML format, following
the snyk_scan job.

deploy_to_pre_pr
od Pre-Prod snyk_to_html

Deploys the application to a pre-production
environment on AWS, contingent on the
completion of the snyk_to_html job.

pentest_stage DAST
deploy_to_pre

_prod

Conducts penetration testing on the pre-
production environment set up by the
deploy_to_pre_prod job.

zap_scan DAST
deploy_to_pre

_prod

Executes OWASP ZAP for dynamic security
scanning on the pre-production
deployment.

issue_creation Review
pentest_stage,

zap_scan

Processes the results from security scans to
create and prioritize issues in GitLab for
vulnerabilities.

deploy_to_prod Prod
issue_creatio

n

Deploys the application to the production
environment after vulnerabilities have been
reviewed and addressed.

Table 1: Pipeline Jobs

This design specification lays out an extensive plan for integrating security into the CI/CD
pipeline. That way, we can ensure it’s not just an afterthought, but a normal part of the software
development cycle. By using GitLab for CI/CD, Docker to containerize apps, and our own
Python script for vulnerability management, we can streamline how we identify, prioritize and
fix security vulnerabilities in web applications.

4.2 Implementation
The implementation of the CI/CD pipeline brings speed from start to finish. If you use AWS
Elastic Beanstalk for deployment while building things on Docker with Snyk and Trivy running
alongside OWASP ZAP, you’ll get Docker images and vulnerability reports as output. A
custom Python script will also automatically track issues on GitLab based on scan results. With
this framework in place we’re showing off what DevSecOps principles are all about: delivering
a secure product fast

Figure 4 :Implementation of CI/CD Pipeline

4.2.1 Building the CI/CD Pipeline:
• Continuous Integration and Build Process: The Docker was used to keep application

images consistent across different stages of development so they work well when tested
or ultimately put into production environments. The docker-build job takes care of it

15

all by making new images before pushing them onto your private GitLab Container
Registry.

• Static Application Security Testing (SAST): Alongside Snyk and Trivy in this stage
you’ll find tools that perform Static Application Security Testing (SAST) and container
vulnerability scanning. This step helps us keep security front and centre by embedding
automated security checks directly into our workflow.

• Dynamic Application Security Testing (DAST): After being deployed on AWS,
OWASP ZAP takes over with penetration testing (nmap scripts). It all happens in the
dast stage, and it’s designed to catch runtime vulnerabilities before apps get put into
production.

• Automated Review and Issue Tracking: The custom Python script run here is able to

extract information from security reports and automatically create GitLab issues for
each vulnerability. This step helps fix the problem quickly by ensuring everyone knows
what’s wrong and when it needs to be fixed.

Figure 5: Generated Artifacts

• Custom Python Script (issue_creator.py): Information about vulnerabilities identified

by Snyk, Trivy, and OWASP ZAP are extracted using this script. With its access to
severity ratings determined by these reports, the script can prioritize remediation efforts
so you know which problems need fixing now and which ones can wait. Interacting
with the GitLab API is made possible through the python-gitlab library.

Figure 6: Vulnerability Issues created in GitLab

16

Figure 7 : Audit report generated by script

• Deployment: Split into pre-prod and prod stages, we built an AWS CLI docker image

that should make deployment a breeze regardless. That way you don’t have to worry
about whether your application is deployable at any time.

• Penetration Testing: The pentest_stage job is put in the DAST stage for pipeline
efficiency and parallel execution. Using Nmap, it performs vulnerability scanning to
simulate attacks against the web application. By running scans that closely mimic
potential attacker methodologies, the pipeline can run tests without slowing down.
After a scan is completed, xsltproc processes the Nmap output into a readable HTML
report.

Figure 8: Nmap Scan Report

5 Evaluation

This research is taking the first step forward in integrating dynamic application security testing
(DAST) and manual penetration testing into the DevSecOps pipeline. As of now, it’s mainly
focused on container scanning. The evaluation is meant to prove how effective this framework
can be for deploying automated security processes, such as SAST tools Snyk and Trivy. While
also working alongside DAST tools like OWASP ZAP, for a comprehensive security audit of
the OWASP Juice Shop web application.

Through empirical analysis, this research hopes to show what specific tools are better at finding
vulnerabilities. Tools like Trivy are great at this and identify a number of vulnerabilities that
other tools wouldn’t notice. This shows how crucial combining different tools is in order to

17

approach security from multiple angles. When comparing vulnerabilities discovered by Trivy
and Clair, we’ll have a more quantitative understanding of how effective this framework really
is across different docker images.

The next phase does things manually with penetration testing because there are always issues
that automated scans miss. And they give developers advice on how they can further improve
the app’s security proactively.

These findings also allow researchers to see how adaptable their framework actually is when
used across various web applications and CI/CD environments. It highlights the practical
implications behind these results so companies know whether or not to invest in it.

This research bridges the gap mentioned earlier in the base project by providing an evaluation
that proves just how significant this framework can be within the CI/CD pipeline specifically.
By operationalizing dynamic analysis and manual security testing, it presents a huge leap
forward for deploying applications securely through DevSecOps practices.

5.1 Case Study 1

5.1.1 SAST Implementation with Snyk
The integration of Snyk into the CI/CD pipeline aimed at the early identification of
vulnerabilities within application dependencies during the development stage.

• The deployment of Snyk, a Static Application Security Testing (SAST) tool, was
designed to scrutinize and uncover vulnerabilities in the dependencies of the
application. The OWASP Juice Shop, purposefully developed with security
vulnerabilities, was selected as the subject for this analysis, providing a broad spectrum
of security flaws for detection.

• The CI/CD pipeline, facilitated through GitLab, was augmented with Snyk to conduct

scans on the OWASP Juice Shop's codebase. Configured to halt the build process upon
discovering high-severity vulnerabilities, Snyk served as a critical checkpoint in the
development workflow.

Severity Count
Critical 1
High 2

Medium 10
Low 70

Informational 0
Table 2: Vulnerabilities found by Snyk

5.2 Case Study 2

5.2.1 Container Vulnerability Scanning with Trivy
The security of Docker images used in the deployment of the project is evaluated through the
integration of Trivy, a comprehensive container scanning solution. Docker containers was
employed for deploying the OWASP Juice Shop, necessitate rigorous security assessments to

18

safeguard against vulnerabilities. Trivy was selected for its adeptness at scanning containers
for vulnerabilities, encompassing both operating system packages and application
dependencies.

• Within the CI/CD pipeline, Trivy was deployed to scan Docker images of the OWASP
Juice Shop for vulnerabilities. The scans targeted both the container's operating system
packages and its encapsulated application dependencies.

• Trivy identified a range of vulnerabilities within the Docker images, including both

high and medium severity issues. It provided detailed insights into each vulnerability,
facilitating targeted remediation efforts aimed at securing the container images prior to
their deployment.

Severity Count
Critical 8
High 13

Medium 10
Low 33

Informational 0
Table 3: Vulnerabilities found by Trivy

5.3 Case Study 3

5.3.1 DAST Implementation with OWASP ZAP
The goal was to dynamically assess the deployed web application for exploitable vulnerabilities
through the integration of OWASP ZAP for Dynamic Application Security Testing (DAST).
DAST complements SAST and container scanning by evaluating the application in its
operational state. OWASP ZAP was selected for its proficiency in emulating real world attacks
against web applications.

• OWASP ZAP was integrated into the pipeline to conduct automated dynamic scans
against OWASP Juice Shop's pre-production deployment. The tool aimed to uncover a
variety of vulnerabilities, from injection flaws to authentication issues.

• The tool successfully detected multiple vulnerabilities that were not identified through
static analysis or container scanning. OWASP ZAP provided exhaustive reports on each
detected vulnerability.

Severity Count
Critical 0
High 1

Medium 3
Low 3

Informational 2

19

Table 4: Vulnerabilities found by ZAP

5.4 Discussion
Integration of Snyk, Trivy and OWASP ZAP into the DevSecOps pipeline shows that web app
security must take various forms. The three tools however represent distinct aspects of security
testing reflecting the complexity of protecting applications from constantly changing threats.

Snyk’s major advantage lies in early vulnerability detection in dependencies which is
consistent with DevSecOps approach to speed and security. This “shift left” method reduces
risks earlier in the development cycle thus reinforcing the need for proactive security measures.

The importance of container security in modern application deployment is underlined by
Trivy's ability to scan container images. Significantly, it ensures that both OS packages and
application dependencies are examined for vulnerabilities acknowledging container security as
a foundation for application safety.

OWASP ZAP’s DAST function uncovers runtime environment vulnerabilities thus providing
insights on how an application can fare against real world cyber threats. This supplements static
analysis as well as container scanning and prepares applications to face real attacks.

These integrated tools show that no single methodology can fully address all aspects of
software security at once. Hence, a layered approach including SAST, DAST, manual testing
supplemented with container scanning provides a comprehensive view on the status of an
application’s security posture.

6 Conclusion and Future Work

6.1 Conclusion

This project sought to answer how integration of open-source Static and Dynamic Application
Security Testing (SAST & DAST) tools along with manual penetration testing can improve the
security posture while streamlining deployment enhances web apps within DevSecOps
paradigm. Some objectives aimed at deploying a holistic security structure using tools like
Snyk, Trivy, OWASP ZAP among others coupled with manual penetration testing strategies to
strengthen CI/CD pipelines for web-based applications.

That question has been addressed by this framework development process entirely
successfully. By integrating certain chosen tools within GitLab CI/CD pipeline while assessing
their efficacy through case studies and empirical analysis; this project has clearly improved the
security posture of OWASP Juice Shop deployed web application. The important findings
include:

• Using a combination of SAST, DAST and manual penetration testing, this

framework detects several vulnerabilities in different areas thereby demonstrating
that layered security is paramount.

• The framework is scalable and adaptable as it can be applied to various web

applications and CI/CD environments.

20

• It was confirmed that including security testing in the CI/CD pipeline greatly
strengthens an application’s security posture by giving developers actionable
insights for proactively enhancing security measures.

Apart from being confined within academia boundaries, this research brings tangible

contributions to the industry. Informs a practical approach towards assessing and enhancing
overall web app security for developers, compliance teams as well as security analysts. Thus,
filling gaps in existing literature and practice related to effective and integrated security testing
within CI/CD Pipeline is how this project contributes to DevSecOps community.

6.2 Future Work:
In addition to the groundwork set by this project, there are numerous possibilities for further
research that might make improvements in the security framework and indicate new
dimensions of application security within the DevSecOps philosophy. Here are some important
directions to consider for future work:

• Future research may expand the range of tools and applications covered by the
framework thereby making it more comprehensive useful.

• The study focused on OWASP Juice Shop, which is mainly a JavaScript-based
application. Further studies could extend the framework to support other programming
languages and frameworks such as: Python, Java, .NET etc., thus widening its audience
among developers and target applications.

• However, identifying vulnerabilities alone is not enough; automated remediation
recommendations or patches ought to be provided. Building a part of this framework
that does not just identify vulnerabilities but provides solutions will greatly increase
how fast applications can be secured.

• To facilitate broad adoption by dev teams and security professionals, there is need for
better UI/UX in-built in these tools. For example, among other things an easier interface
coupled with integrated educational resources on best practices would democratize
security information.

• In future research one might try out comprehensive benchmarking exercises comparing
performance impact of integrated security testing across different CI/CD pipelines &
environments. It reveals what changes should be made in order not to hamper
development workflow hence optimization of the pipeline.

To sum up, this research lays a foundation stone for further development towards secure
practices under DevSecOps paradigm providing valuable input into constant debates about
smooth integration between production lifecycle and safety measures. The concept of open
sourcing it as a tool summarizes collaborative endeavor leading to innovation aimed at
supporting web applications’ vulnerability control within fast changing digital environment.

In conclusion, this research has laid a solid foundation for advancing security practices

within the DevSecOps paradigm, offering a valuable contribution to the ongoing dialogue on
integrating security seamlessly into the software development lifecycle. The envisioned release
of the framework as an open-source tool encapsulates the spirit of collaboration and innovation,
promising to bolster the security of web applications in the rapidly evolving digital landscape.

21

References

Albahar, M., Alansari, D. and Jurcut, A. (2022) ‘An Empirical Comparison of Pen-Testing
Tools for Detecting Web App Vulnerabilities’, Electronics 2022, Vol. 11, Page 2991, 11(19),
p. 2991. Available at: https://doi.org/10.3390/ELECTRONICS11192991.

Althunayyan, M. et al. (2022) ‘Evaluation of Black-Box Web Application Security Scanners
in Detecting Injection Vulnerabilities’, Electronics 2022, Vol. 11, Page 2049, 11(13), p. 2049.
Available at: https://doi.org/10.3390/ELECTRONICS11132049.

Aparo, C. et al. (2023) ‘An Analysis System to Test Security of Software on Continuous
Integration-Continuous Delivery Pipeline’, Proceedings - 8th IEEE European Symposium on
Security and Privacy Workshops, Euro S and PW 2023, pp. 58–67. Available at:
https://doi.org/10.1109/EUROSPW59978.2023.00012.

Arefeen, M.S. et al. (2019) ‘Continuous Integration Using Gitlab’, Undergraduate Research
in Natural and Clinical Science and Technology Journal, 3(1–11), pp. 1–6. Available at:
https://doi.org/10.26685/URNCST.152.

Bhardwaj, P. (2023) ‘Detecting Container vulnerabilities leveraging the CICD pipeline’.
Choudhary, A., Verma, P.K. and Rai, P. (2022) ‘Comparative Study of Various Cloud Service
Providers: A Review’, 3rd International Conference on Power, Energy, Control and
Transmission Systems, ICPECTS 2022 - Proceedings [Preprint]. Available at:
https://doi.org/10.1109/ICPECTS56089.2022.10047594.

Fairbanks, J., Tharigonda, A. and Eisty, N.U. (2023) ‘Analyzing the Effects of CI/CD on Open
Source Repositories in GitHub and GitLab’, Proceedings - 2023 IEEE/ACIS 21st International
Conference on Software Engineering Research, Management and Applications, SERA 2023,
pp. 176–181. Available at: https://doi.org/10.1109/SERA57763.2023.10197778.

Haq, M.S., Tosun, A.S. and Korkmaz, T. (2022) ‘Security Analysis of Docker Containers for
ARM Architecture’, Proceedings - 2022 IEEE/ACM 7th Symposium on Edge Computing, SEC
2022, pp. 224–236. Available at: https://doi.org/10.1109/SEC54971.2022.00025.
Jammeh, B. (no date) ‘DevSecOps: Security Expertise a Key to Automated Testing in CI/CD
Pipeline’. Available at: https://www.researchgate.net/publication/347441415 (Accessed: 5
April 2024).

Mendonça, N.C. et al. (no date) ‘Implementation and Empirical Assessment of a Web
Application Cloud Deployment Tool’, International Journal of Cloud Computing, 1(1).
Available at: https://doi.org/10.29268/stcc.2013.0004.

Mittal, K. et al. (2021) ‘DevSecOps: A Boon to the IT Industry’, SSRN Electronic Journal
[Preprint]. Available at: https://doi.org/10.2139/SSRN.3834132.

Nazir, R. et al. (2020) ‘Cloud Computing Applications: A Review’, EAI Endorsed
Transactions on Cloud Systems, 6(17), pp. e5–e5. Available at:
https://doi.org/10.4108/EAI.22-5-2020.164667.

Ness, S., Rangaraju, S. and Dharmalingam, R. (2023) ‘Incorporating AI-Driven Strategies in
DevSecOps for Robust Cloud Security Incorporating AI-Driven Strategies in DevSecOps for

22

Robust Cloud Security Product Security Leader at Pure Storage’, Article in International
Journal of Innovative Science and Research Technology, 8(11). Available at:
https://doi.org/10.5281/zenodo.10361289.

Pan, Z. et al. (2024) ‘Ambush from All Sides: Understanding Security Threats in Open-Source
Software CI/CD Pipelines’, IEEE Transactions on Dependable and Secure Computing, 21(1),
pp. 403–418. Available at: https://doi.org/10.1109/TDSC.2023.3253572.

Rajapakse, R.N. et al. (2022) ‘Challenges and solutions when adopting DevSecOps: A
systematic review’, Information and Software Technology, 141, p. 106700. Available at:
https://doi.org/10.1016/J.INFSOF.2021.106700.

Sharma, M. (2021) ‘Review of the Benefits of DAST (Dynamic Application Security Testing)
Versus SAST’, INTERNATIONAL JOURNAL OF MANAGEMENT AND ENGINEERING
RESEARCH, 1(1), pp. 05–08. Available at:
http://www.ijmer.org/index.php/journal/article/view/2 (Accessed: 5 April 2024).

Sonmez, F.O. and Kilic, B.G. (2021) ‘Holistic Web Application Security Visualization for
Multi-Project and Multi-Phase Dynamic Application Security Test Results’, IEEE Access, 9,
pp. 25858–25884. Available at: https://doi.org/10.1109/ACCESS.2021.3057044.

Sushma, D. et al. (2023) ‘To Detect and Mitigate the Risk in Continuous Integration and
Continues Deployments (CI/CD) Pipelines in Supply Chain Using Snyk tool’, 7th IEEE
International Conference on Computational Systems and Information Technology for
Sustainable Solutions, CSITSS 2023 - Proceedings [Preprint]. Available at:
https://doi.org/10.1109/CSITSS60515.2023.10334136.

Tyagi, S. and Kumar, K. (2018) ‘Evaluation of static web vulnerability analysis tools’, PDGC
2018 - 2018 5th International Conference on Parallel, Distributed and Grid Computing, pp.
1–6. Available at: https://doi.org/10.1109/PDGC.2018.8745996.

Vadavalasa, R. and Vadavalasa, R.M. (2020) ‘End to end CI/CD pipeline for Machine
Learning’, International Journal of Advance Research [Preprint]. Available at:
https://www.researchgate.net/publication/351022405 (Accessed: 5 April 2024).

Vassallo, C. et al. (2020) ‘Configuration smells in continuous delivery pipelines: A linter and
a six-month study on GitLab’, ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 327–337. Available at: https://doi.org/10.1145/3368089.3409709.

Wadhams, Z., Reinhold, A.M. and Izurieta, C. (no date) ‘Automating Static Code Analysis
Through CI/CD Pipeline Integration’.

Zampetti, F. et al. (2021) ‘CI/CD Pipelines Evolution and Restructuring: A Qualitative and
Quantitative Study’, Proceedings - 2021 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2021, pp. 471–482. Available at:
https://doi.org/10.1109/ICSME52107.2021.00048.

	Report Front Page.pdf
	x22180770_Arjun_VS_MSc Research Project Report_final_thesies.pdf
	1 Introduction
	2 Related Work
	2.1 DevOps vs DevSecOps
	2.2 Automated Security Testing in CI/CD Pipelines
	2.3 SAST (Snyk) , DAST(ZAP) , Pentesting tools
	2.4 Container security
	2.5 Gitlab CI/CD integration
	2.6 Security testing in existing Web Application of Choice: OWASP Juice Shop Over DVWA or DVNA
	2.7 AWS Elastic Beanstalk for Web Application Deployment

	3 Research Methodology
	3.1 Review of Literature and Framework Formulation
	3.2 Stages of CI/CD Pipeline
	3.2.1 Pre-Deployment
	3.2.2 Continuous Integration
	3.2.3 Continuous Security
	3.2.4 Continuous Delivery

	3.3 Tool Selection and Rationale
	3.3.1 Web Application of Choice: OWASP Juice Shop Over DVWA or DVNA
	3.3.2 Selection of AWS Elastic Beanstalk for Web Application Deployment
	3.3.3 SAST Tools of Choice: Snyk Over SonarQube
	3.3.4 Container Security with Trivy
	3.3.5 DAST Tool of Choice: OWASP ZAP On Burp Suite
	3.3.5.1 Nmap:

	3.3.6 Data Analysis and Result Interpretation
	3.3.6.1 Unified Data Format
	3.3.6.2 Automated Issue Tracking:

	3.3.7 Conclusion

	4 Design Specification & Implementation
	4.1 Design Specification
	4.1.1 Architecture Overview:
	4.1.2 Job Dependencies

	4.2 Implementation
	4.2.1 Building the CI/CD Pipeline:

	5 Evaluation
	5.1 Case Study 1
	5.1.1 SAST Implementation with Snyk

	5.2 Case Study 2
	5.2.1 Container Vulnerability Scanning with Trivy

	5.3 Case Study 3
	5.3.1 DAST Implementation with OWASP ZAP

	5.4 Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work:

	References

