

Configuration Manual for Using Genetic
Algorithms for Optimized Feature Selection

in Machine Learning and Deep Learning
Models to Detect Phishing Websites

MSc Research Project
Msc Cyber Security

Akinola David Omotola
Student ID: X22133755

School of Computing
National College of Ireland

Supervisor: Raza UI Mustafa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

………………………………..Akinola David Omotola …………………………………………

Student ID:

………………………………………… x22133755…………………………………..………..……

Programme:

…………… Msc Cyber Security ………………

Year:

………2024…………..

Module:

…….………

Lecturer:

………………………………………27/5/2024……………………………………………….………

Submission
Due Date:

…….………

Project Title:

……Using Genetic Algorithms for Optimized Feature Selection in
Machine Learning and Deep Learning Models to Detect Phishing
Websites …………………

Word Count:

………………5357…… Page Count: ………………30…………….……

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

…………………………………Akinola David Omotola……………………………

Date:

……………27/5/2024………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:

Penalty Applied (if applicable):

1

Using Genetic Algorithms for Optimized Feature
Selection in Machine Learning and Deep Learning

Models to Detect Phishing Websites

Akinola David Omotola
X22133755

1 Introduction

This report aims to produce a manual which is a comprehensive guideline for creating the code

implementation setup of the research on “Using Genetic Algorithms for Optimized Feature

Selection in Machine Learning and Deep Learning Models to Detect Phishing Websites”. The

research was carried out to investigate how well the application of genetic algorithm (GA) is

to select optimal features to improve the efficiency of deep learning and supervised learning

algorithms in classifying websites as legitimate websites or phishing websites analysing

historical website datasets. In carrying out this experiment, the Phishing Websites Dataset

(Ariyadasa, Fernando and Fernando, 2021) was analysed using four machine learning

algorithms. The machine learning algorithms that were implemented included the Graph

Neural Network (GNN) which deep learning technique and three well-known supervised

learning techniques: Random Forest (RF), Support Vector Machine (SVM), and Gradient

Boost Classifier (GBC). This research conducted two sets of experiments namely Experiment

1 which is the baseline model implementation and Experiment 2 which combines GA feature

selection on the dataset with hyperparameter tuning of the implemented models. The models

were evaluated using Accuracy, Area Under the Curve (AUC) and F1 Score evaluation metrics.

This report's remaining content is shown as follows: In Section 2, system specifications for the

hardware and software components used in this code implementation are covered. In Section

3, software installation, setting up the Anaconda environment, and installing the Python

libraries used in this code implementation are covered. Section 4 will include code

implementation, model evaluation, and how well the models worked with each dataset's

analysis. Section 5 will provide closing remarks, and Section 6 will include a list of references.

2

2 System Specification

2.1 Hardware Specification

The configuration for the PC hardware used in the code implementation for this research work

is specified in the table below

Hardware Configuration Value

Random Access Memory (RAM) 16 GB

Processor Type Intel core i5 with 2.50 GHz processing speed

Read Only Memory (ROM) 1 TB SSD

Table 1. System Hardware Configuration Summary

2.2 System Software Requirement

The table below briefly summarises and describes all software required to carry out this

coding implementation

Software Description

Window 10 Operating

System

The fundamental software that serves as the platform that

other supplementary software needed for this implementation

project work will be installed, providing a reliable and

compatible environment for the project's development and

implementation.

Anaconda V 2.5.2 Anaconda is a package manager for the Python programming

language. It allows for managing multiple Python versions

and creating isolated environments, facilitating the creation

and management of distinct workspaces on a single machine.

Jupyter Notebook V 7.0.8 Jupyter Notebook is an interactive programming IDE that

executes code snippets directly within your web browser.

3

Web Browser (Google

Chrome, Microsoft Edge, or

Mozilla Firefox)

Jupyter Notebook uses a web browser to display code

segments within cells or blocks, as well as the corresponding

output when those code blocks are executed.

Table 2. Software Requirement Summary

3 Software Installation and Python Libraries

3.1 Anaconda Installation Guide

This guide provides a step-by-step walkthrough for installing Anaconda Navigator on your PC.

First, visit the Anaconda download page and obtain the installation media. Follow the

instructions below to set up Anaconda on your system.

Step 1:

Locate the downloaded installation media and double-click it to start the installation process.

When the Anaconda setup screen appears, click the "Next" button to proceed.

Figure 1. Anaconda installer welcome page

Step 2:

In the license agreement section, read through the terms, then click the "I Agree" button to

proceed.

https://www.anaconda.com/download/success

4

Figure 2. Anaconda installer license agreement page

Step 3:

On the "Select Installation Type" page, click the "Next" button to continue.

Figure 3. Anaconda installer select installation type page

Step 4:

In the "Choose Install Location" section, click the "Next" button to proceed.

5

Figure 4. Anaconda installer chooses the install path page

Step 5:

On the "Advanced Installation Options" screen, click the "Install" button to begin writing the

setup file to memory.

Figure 5. Anaconda installer advance installation options page

Step 6:

On the "Installation Complete" page, wait for the process to finish, then click the "Next"

button.

6

Figure 6. Anaconda installer installation complete page

Step 7:

On the "Thank You" page, click the "Finish" button to complete the Anaconda installation.

Figure 7. Anaconda installer completing setup page

3.2 Python Environment and Libraries

The Anaconda installation set up a default environment called "base" which comes with several

pre-installed Python libraries essential for coding the project. Additional libraries will be

installed to fully configure the environment for this coding task.

3.2.1 Python Libraries

7

Library Name Installation Command

Pandas pip install pandas

Numpy pip install numpy

Statistics pip install statistics

Seaborn pip install seaborn

Scikit-learn pip install scikit-learn

Imbalanced-learn pip install imbalanced-learn

Tensorflow pip install tensorflow

Scikeras pip install scikeras

Deap pip install deap

Table 3. Python Libraries and their installation command

3.2.2 How to install Python Libraries from Jupyter Notebook

To open Anaconda, click on the Start menu and find the Anaconda3 folder. Expand the folder,

then double-click on Anaconda Navigator to launch the application. Once Anaconda Navigator

is running, locate the Jupyter Notebook tile and click "Launch" to open the interactive Python

IDE in your web browser, as illustrated below.

8

Figure 8. Anaconda navigator home page when launched

On the launch of Jupyter Notebook, all Python libraries for implementing this research work

will be loaded in a cell and the code will be executed. If ModuleNotFoundError is encountered

as shown in the figure x below, this suggests that the associated library has not been installed.

Figure 9. Missing Python library exception thrown page

9

To install the missing library, copy the installation command for the missing library into an

empty cell or code block with exclamation (!) prefixing the installation command. Run the code

block with the installation and wait for the completion the the library being installed as shown

in Figure 10 below.

Figure 10. Successfully installed Python using pip command on Jupyter Notebook

Run the code block with the Python libraries again and check if the ModuleNotFoundError

exception occurs. Repeat the process as above for the missing library if the error occurs else

all Python libraries required for this model implementation are completed.

4 Project Implementation and Evaluation
After you have successfully installed Anaconda and set up all the required libraries, this section

demonstrates the code implementation for this research project. It provides a step-by-step

breakdown of the code, including explanations of key functions and processes. Let's dive into

the code to understand how it addresses the research questions and achieves the project's

objectives.

10

4.1 Import Python Libraries

In the initial code block, we'll include all the necessary Python libraries required to run this

project. If you add or modify any library imports in this block, be sure to click the "Run" button

to ensure these changes take effect within the integrated development environment (IDE). This

step is crucial for making sure your project has access to all the correct packages and

dependencies for successful execution.

Figure 11. This code snippet shows the importing of all Python libraries into the IDE

4.2 Global Variables Definition

The second code cell is specifically designed for declaring global variables that will play a

central role in tracking and storing the output produced by various code segments as they

execute. This setup allows us to maintain a consistent state across different parts of the

codebase, facilitating smooth data flow and information sharing. Global variables defined in

this cell will be accessible throughout the entire project, providing a centralized repository for

storing key outputs, intermediate results, and other critical data. Figure y below provides a

comprehensive list of all the global variables utilized throughout this research project. These

variables serve as essential building blocks for integrating and coordinating the diverse

elements of the codebase.

11

Figure 12. This code snippet shows the code block or cell used global variable definition code

4.3 Reuse Function Definition

In the course of implementing the code for this research project on phishing analysis, two

distinct experiments were carried out. Given this, task repetition was inevitable, making code

reuse a crucial approach to reduce redundant coding. To facilitate code reuse and minimize the

overall volume of code, a set of functions was defined to encapsulate commonly repeated

operations. This modular approach not only streamlined the coding process but also improved

maintainability and readability. By leveraging these functions, the project team could focus

more on analysis and experimentation while ensuring consistency and reducing potential errors

due to repetitive coding.

4.3.1 Data Cleaning, Preprocessing and Visualization Function

4.3.1.1 Remove missing data from the analysis dataset function
This function was used to remove missing data from the dataset by checking for records NaN,

positive or negative infinity values. If positive or negative infinity values were found in the

dataset, these values were converted into NaN using the Numpy library. All records with NaN

data value are removed from the dataset by calling the dropna function on the Pandas’ data

frame as shown in Figure 13 below.

12

Figure 13. This code snippet shows the function implementation used for handling missing data or NaN in

the dataset

4.3.1.2 Get data frame column names with unique one unique value
For a variable to be useful in the classification of phishing websites, it must contain values to

help distinguish between the two classes “legitimate” or “phishing” websites. Having one

unique value does help in this classification hence, this function is used to retrieve columns for

removal from the dataset.

Figure 14. This code snippet shows the function implementation used to remove columns with help in

labelling the dataset i.e. data columns with unique data

4.3.1.3 Generate a Pie Chart Diagram
This function is used to generate a Pie chart diagram for showing the percentage distribution

of the binary class in the target variable in the dataset. This function accepts 4 arguments

namely analysis_dataset (data frame containing data records), category_label (a list containing

a label for identifying binary), main_title (a descriptive title for the plot to be generated) and

target_variable (the column name used to retrieve the series used to generate the pie chart).

Figure 15. This code snippet shows the function implementation used to plot binary class distribution plots

for phishing and legitimate website count

13

4.3.1.4 The function is used to normalize, split the dataset into training and testing
datasets, and resample the dataset to eliminate class imbalance in the dataset.

To prepare the dataset for analysis, the function defined by the code block in Figure 16 is used

to scale the dataset such that data records are scaled evenly (normalized). The normalized

dataset is then divided into a training dataset and a testing dataset using the train_test_split

function from the sci-kit learn module. The SMOTE module from the imbalanced learn library

was used to eliminate the class imbalance in the training dataset.

Figure 16. This code snippet shows the function implementation used to normalize the dataset, resample the

dataset with the SMOTE technique and split the dataset into training and testing dataset

4.3.1.5 Process analysis dataset function
This function code snippet defined in Figure 17 invokes the

normalize_resample_and_split_dataset function above to generate the processed analysis

dataset and store the dataset in Python dictionary data structure which will be used to run model

analysis for each of the implemented ML models.

Figure 17. This code snippet shows the function implementation used to prepare the dataset for analysis by

calling the normalize_resample_split_dataset function

14

4.3.2 Model Building and Evaluation Summary Function

4.3.2.1 Function for building GNN and hyper-parameter tuned GNN models
Neural networks are assembled using a build function to the input layer parameters and output

layer parameters for both the baseline and hyper-parameter tuned model’s implementation as

shown in the code snippet in figure 18. For the baseline model, 2 layers of the graph

convolutional layers (gc1 and gc2) were defined to construct the input layer. 64 neurons were

used to initialize the parameter gc1 layer and 32 neurons were used to initialize the parameter

gc2 layer. gc2 layer applies a second layer to the output of the first layer (gc1) which transforms

features after passing through the first layer. The hidden layer of the GNN had 32 neurons

which is applied to the input layer along with an activation function and the output layer has

one neuron and a sigmoid activation function because it is a binary classifier. Both the input

layer and the hidden layer activation function ReLU (Rectified Linear Unit). The ReLU

activation function outputs the input directly if it is positive; otherwise, it outputs zero. This

introduces non-linearity into the model, which helps it learn more complex patterns. Once the

input layer, the hidden layer and the output layer are defined, the Keras model function is used

to create a GNN model with the defined input and output layer parameters. The compile method

configures the model for training by setting the optimizer to “adam” (optimization algorithm

that adjusts the learning rate based on the first and second moments of the gradients), loss

function to “binary_crossentropy” (loss function is used for binary classification tasks. It

measures the difference between the predicted probabilities and the actual binary labels), and

metrics to “accuracy” (which calculates the proportion of correctly classified instances out of

the total instances) be tracked.

For the hyperparameter tunned model, a list of integer values for the gc1, gc2, hidden layer and

the reshape parameters. These parameters will be used to tune the GNN model and select the

optimal parameter.

15

Figure 18. This code snippet shows the implementation of the function used to create the build function for

the baseline GNN and the hyper-parameter tuned GNN model

4.3.2.2 Instantiate and run random classifier (RFC) forest model
The code block labelled 11 in Figure 19 is used to create an instance of the random forest

classifier (RFC) model. The function makes it easy to create new instances of the RFC model

repeatedly with the same set of instructions which is easily maintained and managed.

The code block labelled 12 in Figure 19 is used to run the baseline and hyperparameter-tuned

RFC model depending on the value of the grid_params argument. If the grid_params value is

provided and set to None, the baseline RFC model will be created, but if the grid_params

contains a list of hyperparameters for tuning the RFC model, the hyperparameter-tuned model

RFC will be created.

Figure 19. This code snippet shows the implementation of the function used to build and run the baseline

RFC model and the hyper-parameter tuned RFC model

16

4.3.2.3 Instantiate and run support vector machine (SVM) model
The code block labelled 13 in Figure 20 is used to create an instance of the Support Vector

Machine (SVM) classifier model. The function makes it easy to create new instances of the

SVM model repeatedly with the same set of instructions which is easily maintained and

managed.

The code block labelled 14 in Figure 20 is used to run the baseline and hyperparameter-tuned

SVM model depending on the value of the grid_params argument. If the grid_params value

is provided and set to None, the baseline SVM model will be created, but if the grid_params

contains a list of hyperparameters for tuning the SVM model, the hyperparameter-tuned model

SVM will be created.

Figure 20. This code snippet shows the implementation of the function used to build and run the baseline

SVM model and the hyper-parameter tuned SVM model

4.3.2.4 Instantiate and run the Gradient Boost Classifier (GBC) model
The code block labelled 15 in Figure 21 is used to create an instance of the Gradient Boost

Classifier (GBC) classifier model. The function makes it easy to create new instances of the

GBC model repeatedly with the same set of instructions which is easily maintained and

managed.

The code block labelled 16 in Figure 21 is used to run the baseline and hyperparameter-tuned

GBC model depending on the value of the grid_params argument. If the grid_params value is

provided and set to None, the baseline GBC model will be created, but if the grid_params

contains a list of hyperparameters for tuning the GBC model, the hyperparameter-tuned model

GBC will be created.

17

Figure 21. This code snippet shows the implementation of the function used to build and run the baseline

GBC model and the hyper-parameter tuned GBC model

4.3.2.5 Instantiate and run Graphical Neural Network (GNN) model
The code block labelled 17 in Figure 22 is used to create an instance of the Graphical Neural

Network (GNN) classifier model. The function makes it easy to create new instances of the

GNN model repeatedly with the same set of instructions which is easily maintained and

managed.

The code block labelled 18 in Figure 22 is used to run the baseline and hyperparameter-tuned

GNN model depending on the value of the grid_params argument. If the grid_params value

is provided and set to None, the baseline GNN model will be created, but if the grid_params

contains a list of hyperparameters for tuning the GNN model, the hyperparameter-tuned model

GNN will be created.

Figure 22. This code snippet shows the implementation of the function used to build and run the baseline

GNN model and the hyper-parameter tuned GNN model

4.3.2.6 The function used to perform model analysis for all implemented models
The function whose code snippet is shown in Figure 23 below is used to perform model analysis

for the created ML model being the baseline model or the hyperparameter-tuned model. The

function accepts three arguments namely – model (the model instance to be analysed),

18

model_name (the name used to identify the model being analysed) and

processed_analysis_dataset (contains the processed dataset used for model analysis). The

function invokes four other functions to complete the analysis for all the implemented models.

Figure 23. This code snippet shows the function implementation used to assemble and run model analysis for

all implemented models

4.3.2.7 Train ML model function
The function in the code block labelled 21 whose code snippet is shown in figure 24 below is

used to perform model training on the training dataset and track the amount of time in seconds

used in the training model using the training dataset.

The function in the code block labelled 22 whose code snippet is shown in Figure 24 below is

used to perform model prediction after successfully training the model being analysed. The

function also tracks the time in seconds used in making predictions using the testing dataset.

Figure 24. This code snippet shows the functions implementation used to train and generate predictions for

the model being analyzed

19

4.3.2.8 Generate summary analysis summary function
The function in the code block labelled 23 whose code snippet is shown in Figure 25 is used to

generate summary analysis from the generated prediction of the previous function in code block

labelled 22 and the actual values in test y variables. The function accepted four variables

namely – test_y (the actual labels assigned to the testing dataset), predictions (the generated

labels from the predictions made for the testing_x predictors), result (the dictionary data

structure used in tracking evaluation metrics for the implemented models), model_name (the

name used to identify the model being analysed). The function also invokes three other

functions to complete the summary analysis to be completed.

The function in the code block labelled 24 whose code snippet is shown in Figure 25 is used

classification report summary for the implemented model. The classification summary report

provides a detailed overview of a classification model's performance, breaking it down into

precision, recall, F1-score, and support for each class, as well as overall averages.

The function in the code block labelled 25 whose code snippet is shown in Figure 25 is used to

generate the confusion matrix diagram. The confusion matrix plot is used to provide visual

detailed insights into how predictions match the actual labels, enabling evaluation of the

efficacy of the implemented model.

The function in the code block labelled 26 whose code snippet is shown in Figure 25 is used to

display the estimated score for the implemented evaluation metrics namely – Accuracy score,

AUC score and F1-Score.

20

Figure 25. This code snippet shows the implementation of the function used to generate and display the

model evaluation summary and confusion matrix plot.

4.3.2.9 Display summary table for implementing model’s function
The function in the code block labelled 30 whose code snippet is shown in Figure 26 is used to

draw a summary table for the models in the baseline and hyperparameter-tuned

implementation. The function accepts three arguments namely – result (contains estimated

values for Accuracy, AUC and F1-Score for the implemented models), record_desc (contains

short names for the implemented models), and metrics (contains names for evaluation metrics

used in evaluating the models). These arguments hold all the data used in rendering the

summary table for the models in the baseline and hyperparameter-tuned implementations.

Figure 26. This code snippet shows the function implementation used to generate an evaluation summary

table for all implemented models for experiment 1 and experiment 2.

The function in the code block labelled 31 whose code snippet is shown in Figure 27 is used

to draw a table of cell data enforcing consistent width for all cells drawn in the summary

table. The function accepts four arguments namely – text (the text data to be rendered in the

cell to be drawn), position (the column position of the cell to be drawn), num_of_columns

(the total number of columns on the table), column_width (the size for the cell to be drawn).

21

The function in the code block labelled 32 whose code snippet is shown in Figure 27 is used

to horizontal bar across the table being drawn or across the summary presentation area.

Figure 27. This code snippet shows functions that are used to set table cell records and draw horizontal bars

across a table respectively.

4.3.3 Genetic Algorithm Implementation Function

4.3.3.1 The function used to couple the genetic algorithm (GA) and run the
analysis

The function in the code block labelled 33 whose code snippet is shown in figure 28 is used to

initialize the parameters needed to run the genetic algorithm. These parameters are then fed

into the defined genetic_algorithm function. The output from the genetic algorithm (GA)

function is then used to retrieve the best-performing individual from the GA analysis.

The function in the code block labelled 34 whose code snippet is shown in Figure 28 is used to

retrieve the best individual from GA hall of fame output. The function loops through the hall

of fame variable and selects the individual with the high fitness value. The function returns the

column name for the select features, the estimated fitness value and the individual genome.

22

Figure 28. This code snippet shows function used to assemble the implemented genetic algorithms (GA),

while function 34 is used to select the best individual in the population

4.3.3.2 Genetic Algorithm (GA) implementation function
The function in the code block labelled 35 whose code snippet is shown in Figure 29 is the GA

implementation function designed to optimize a predictive model by selecting the best subset

of predictors (features).

First, the creator module from deap library is used to define the representation of a

chromosome or genome or individual in the population. Secondly, the instance of the Toolbox

(toolbox) is created from the base module and the created instance of toolbox to register and

configure population parameters used for the GA analysis. Next, the toolbox registers the

fitness function used to evaluate the fitness of an individual using the provided model and

fitness function. Also, the toolbox instance registers other GA operations namely – mate (also

known as the Crossover operation with the attribute “cxTwoPoint” is used to swap segments

between two parents to create new offspring), mutate (also known as the Mutation operation

with the attribute “mutFlipBit” is used to flip bit in the chromosome with a probability of 0.05)

and select (also known as the Selection operation with the attribute “selTournament” is used to

select the best individuals out of a randomly chosen subset of the population) operations

respectively. To execute the GA, the initial population is created by calling the toolbox

population method, and the evolutionary process is initiated by calling eaMuPlusLambda

module in algorithms module. The eaMuPlusLambda algorithm is an evolutionary strategy

23

that generates lambda (the number of offspring which is equal to twice the population size)

offspring from mu (the number of parents which is equal to the population size) parents.

After each evolutionary process, the best-performing individual is best individuals (those with

the highest fitness scores) from the current generation are preserved and directly passed on to

the next generation without undergoing crossover or mutation. This ensures that the most

optimal solutions found so far are not lost due to the stochastic nature of the genetic operations.

When the GA operation has been completed, the hall of fame which is used to store the best

individuals found during the evolution process is returned for further processing.

Figure 29. This code snippet shows the Genetic Algorithm (GA) implementation function

The function in the code block labelled 37 whose code snippet is shown in figure 30 defines

the fitness function used by the GA to determine the fitness of the individual in the population

of a given generation. The fitness function accepts five arguments namely – individual (binary

string for the selected features), predictors (the independent variables in the dataset), target (the

dependent variable in the dataset), model (the model used to analyse the individual), and

is_func (a Boolean variation use to build neural network model should the model need to be

compiled). The fitness function uses the mean score of running cross-validation scores from

the fitting model and the dataset provided to calculate the fitness of the individual.

24

Figure 30. This code snippet shows the fitness function implementation for GA and the function used to

calculate the mean score for members of a population in GA

4.4 Feature Extraction from Raw Data

Two Python modules, features_extractions.py and features_to_extract.py, were created to

streamline feature extraction from a raw phishing website dataset. The features_to_extract.py

module has functions to extract individual attributes from the raw data, while

features_extractions.py manages the overall feature extraction process. The primary function

in features_extractions.py is run_features_from_database(), which takes three parameters:

data_dir (the directory containing the raw data), extracted_features_csv (the path to save the

extracted features), and columns (a list of column names for the extracted features). This

function can be imported into the project code to extract and process features from the phishing

website dataset.

Figure 31. This code snippet shows the function call used to perform feature extraction from the raw dataset

4.5 Load Phishing Website Dataset

To begin the analysis of phishing websites, the extracted dataset was loaded into Jupyter

Notebook using Python's Pandas library, creating a Pandas DataFrame. The code snippet in

Figure x illustrates how to import the datasets into the IDE.

25

Figure 32. Code snippets showing the loading and visualization of the first 5 records and the last first record.

4.6 Data Cleaning, Preprocessing and Exploration

These code snippets utilize predefined functions to handle missing data, remove irrelevant

attributes that don't contribute to distinguishing legitimate websites from phishing ones, and

examine the distribution of the target variable to explore its binary class structure.

Figure 33. This code snippet shows the removal of possible missing values from the dataset

26

Figure 34. This code snippet for removing useless attributes from the dataset if they existed

Figure 35. This code snippet for showing the class distribution of data either legitimate or phishing website

4.7 Model Implementation and Evaluation

The following code snippets demonstrate the execution of functions used to perform model

analysis for Experiment 1 and Experiment 2. Additionally, this section includes a code snippet

for generating a summary table, providing a comprehensive overview of the implementation

27

process. This summary table encapsulates key metrics and results from the experiments,

serving as a reference point for evaluating the performance of different models.

The code block labelled 46 whose code snippet is shown in Figure 36 shows the final

preparation of the dataset before running the baseline model analysis

Figure 36. This code snippet shows the processing of the dataset into analysis-ready data to be analyzed by

the model implementation

The code blocks whose code snippets are shown in Figure 37 show the invocation of the

function used in running the baseline analysis for all implemented models.

Figure 37. This code snippet shows the code for running code blocks for implementing the baseline models or

experiment 1 for the four models (RFC, SVM, GBC and GNN)

The code blocks whose code snippets are shown in Figure 38 show the invocation of

run_genetic_algorithm_model_base_solution instance of the RFC given as a parameter to the

function. After the GA feature selection is completed, the output from the GA operation is used

to preparation of the dataset for the RFC hyperparameter-tuned model. The hyperparameters

for the RFC model are stored in a dictionary data structure with a variable name grid_params

and the run_rfc_model is invoked to run the RFC hyperparameter model analysis.

28

Figure 38. This code snippet shows code for running the code block for implementing the GA feature

selection with hyper-parameter turning for RFC model in experiment 2

The code blocks whose code snippets are shown in Figure 39 show the invocation of

run_genetic_algorithm_model_base_solution instance of the SVM given as a parameter to

the function. After the GA feature selection is completed, the output from the GA operation is

used to preparation of the dataset for the SVM hyperparameter-tuned model. The

hyperparameters for the SVM model are stored in a dictionary data structure with a variable

name grid_params and the run_svm_model is invoked to run the SVM hyperparameter model

analysis.

Figure 39. This code snippets shows code for running of code block for implementing the GA feature

selection with hyper-parameter turning for SVM model in experiment 2

29

The code blocks whose code snippets are shown in Figure 40 show the invocation of

run_genetic_algorithm_model_base_solution instance of the GBC given as a parameter to the

function. After the GA feature selection is completed, the output from the GA operation is used

to preparation of the dataset for the GBC hyperparameter-tuned model. The hyperparameters

for the GBC model are stored in a dictionary data structure with a variable name grid_params

and the run_gbc_model is invoked to run the GBC hyperparameter model analysis.

Figure 40. This code snippet shows code for running the code block for implementing the GA feature

selection with hyper-parameter turning for the GBC model in experiment 2

The code blocks whose code snippets are shown in Figure 41 show the invocation of

run_genetic_algorithm_model_base_solution instance of the GNN given as a parameter to

the function. After the GA feature selection is completed, the output from the GA operation is

used to preparation of the dataset for the GNN hyperparameter-tuned model. The

hyperparameters for the GNN model are stored in a dictionary data structure with a variable

name grid_params and the run_gnn_model is invoked to run the GNN hyperparameter model

analysis.

30

Figure 41. This code snippet shows code for running the code block for implementing the GA feature

selection with hyper-parameter turning for the GNN model in experiment 2

The code block whose code snippet is shown in Figure 42 shows the generation of the

summary table for all models both in the baseline and hyperparameter-tuned implementation.

Figure 42. This code snippet shows code used for generating the summary table for all models in both

experiment 1 and experiment 2

5 Conclusion

This configuration manual provides comprehensive guidelines for researchers aiming to

replicate the code implementation outlined in this research report. By following these steps and

using the same datasets, you can ensure consistent outcomes similar to those achieved in this

study. The report includes detailed code snippets that collectively document the process used

to meet the project's objectives and goals. By adhering to these guidelines, researchers can

confidently replicate the experiment, validating the findings and further exploring the topics

addressed in this work.

References

Ariyadasa, S., Fernando, Shantha and Fernando, Subha (2021) 'Phishing websites dataset.'

Mendeley Data. https://doi.org/10.17632/n96ncsr5g4.1.

