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Using Genetic Algorithms for Optimized Feature 
Selection in Machine Learning and Deep Learning 

Models to Detect Phishing Websites 
 

Akinola David Omotola 
X22133755  

 

1 Introduction 
 

This report aims to produce a manual which is a comprehensive guideline for creating the code 

implementation setup of the research on “Using Genetic Algorithms for Optimized Feature 

Selection in Machine Learning and Deep Learning Models to Detect Phishing Websites”. The 

research was carried out to investigate how well the application of genetic algorithm (GA) is 

to select optimal features to improve the efficiency of deep learning and supervised learning 

algorithms in classifying websites as legitimate websites or phishing websites analysing 

historical website datasets. In carrying out this experiment, the Phishing Websites Dataset 

(Ariyadasa, Fernando and Fernando, 2021) was analysed using four machine learning 

algorithms. The machine learning algorithms that were implemented included the Graph 

Neural Network (GNN) which deep learning technique and three well-known supervised 

learning techniques: Random Forest (RF), Support Vector Machine (SVM), and Gradient 

Boost Classifier (GBC). This research conducted two sets of experiments namely Experiment 

1 which is the baseline model implementation and Experiment 2 which combines GA feature 

selection on the dataset with hyperparameter tuning of the implemented models. The models 

were evaluated using Accuracy, Area Under the Curve (AUC) and F1 Score evaluation metrics.  

 

This report's remaining content is shown as follows: In Section 2, system specifications for the 

hardware and software components used in this code implementation are covered. In Section 

3, software installation, setting up the Anaconda environment, and installing the Python 

libraries used in this code implementation are covered. Section 4 will include code 

implementation, model evaluation, and how well the models worked with each dataset's 

analysis. Section 5 will provide closing remarks, and Section 6 will include a list of references. 
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2 System Specification 

2.1 Hardware Specification 

The configuration for the PC hardware used in the code implementation for this research work 

is specified in the table below 

 

Hardware Configuration Value 

Random Access Memory (RAM) 16 GB 

Processor Type Intel core i5 with 2.50 GHz processing speed 

Read Only Memory (ROM) 1 TB SSD 

Table 1. System Hardware Configuration Summary 

2.2 System Software Requirement 

The table below briefly summarises and describes all software required to carry out this 

coding implementation 

 

Software Description 

Window 10 Operating 

System 

The fundamental software that serves as the platform that 

other supplementary software needed for this implementation 

project work will be installed, providing a reliable and 

compatible environment for the project's development and 

implementation. 

Anaconda V 2.5.2 Anaconda is a package manager for the Python programming 

language. It allows for managing multiple Python versions 

and creating isolated environments, facilitating the creation 

and management of distinct workspaces on a single machine. 

Jupyter Notebook V 7.0.8 Jupyter Notebook is an interactive programming IDE that 

executes code snippets directly within your web browser. 



 

3 
 

 

Web Browser (Google 

Chrome, Microsoft Edge, or 

Mozilla Firefox) 

Jupyter Notebook uses a web browser to display code 

segments within cells or blocks, as well as the corresponding 

output when those code blocks are executed. 

Table 2. Software Requirement Summary 

 

 

3 Software Installation and Python Libraries 

3.1 Anaconda Installation Guide 

This guide provides a step-by-step walkthrough for installing Anaconda Navigator on your PC. 

First, visit the Anaconda download page and obtain the installation media. Follow the 

instructions below to set up Anaconda on your system. 

 

Step 1: 

Locate the downloaded installation media and double-click it to start the installation process. 

When the Anaconda setup screen appears, click the "Next" button to proceed. 

 

 

Figure 1. Anaconda installer welcome page 

Step 2: 

In the license agreement section, read through the terms, then click the "I Agree" button to 

proceed. 
 

https://www.anaconda.com/download/success


 

4 
 

 

 
 

Figure 2. Anaconda installer license agreement page 

 

Step 3: 

On the "Select Installation Type" page, click the "Next" button to continue. 

 

 
 

Figure 3. Anaconda installer select installation type page 

 

Step 4: 

In the "Choose Install Location" section, click the "Next" button to proceed. 
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Figure 4. Anaconda installer chooses the install path page 

 

Step 5: 

On the "Advanced Installation Options" screen, click the "Install" button to begin writing the 

setup file to memory. 

 

 
 

Figure 5. Anaconda installer advance installation options page 

 

 

Step 6: 

On the "Installation Complete" page, wait for the process to finish, then click the "Next" 

button. 
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Figure 6.  Anaconda installer installation complete page 

 

Step 7: 

On the "Thank You" page, click the "Finish" button to complete the Anaconda installation. 

 

 
 

Figure 7.  Anaconda installer completing setup page 

 

3.2 Python Environment and Libraries 

The Anaconda installation set up a default environment called "base" which comes with several 

pre-installed Python libraries essential for coding the project. Additional libraries will be 

installed to fully configure the environment for this coding task. 

3.2.1 Python Libraries 

 



 

7 
 

 

Library Name Installation Command 

Pandas pip install pandas 

Numpy pip install numpy 

Statistics pip install statistics 

Seaborn pip install seaborn 

Scikit-learn pip install scikit-learn 

Imbalanced-learn pip install imbalanced-learn 

Tensorflow pip install tensorflow 

Scikeras pip install scikeras 

Deap pip install deap 

Table 3. Python Libraries and their installation command 

 

3.2.2 How to install Python Libraries from Jupyter Notebook 

To open Anaconda, click on the Start menu and find the Anaconda3 folder. Expand the folder, 

then double-click on Anaconda Navigator to launch the application. Once Anaconda Navigator 

is running, locate the Jupyter Notebook tile and click "Launch" to open the interactive Python 

IDE in your web browser, as illustrated below. 
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Figure 8. Anaconda navigator home page when launched 

 

 

On the launch of Jupyter Notebook, all Python libraries for implementing this research work 

will be loaded in a cell and the code will be executed. If ModuleNotFoundError is encountered 

as shown in the figure x below, this suggests that the associated library has not been installed.  

 

Figure 9. Missing Python library exception thrown page 
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To install the missing library, copy the installation command for the missing library into an 

empty cell or code block with exclamation (!) prefixing the installation command. Run the code 

block with the installation and wait for the completion the the library being installed as shown 

in Figure 10 below. 

 

 

Figure 10. Successfully installed Python using pip command on Jupyter Notebook 

 

 

Run the code block with the Python libraries again and check if the ModuleNotFoundError 

exception occurs. Repeat the process as above for the missing library if the error occurs else 

all Python libraries required for this model implementation are completed. 
 

4 Project Implementation and Evaluation 
After you have successfully installed Anaconda and set up all the required libraries, this section 

demonstrates the code implementation for this research project. It provides a step-by-step 

breakdown of the code, including explanations of key functions and processes. Let's dive into 

the code to understand how it addresses the research questions and achieves the project's 

objectives. 
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4.1 Import Python Libraries 

In the initial code block, we'll include all the necessary Python libraries required to run this 

project. If you add or modify any library imports in this block, be sure to click the "Run" button 

to ensure these changes take effect within the integrated development environment (IDE). This 

step is crucial for making sure your project has access to all the correct packages and 

dependencies for successful execution. 

 

 
 

Figure 11. This code snippet shows the importing of all Python libraries into the IDE  

4.2 Global Variables Definition 

The second code cell is specifically designed for declaring global variables that will play a 

central role in tracking and storing the output produced by various code segments as they 

execute. This setup allows us to maintain a consistent state across different parts of the 

codebase, facilitating smooth data flow and information sharing.  Global variables defined in 

this cell will be accessible throughout the entire project, providing a centralized repository for 

storing key outputs, intermediate results, and other critical data. Figure y below provides a 

comprehensive list of all the global variables utilized throughout this research project. These 

variables serve as essential building blocks for integrating and coordinating the diverse 

elements of the codebase. 
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Figure 12. This code snippet shows the code block or cell used global variable definition code 

4.3 Reuse Function Definition 

In the course of implementing the code for this research project on phishing analysis, two 

distinct experiments were carried out. Given this, task repetition was inevitable, making code 

reuse a crucial approach to reduce redundant coding. To facilitate code reuse and minimize the 

overall volume of code, a set of functions was defined to encapsulate commonly repeated 

operations. This modular approach not only streamlined the coding process but also improved 

maintainability and readability. By leveraging these functions, the project team could focus 

more on analysis and experimentation while ensuring consistency and reducing potential errors 

due to repetitive coding. 

4.3.1 Data Cleaning, Preprocessing and Visualization Function 

4.3.1.1 Remove missing data from the analysis dataset function 
This function was used to remove missing data from the dataset by checking for records NaN, 

positive or negative infinity values. If positive or negative infinity values were found in the 

dataset, these values were converted into NaN using the Numpy library. All records with NaN 

data value are removed from the dataset by calling the dropna function on the Pandas’ data 

frame as shown in Figure 13 below. 
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Figure 13. This code snippet shows the function implementation used for handling missing data or NaN in 

the dataset  

4.3.1.2 Get data frame column names with unique one unique value 
For a variable to be useful in the classification of phishing websites, it must contain values to 

help distinguish between the two classes “legitimate” or “phishing” websites. Having one 

unique value does help in this classification hence, this function is used to retrieve columns for 

removal from the dataset. 
 

 

Figure 14. This code snippet shows the function implementation used to remove columns with help in 

labelling the dataset i.e. data columns with unique data  

4.3.1.3 Generate a Pie Chart Diagram 
This function is used to generate a Pie chart diagram for showing the percentage distribution 

of the binary class in the target variable in the dataset. This function accepts 4 arguments 

namely analysis_dataset (data frame containing data records), category_label (a list containing 

a label for identifying binary), main_title (a descriptive title for the plot to be generated) and 

target_variable (the column name used to retrieve the series used to generate the pie chart).  
 

 

 

Figure 15. This code snippet shows the function implementation used to plot binary class distribution plots 

for phishing and legitimate website count 
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4.3.1.4 The function is used to normalize, split the dataset into training and testing 
datasets, and resample the dataset to eliminate class imbalance in the dataset. 

To prepare the dataset for analysis, the function defined by the code block in Figure 16 is used 

to scale the dataset such that data records are scaled evenly (normalized). The normalized 

dataset is then divided into a training dataset and a testing dataset using the train_test_split 

function from the sci-kit learn module. The SMOTE module from the imbalanced learn library 

was used to eliminate the class imbalance in the training dataset. 
 

 

Figure 16. This code snippet shows the function implementation used to normalize the dataset, resample the 

dataset with the SMOTE technique and split the dataset into training and testing dataset 

 

4.3.1.5 Process analysis dataset function  
This function code snippet defined in Figure 17 invokes the 

normalize_resample_and_split_dataset function above to generate the processed analysis 

dataset and store the dataset in Python dictionary data structure which will be used to run model 

analysis for each of the implemented ML models. 
 

 

Figure 17. This code snippet shows the function implementation used to prepare the dataset for analysis by 

calling the normalize_resample_split_dataset function 
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4.3.2 Model Building and Evaluation Summary Function 

4.3.2.1 Function for building GNN and hyper-parameter tuned GNN models 
Neural networks are assembled using a build function to the input layer parameters and output 

layer parameters for both the baseline and hyper-parameter tuned model’s implementation as 

shown in the code snippet in figure 18. For the baseline model, 2 layers of the graph 

convolutional layers (gc1 and gc2) were defined to construct the input layer. 64 neurons were 

used to initialize the parameter gc1 layer and 32 neurons were used to initialize the parameter 

gc2 layer. gc2 layer applies a second layer to the output of the first layer (gc1) which transforms 

features after passing through the first layer. The hidden layer of the GNN had 32 neurons 

which is applied to the input layer along with an activation function and the output layer has 

one neuron and a sigmoid activation function because it is a binary classifier. Both the input 

layer and the hidden layer activation function ReLU (Rectified Linear Unit). The ReLU 

activation function outputs the input directly if it is positive; otherwise, it outputs zero. This 

introduces non-linearity into the model, which helps it learn more complex patterns. Once the 

input layer, the hidden layer and the output layer are defined, the Keras model function is used 

to create a GNN model with the defined input and output layer parameters. The compile method 

configures the model for training by setting the optimizer to “adam” (optimization algorithm 

that adjusts the learning rate based on the first and second moments of the gradients), loss 

function to “binary_crossentropy” (loss function is used for binary classification tasks. It 

measures the difference between the predicted probabilities and the actual binary labels), and 

metrics to “accuracy” (which calculates the proportion of correctly classified instances out of 

the total instances) be tracked. 

For the hyperparameter tunned model, a list of integer values for the gc1, gc2, hidden layer and 

the reshape parameters. These parameters will be used to tune the GNN model and select the 

optimal parameter. 
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Figure 18. This code snippet shows the implementation of the function used to create the build function for 

the baseline GNN and the hyper-parameter tuned GNN model 

 

4.3.2.2 Instantiate and run random classifier (RFC) forest model 
The code block labelled 11 in Figure 19 is used to create an instance of the random forest 

classifier (RFC) model. The function makes it easy to create new instances of the RFC model 

repeatedly with the same set of instructions which is easily maintained and managed. 

 

The code block labelled 12 in Figure 19 is used to run the baseline and hyperparameter-tuned 

RFC model depending on the value of the grid_params argument. If the grid_params value is 

provided and set to None, the baseline RFC model will be created, but if the grid_params 

contains a list of hyperparameters for tuning the RFC model, the hyperparameter-tuned model 

RFC will be created. 
 

 

Figure 19. This code snippet shows the implementation of the function used to build and run the baseline 

RFC model and the hyper-parameter tuned RFC model 
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4.3.2.3 Instantiate and run support vector machine (SVM) model 
The code block labelled 13 in Figure 20 is used to create an instance of the Support Vector 

Machine (SVM) classifier model. The function makes it easy to create new instances of the 

SVM model repeatedly with the same set of instructions which is easily maintained and 

managed. 

 

The code block labelled 14 in Figure 20 is used to run the baseline and hyperparameter-tuned 

SVM model depending on the value of the grid_params argument. If the grid_params value 

is provided and set to None, the baseline SVM model will be created, but if the grid_params 

contains a list of hyperparameters for tuning the SVM model, the hyperparameter-tuned model 

SVM will be created. 
 

 

Figure 20. This code snippet shows the implementation of the function used to build and run the baseline 

SVM model and the hyper-parameter tuned SVM model 

 

4.3.2.4 Instantiate and run the Gradient Boost Classifier (GBC) model 
The code block labelled 15 in Figure 21 is used to create an instance of the Gradient Boost 

Classifier (GBC) classifier model. The function makes it easy to create new instances of the 

GBC model repeatedly with the same set of instructions which is easily maintained and 

managed. 

 

The code block labelled 16 in Figure 21 is used to run the baseline and hyperparameter-tuned 

GBC model depending on the value of the grid_params argument. If the grid_params value is 

provided and set to None, the baseline GBC model will be created, but if the grid_params 

contains a list of hyperparameters for tuning the GBC model, the hyperparameter-tuned model 

GBC will be created. 
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Figure 21. This code snippet shows the implementation of the function used to build and run the baseline 

GBC model and the hyper-parameter tuned GBC model 

 

4.3.2.5 Instantiate and run Graphical Neural Network (GNN) model 
The code block labelled 17 in Figure 22 is used to create an instance of the Graphical Neural 

Network (GNN) classifier model. The function makes it easy to create new instances of the 

GNN model repeatedly with the same set of instructions which is easily maintained and 

managed. 

 

The code block labelled 18 in Figure 22 is used to run the baseline and hyperparameter-tuned 

GNN model depending on the value of the grid_params argument. If the grid_params value 

is provided and set to None, the baseline GNN model will be created, but if the grid_params 

contains a list of hyperparameters for tuning the GNN model, the hyperparameter-tuned model 

GNN will be created. 

 

 

Figure 22. This code snippet shows the implementation of the function used to build and run the baseline 

GNN model and the hyper-parameter tuned GNN model 

 

4.3.2.6 The function used to perform model analysis for all implemented models 
The function whose code snippet is shown in Figure 23 below is used to perform model analysis 

for the created ML model being the baseline model or the hyperparameter-tuned model. The 

function accepts three arguments namely – model (the model instance to be analysed), 
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model_name (the name used to identify the model being analysed) and 

processed_analysis_dataset (contains the processed dataset used for model analysis). The 

function invokes four other functions to complete the analysis for all the implemented models. 
 

 

Figure 23. This code snippet shows the function implementation used to assemble and run model analysis for 

all implemented models 

4.3.2.7 Train ML model function 
The function in the code block labelled 21 whose code snippet is shown in figure 24 below is 

used to perform model training on the training dataset and track the amount of time in seconds 

used in the training model using the training dataset. 
 

The function in the code block labelled 22 whose code snippet is shown in Figure 24 below is 

used to perform model prediction after successfully training the model being analysed. The 

function also tracks the time in seconds used in making predictions using the testing dataset. 
 
 

 

Figure 24. This code snippet shows the functions implementation used to train and generate predictions for 

the model being analyzed 
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4.3.2.8 Generate summary analysis summary function 
The function in the code block labelled 23 whose code snippet is shown in Figure 25 is used to 

generate summary analysis from the generated prediction of the previous function in code block 

labelled 22 and the actual values in test y variables. The function accepted four variables 

namely – test_y (the actual labels assigned to the testing dataset), predictions (the generated 

labels from the predictions made for the testing_x predictors), result (the dictionary data 

structure used in tracking evaluation metrics for the implemented models), model_name (the 

name used to identify the model being analysed). The function also invokes three other 

functions to complete the summary analysis to be completed. 

 

The function in the code block labelled 24 whose code snippet is shown in Figure 25 is used 

classification report summary for the implemented model. The classification summary report 

provides a detailed overview of a classification model's performance, breaking it down into 

precision, recall, F1-score, and support for each class, as well as overall averages. 

 

The function in the code block labelled 25 whose code snippet is shown in Figure 25 is used to 

generate the confusion matrix diagram. The confusion matrix plot is used to provide visual 

detailed insights into how predictions match the actual labels, enabling evaluation of the 

efficacy of the implemented model.  

 

The function in the code block labelled 26 whose code snippet is shown in Figure 25 is used to 

display the estimated score for the implemented evaluation metrics namely – Accuracy score, 

AUC score and F1-Score. 
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Figure 25. This code snippet shows the implementation of the function used to generate and display the 

model evaluation summary and confusion matrix plot. 

 

4.3.2.9 Display summary table for implementing model’s function 
The function in the code block labelled 30 whose code snippet is shown in Figure 26 is used to 

draw a summary table for the models in the baseline and hyperparameter-tuned 

implementation. The function accepts three arguments namely – result (contains estimated 

values for Accuracy, AUC and F1-Score for the implemented models), record_desc (contains 

short names for the implemented models), and metrics (contains names for evaluation metrics 

used in evaluating the models). These arguments hold all the data used in rendering the 

summary table for the models in the baseline and hyperparameter-tuned implementations. 
 

 

Figure 26. This code snippet shows the function implementation used to generate an evaluation summary 

table for all implemented models for experiment 1 and experiment 2. 

 

The function in the code block labelled 31 whose code snippet is shown in Figure 27 is used 

to draw a table of cell data enforcing consistent width for all cells drawn in the summary 

table. The function accepts four arguments namely – text (the text data to be rendered in the 

cell to be drawn), position (the column position of the cell to be drawn), num_of_columns 

(the total number of columns on the table), column_width (the size for the cell to be drawn). 
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The function in the code block labelled 32 whose code snippet is shown in Figure 27 is used 

to horizontal bar across the table being drawn or across the summary presentation area. 
 

 

Figure 27. This code snippet shows functions that are used to set table cell records and draw horizontal bars 

across a table respectively. 

4.3.3 Genetic Algorithm Implementation Function 

4.3.3.1 The function used to couple the genetic algorithm (GA) and run the 
analysis 

The function in the code block labelled 33 whose code snippet is shown in figure 28 is used to 

initialize the parameters needed to run the genetic algorithm. These parameters are then fed 

into the defined genetic_algorithm function. The output from the genetic algorithm (GA) 

function is then used to retrieve the best-performing individual from the GA analysis. 
 
The function in the code block labelled 34 whose code snippet is shown in Figure 28 is used to 

retrieve the best individual from GA hall of fame output. The function loops through the hall 

of fame variable and selects the individual with the high fitness value. The function returns the 

column name for the select features, the estimated fitness value and the individual genome. 
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Figure 28. This code snippet shows function used to assemble the implemented genetic algorithms (GA), 

while function 34 is used to select the best individual in the population 

4.3.3.2 Genetic Algorithm (GA) implementation function 
The function in the code block labelled 35 whose code snippet is shown in Figure 29 is the GA 

implementation function designed to optimize a predictive model by selecting the best subset 

of predictors (features). 

 

First, the creator module from deap library is used to define the representation of a 

chromosome or genome or individual in the population. Secondly, the instance of the Toolbox 

(toolbox) is created from the base module and the created instance of toolbox to register and 

configure population parameters used for the GA analysis. Next, the toolbox registers the 

fitness function used to evaluate the fitness of an individual using the provided model and 

fitness function. Also, the toolbox instance registers other GA operations namely – mate (also 

known as the Crossover operation with the attribute “cxTwoPoint” is used to swap segments 

between two parents to create new offspring), mutate (also known as the Mutation operation 

with the attribute “mutFlipBit” is used to flip bit in the chromosome with a probability of 0.05) 

and select (also known as the Selection operation with the attribute “selTournament” is used to 

select the best individuals out of a randomly chosen subset of the population) operations 

respectively. To execute the GA, the initial population is created by calling the toolbox 

population method, and the evolutionary process is initiated by calling eaMuPlusLambda 

module in algorithms module. The eaMuPlusLambda algorithm is an evolutionary strategy 
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that generates lambda (the number of offspring which is equal to twice the population size) 

offspring from mu (the number of parents which is equal to the population size) parents.  

After each evolutionary process, the best-performing individual is best individuals (those with 

the highest fitness scores) from the current generation are preserved and directly passed on to 

the next generation without undergoing crossover or mutation. This ensures that the most 

optimal solutions found so far are not lost due to the stochastic nature of the genetic operations. 

When the GA operation has been completed, the hall of fame which is used to store the best 

individuals found during the evolution process is returned for further processing. 
 

 

Figure 29. This code snippet shows the Genetic Algorithm (GA) implementation function 

 
The function in the code block labelled 37 whose code snippet is shown in figure 30 defines 

the fitness function used by the GA to determine the fitness of the individual in the population 

of a given generation. The fitness function accepts five arguments namely – individual (binary 

string for the selected features), predictors (the independent variables in the dataset), target (the 

dependent variable in the dataset), model (the model used to analyse the individual), and 

is_func (a Boolean variation use to build neural network model should the model need to be 

compiled). The fitness function uses the mean score of running cross-validation scores from 

the fitting model and the dataset provided to calculate the fitness of the individual. 
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Figure 30. This code snippet shows the fitness function implementation for GA and the function used to 

calculate the mean score for members of a population in GA 

4.4 Feature Extraction from Raw Data 

Two Python modules, features_extractions.py and features_to_extract.py, were created to 

streamline feature extraction from a raw phishing website dataset. The features_to_extract.py 

module has functions to extract individual attributes from the raw data, while 

features_extractions.py manages the overall feature extraction process. The primary function 

in features_extractions.py is run_features_from_database(), which takes three parameters: 

data_dir (the directory containing the raw data), extracted_features_csv (the path to save the 

extracted features), and columns (a list of column names for the extracted features). This 

function can be imported into the project code to extract and process features from the phishing 

website dataset. 

 

 

Figure 31. This code snippet shows the function call used to perform feature extraction from the raw dataset 

 

4.5 Load Phishing Website Dataset 

To begin the analysis of phishing websites, the extracted dataset was loaded into Jupyter 

Notebook using Python's Pandas library, creating a Pandas DataFrame. The code snippet in 

Figure x illustrates how to import the datasets into the IDE. 
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Figure 32. Code snippets showing the loading and visualization of the first 5 records and the last first record. 

 

4.6 Data Cleaning, Preprocessing and Exploration 

These code snippets utilize predefined functions to handle missing data, remove irrelevant 

attributes that don't contribute to distinguishing legitimate websites from phishing ones, and 

examine the distribution of the target variable to explore its binary class structure. 
 

 

Figure 33. This code snippet shows the removal of possible missing values from the dataset 

 

 

 



 

26 
 

 

 

Figure 34. This code snippet for removing useless attributes from the dataset if they existed 

 

 

 

Figure 35. This code snippet for showing the class distribution of data either legitimate or phishing website 

 

 

4.7 Model Implementation and Evaluation 

The following code snippets demonstrate the execution of functions used to perform model 

analysis for Experiment 1 and Experiment 2. Additionally, this section includes a code snippet 

for generating a summary table, providing a comprehensive overview of the implementation 
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process. This summary table encapsulates key metrics and results from the experiments, 

serving as a reference point for evaluating the performance of different models. 

 

The code block labelled 46 whose code snippet is shown in Figure 36 shows the final 

preparation of the dataset before running the baseline model analysis 

 

Figure 36. This code snippet shows the processing of the dataset into analysis-ready data to be analyzed by 

the model implementation  

 

The code blocks whose code snippets are shown in Figure 37 show the invocation of the 

function used in running the baseline analysis for all implemented models. 

 

Figure 37. This code snippet shows the code for running code blocks for implementing the baseline models or 

experiment 1 for the four models (RFC, SVM, GBC and GNN) 

 

The code blocks whose code snippets are shown in Figure 38 show the invocation of 

run_genetic_algorithm_model_base_solution instance of the RFC given as a parameter to the 

function. After the GA feature selection is completed, the output from the GA operation is used 

to preparation of the dataset for the RFC hyperparameter-tuned model. The hyperparameters 

for the RFC model are stored in a dictionary data structure with a variable name grid_params 

and the run_rfc_model is invoked to run the RFC hyperparameter model analysis. 
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Figure 38. This code snippet shows code for running the code block for implementing the GA feature 

selection with hyper-parameter turning for RFC model in experiment 2 

 

The code blocks whose code snippets are shown in Figure 39 show the invocation of 

run_genetic_algorithm_model_base_solution instance of the SVM given as a parameter to 

the function. After the GA feature selection is completed, the output from the GA operation is 

used to preparation of the dataset for the SVM hyperparameter-tuned model. The 

hyperparameters for the SVM model are stored in a dictionary data structure with a variable 

name grid_params and the run_svm_model is invoked to run the SVM hyperparameter model 

analysis. 
 

 

Figure 39. This code snippets shows code for running of code block for implementing the GA feature 

selection with hyper-parameter turning for SVM model in experiment 2 

 

 

 



 

29 
 

 

The code blocks whose code snippets are shown in Figure 40 show the invocation of 

run_genetic_algorithm_model_base_solution instance of the GBC given as a parameter to the 

function. After the GA feature selection is completed, the output from the GA operation is used 

to preparation of the dataset for the GBC hyperparameter-tuned model. The hyperparameters 

for the GBC model are stored in a dictionary data structure with a variable name grid_params 

and the run_gbc_model is invoked to run the GBC hyperparameter model analysis. 
 

 

Figure 40. This code snippet shows code for running the code block for implementing the GA feature 

selection with hyper-parameter turning for the GBC model in experiment 2 

 
The code blocks whose code snippets are shown in Figure 41 show the invocation of 

run_genetic_algorithm_model_base_solution instance of the GNN given as a parameter to 

the function. After the GA feature selection is completed, the output from the GA operation is 

used to preparation of the dataset for the GNN hyperparameter-tuned model. The 

hyperparameters for the GNN model are stored in a dictionary data structure with a variable 

name grid_params and the run_gnn_model is invoked to run the GNN hyperparameter model 

analysis. 
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Figure 41. This code snippet shows code for running the code block for implementing the GA feature 

selection with hyper-parameter turning for the GNN model in experiment 2 

 

The code block whose code snippet is shown in Figure 42 shows the generation of the 

summary table for all models both in the baseline and hyperparameter-tuned implementation. 
 

 

Figure 42. This code snippet shows code used for generating the summary table for all models in both 

experiment 1 and experiment 2  

 

5 Conclusion 
 

This configuration manual provides comprehensive guidelines for researchers aiming to 

replicate the code implementation outlined in this research report. By following these steps and 

using the same datasets, you can ensure consistent outcomes similar to those achieved in this 

study. The report includes detailed code snippets that collectively document the process used 

to meet the project's objectives and goals. By adhering to these guidelines, researchers can 

confidently replicate the experiment, validating the findings and further exploring the topics 

addressed in this work. 
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