

Using Genetic Algorithms for Optimized
Feature Selection in Machine Learning and
Deep Learning Models to Detect Phishing

Websites

MSc Research Project
Msc Cyber Security

Akinola David Omotola
Student ID: x22133755

School of Computing
National College of Ireland

Supervisor: Raza ul Mustafa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……. Akinola David Omotola……

Student ID:

……………… x22133755……

Programme:

…………Msc Cybersecurity……………

Year:

…2024..

Module:

MSc Research Project

Supervisor:

……………………………Raza ul Mustafa…………………………

Submission Due
Date:

……………………27/5/2024…………………………….………

Project Title:

………Using Genetic Algorithms for Optimized Feature Selection in
Machine Learning and Deep Learning Models to Detect Phishing
Websites…………

Word Count:

……8116…… Page Count…………21………….

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

…………… Akinola David Omotola…

Date:

………27/5/2024………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Using Genetic Algorithms for Optimized Feature
Selection in Machine Learning and Deep Learning

Models to Detect Phishing Websites

Akinola David Omotola
X22133755

Abstract
Given the advancement of network technology and the global rise in internet usage,

cybersecurity concern has also risen. Phishing attacks which use misleading tactics to
leak sensitive information bring about significant financial losses, reputational harm,
system disruptions and legal consequences for both victim and organisation. This
growing threat demonstrates the critical need for more robust detection systems,
especially when accounting for evolving attack tactics. This study addresses the issue by
investigating the use of a Genetic Algorithm (GA) combined with Support Vector
Machine (SVM), Random Forest Classifier (RFC), Gradient Boost Classifier (GBC) and
Graph Neural Network (GNN) to identify phishing websites. The findings of the
experiment show that hybrid models perform better than single-base models, providing
higher accuracy, F1-score, and AUC on a small dataset. According to this research, the
GA-GNN and GA-RFC were the best and most improved model with accuracy of 95%,
F1-score of 94.74% and AUC of 95.45%. The paper does admit several limitations
such as, performance drop with larger sample size. Nonetheless, the study highlights the
promise of hybrid models in tackling phishing detection problems and raising detection
precision.

1 Introduction
This chapter is an introduction to phishing website. It highlights the impact and significance
of phishing websites. This chapter provides defines the problem and the motivation behind
this study. It discusses the objectives needed to answer the question posed by the problem.
This chapter gives a background of what this research study about and why it is important.

1.1 Background

The rapid evolution of computer technology has greatly transformed the modern world with
the global internet user population increasing from 60% to 66% in the last half decade
(Petrosyan, 2024). This increased dependence on internet platforms across several industries
has been made clearer by the COVID-19 pandemic, exposing large amounts of data to
security risks such as DDoS, XSS scripting, SQL injection, phishing and many more attacks
(Tang & Mahmoud, 2021).
 Amidst this digital expansion, cybersecurity threats have also increased making it
easier for nefarious actions to be carried out by persons with the intent to damage computing

2

systems, jeopardise data integrity, or cause harm. Cybercriminals exploit opportunities to
perpetrate phishing attacks, a significant cybersecurity challenge (Ali, 2017; Harinahalli
Lokesh & BoreGowda, 2021). Phishing attacks use deceptive communication channels such
as emails and internet advertisements that target people to make them give sensitive
information by impersonating reputable entities (Safi & Singh, 2023; Zhuang et al., 2012).

The impact of phishing attacks can be both devastating to individuals and
organizations. Phishing attacks cause huge monetary loss for organisations. In 2019, hackers
used approaches including credential theft and fake invoicing to inflict $1.7 billion worth
damages. Further, these attacks harm organizations’ reputation since hackers can spread spam
pretending to be the company which undermines the trust of partners and customers and lead
to reduced sales. According to a survey, 41% of UK customers never come back to a brand
after a breach, and 44% of consumers stop shopping with it for months. Phishing attacks
cause system failures and lost productivity by infecting systems with malware or
ransomware. For UK organisations, they constitute the most disruptive type of cyberattack; in
the last year, two-thirds of them experienced interruption. Furthermore, there are harsh legal
penalties for improper treatment of data; under UK GDPR legislation, fines can amount to
£17.5 million, or 4% of annual worldwide revenue. For example, Equifax was forced to pay
up to $700 million for their data breaches, while British Airways was fined of up to £20
million (CybSafe, 2023). Figure 1 below shows the industries most targeted by phishing
attacks.

Figure 1. Percentage of Attacks Ranked by Industry (Petrosyan, 2024)

1.2 Motivation

3

The rising threat of phishing attacks pose a significant challenge for vulnerable users within
information systems making it difficult to implement effective mitigation strategies. Business
Email Compromise (BEC) assaults surged with a 57% increase in average requested wire
transfer that amounted to $293,359. The financial sector and social media make up almost
half of the all targets boasting of a combined 46% of all phishing attacks, while online
payment providers face 5.8%. With phishing related data breaches rising to 82% and human
intelligence-driven tactics dominating cyber threats, the existing gaps in literature denote that
classifier considerations are limited and imbalanced datasets impact how efficient current
machine learning (ML) and deep learning (DL) techniques are. To improve phishing
prevention techniques against emerging attacks requires addressing these issues. Combating
phishing attempts that target individuals and financial institutions require early identification.
Intelligent detection systems are essential, especially those that use supervised ML and DL
algorithms, as traditional solutions that rely on static databases find it difficult to keep up
with new threats (He et al., 2011; Nguyen & Nguyen, 2016).

1.3 Problem Statement
There are unmet research needs related to the inefficiencies of traditional detection
frameworks and the robustness of hybrid models as the remedy for such problems such as
sophisticated evasion techniques and adversarial attacks. These attacks have been proven to
bypass base models inadequacies. Single-base models are sometimes not capable of handling
complex multi-faceted feature set (Saravanan and Subramanian 2020; van Geest et al., 2024).

1.4 Research Question
This study aims to address the critical research question:
“How does combining Genetic Algorithm with Supervised ML, and DL algorithms improve
phishing website detection?”
The study aims to assess the effectiveness of combining various algorithms for phishing
website detection, including Genetic Algorithm, supervised machine learning and deep
machine learning. By conducting experiments, it seeks to evaluate the performance of this
combination in accurately identifying phishing websites and compare it with individual
algorithms. Through empirical evidence, the research aims to contribute insights into
enhancing cybersecurity against phishing attacks.

1.5 Research Objectives
To address the problem and answer the research question, this study aims to offer an
alternative framework to efficiently detect phishing websites. This study integrates Genetic
Algorithm with base machine learning and deep learning models in order mitigate the
drawbacks of stand-alone models. Using extensive assessment criteria, such as false positives
and detection rates, this study seeks to improve cybersecurity defenses against phishing
attempts. To accomplish this task, the following objectives will be met.

• Critically review works done by previous researchers in phishing website detection
using hybrid models. Additionally, the literature around the use of the GA in the
detection of phishing websites will be explored.

4

• Implement a hybrid model using a combination of GA with Graph Neural Network
(GNN), Gradient Boost Classifier (GBC), Support Vector Machine (SVM) and
Random Forest Classifier (RFC) using phishing website dataset from a publicly
available source – Mendeley.

• Evaluate the implemented models based on their Accuracy, AUC, F-measure,
supervised learning models – Evaluate the efficacy of the hybridized GNN, GBC,
SVM and RFC on the same datasets.

The chapters are arranged as follows: The key ideas of the phishing life cycle, types of

phishing attacks, technical methods for identifying phishing websites, and a critical
evaluation of the state of the art research are presented in Chapter 2. The methodology used
in this study, including the research plan, data-gathering techniques, and analytical
techniques is covered in Chapter 3. Chapter 4 describes how the proposed model was
implemented and gives the study's findings. Chapter 5 provides a complete examination of
the study's findings, including conclusions based on the findings, constraints discovered
during the research, and prospective directions for further research.

2 Literature Review

This chapter discusses the relevant literature pertinent to phishing website detection. It
highlights the lifecycle, different phishing attack types and detection methods. This chapter
provides critical analyses of the existing body of work, identifies the gaps and key
contributions. This chapter lays the groundwork for this research study and methodological
approach adopted.

To avoid data breaches and protect sensitive information from exposure during
the reconnaissance, weaponization, distribution, exploitation, and exfiltration stages of the
phishing lifecycle, strong cybersecurity measures must be implemented. Understanding these
stages and implementing appropriate defence systems can help organisations to minimize risk
(Goel et al., 2017; Ding et al., 2019).

2.1 Types of Phishing

The two most common types of phishing assaults are malware-based and deceptive.
Malware-based phishing or "pharming" is perpetrated by luring unsuspecting individuals or
organisations into installing malicious software (malware) on their systems. Attackers
frequently employ phishing websites that appear authentic, sometimes from trusted sources
such as financial institutions or government agencies, to trick victims into updating account
information or opening attachments. In contrast, misleading phishing includes hackers
impersonating legitimate businesses or organisations in order to trick victims into providing
critical information. Attackers establish a false feeling of urgency or trust, frequently
mimicking banks, social media sites, or coworkers, to trick victims into compromising their
security (Bergholz et al., 2010; Almomani et al., 2013b). This study focuses on the latter.

5

2.2 Phishing Website Detection Method
Various technologies have been developed to address the issue of phishing websites. These

include anti-phishing solutions such as List-based techniques, Heuristic-based techniques,

Visual Similarity-based techniques, and Machine learning-based techniques.

List-based approaches use web browser whitelists and blacklists. Whitelists include

trusted URLs, which increase false positives while blacklists exclude known phishing URLs,

which increases false negatives. The drawback of this method is that it is unable to identify

phishing websites that are not on the blacklist or whitelist, as well as websites that have

content that is identical to that of phishing websites that have been restricted (Rao et al.,

2020).

Heuristic methods extract characteristics from source code and third parties which

make them good at identifying novel phishing attacks. However, they suffer when it comes to

differences in website features (Rao et al., 2015). Another drawback is that phishing sites

located on hacked servers may go undetected if third-party services are used, leading to the

mistaken classification of these websites as legitimate due to their inclusion in search results

(Rao et al., 2020).

The two types of existing similarity-based phishing detection techniques are

screenshot similarity and HTML code similarity. In order to identify phishing, researchers

first analysed HTML codes. However, these techniques may not be successful if attackers

produce pages that appear similar but use different HTML codes, or if they substitute pictures

or embedded objects for HTML. Because of this, some researchers can now determine

similarity from snapshots of displayed webpages (Wang et al., 2024).

Machine learning-based methods have become more widely adopted because of the

limitations of the above methods. ML algorithms rely on training data size and feature set,

they provide great efficacy in recognizing phishing attempts with huge datasets by utilizing

machine learning algorithms such as RF, LR, DT and NB (Kumar et al., 2020). Combining

heuristic and ML or DL techniques (hybrid models) show potential in effectively tackling

computational issues by using the advantages of both approaches (Saravanan and

Subramanian, 2020).

2.3 State of the Art
Several studies have conducted comprehensive analyses that have compared the effectiveness
of several machine learning models in detecting phishing websites using different benchmark
datasets. Many studies such as (Subasi et al., 2020; Zouina and Outtaj, 2017; Huang et al.,
2019; and Somesha et al., 2020) focused on URL-based phishing website detection using

6

machine learning and deep learning approaches with high detection rates. However, the
limitation with these approaches is that they disregard the HTML content which contains
relevant information that could make the website phishing detection models more effective.
Because the HTML feature has not been used in the training of these models, these models
could falsely classify phishing websites as legitimate.

Fewer studies such as (Li et al., 2019and and guptta2024) have used hybrid (i.e. URL-
based and HTML-based) features to build more robust phishing website detection models.
These models have demonstrated very high detection rates. However, most of these studies
implement single-model methods which are stifled by the models’ inherent cons.
Vijayalakshmi et al. (2020) conducted an in-depth exploration of website phishing detection
methodologies, categorizing them into URL-based, content-based, and hybrid-based
approaches. Through an extensive analysis, they assessed detection techniques such as list-
based, heuristic rule, and learning-based methods, aiming to offer a comprehensive overview
of the field. By evaluating these methods across dimensions such as performance, limitations,
reliance on third-party services, and language independence, the study provides valuable
insights into their efficacy and applicability. However, while the survey includes some
discussion of deep learning (DL) models, it lacks detailed elucidation of their feature
extraction mechanisms from HTML data, indicating scope for further investigation into this
aspect of phishing detection strategies.

Saravanan and Subramanian 2020 opined that the current research was limited by
poor hyperparameter tuning and inadequate feature selection methods. The authors then
proposed a hybrid model that used GA to select the best features given that irrelevant features
impact the model’s building time and accuracy. The ARTMAP module utilizes a supervised
neural network for classification, automatically categorizing input patterns into recognized
classes based on predictive capabilities made of two self-organized ART modules joined by a
self-associative memory and an internal controller. The network aims to optimize accuracy
and reduce error. The proposed model showed improved performance in accuracy, error rate
and detection time although stymied by using only URL-based features.

Rao et al. (2018) proposed a new classification methodology that utilizes heuristic-
based feature extraction techniques. This approach categorized the selected features into three
main groups. Despite achieving an impressive accuracy rate of 99.55%, the methodology is
limited by its reliance on third-party services, which introduces variability in the speed of
website classification. Additionally, the model's effectiveness heavily relies on good quality
and ample quantity of the training dataset used. Furthermore, the extraction of broken link
features can lead to increased computational overhead, especially noticeable in websites with
complex hyperlink structures. These limitations underscore the need for further refinement
and optimization of the proposed methodology.

Table 1. Summary Table for State of the Art

Reference Paper Strengths Drawbacks
Subasi et al., (2020) - Investigates ensemble methods.

Introduces boosting + bagging
model.

- Comparison limited to UCI dataset
- Focuses on URL-based features

7

- Measures time complexity
Zouina and Outtaj,
(2017)

- Introduces lightweight SVM model
suitable for mobile devices

- Only URL-based features are applied in the
model, disregarding the HTML content

Huang et al., (2019) - Introduce PhishingNet for timely
phishing URL detection that extract
character-level spatial features and
word-level temporal features using
CNN and RNN.

- Only URL-based features are applied in
training the model, disregarding the HTML
content

Somesha et al.,
(2020)

- Investigates deep learning method.
- Testing done with different number
of layers

- Use of third-party feature
- May miss phishing sites utilizing embedded
objects like Flash, JavaScript, and HTML files
to substitute textual content.

Li et al., (2019) - Designed lightweight features for
URLs and HTML, and introduce
HTML string embedding.
- Used stacking model to enhance
phishing webpage detection.
- Used multiple datasets for
evaluation.

- May not address real-time threat detection

Guptta et al., (2022) - Introduces a machine learning-
based method for real-time phishing
website detection
- Focusing on hybrid features
derived from URLs and hyperlinks.

- May not address real-time threat detection

Saravanan and
Subramanian
(2020)

- Used reduced feature vector
- Introduced a stacking model using
ARTMAP

- May not address real-time threat detection
- Used only URL-based features

Rao et al. (2018) - Proposes a novel classification
model leveraging heuristic features.
- Evaluation of various types of
Random Forest (RF) algorithms.

- Use of third-party services.
- Use of only URL-based features
- Increased computational overhead due to
broken link features

The adoption of deep learning techniques underscores the significance of leveraging

advanced computational methods capable of discerning intricate patterns within URL
structures, content features and domain-specific features associated with phishing attempts.
This highlights the potential of sophisticated neural network architectures in bolstering
cybersecurity measures by accurately identifying malicious online activities. The utilization
of deep learning techniques, coupled with domain-specific features, underscores the potential
for enhancing detection accuracy and robustness in identifying fraudulent online activities.

3 Research Methodology

This chapter outlines the suitable processes for executing the research experiment, following
a minor modification of the traditional CRISP-DM methodology to make a suitable standard
data science framework for this research study (see Figure 1 below). It covers the definition
of objectives, data gathering, data preparation, modelling and the evaluation methodology.
The chapter describes the research processes from data collection and processing to the ML
algorithms, and evaluating their performance in detection of phishing websites.

8

Figure 2. Phishing Website Detection Implementation Process

3.1 Definition of Objectives
Protecting people and companies from phishing attacks, mitigating the drawbacks of single-
base models, and improving the overall detection rate of phishing website detectors is the
main justification for using a hybrid ML to identify phishing websites. Phishing websites try
to trick its victims into revealing personal information or committing dangerous activities.
Businesses may examine and categorise website URLs using machine learning, identifying
possible phishing attempts based on unique characteristics and patterns. Sensitive data is
protected, cybersecurity measures are strengthened, data breach risks are reduced, and
consumer trust is increased by implementing an efficient hybrid ML model for phishing
website detection. Businesses may deploy resources more effectively and prevent cybercrime
by automating the detection process.

3.2 Data Gathering
This study is aimed at the detection of phishing websites using hybrid ML and DL
approaches, the website datasets used were obtained from Mendeley. The dataset consists of
80,000 combine legitimate and phishing website records built for the training and testing of
the implemented models, collected from Google, Ebbu2017 Phishing Dataset, PhishTank,
OpenPhish and PhishRepo. The URL and the HTML page are included in each instance. The
root file, index.sql, is used to map URLs to the appropriate HTML pages. The index.sql file
contains five attributes – rec_id, url, website, result and created_date.

3.3 Data Preparation
The process of refining raw data, or data cleaning, is a necessary first step in order to
effectively gather information and carry out accurate data mining. Gathering, organising, and
classifying the websites was the initial stage in this procedure. First, the data frame is
analysed and checked for missing values which are then removed. The features which do not
contribute to the classification of websites are also removed from the dataset.

9

3.4 Modelling
To implement the phishing website detection system models that will satisfy the aim of this
research, four machine learning models are selected and are described as follows:

3.4.1 Random Forest Classifier (RFC)
In many phishing detection systems, random forest is a widely supervised method for
classification. A random subset of the training data and features is used to train each of the
decision trees that the algorithm creates. Each tree evaluates the fresh sample during
classification, and the final prediction is made using the majority vote. To maximise
information gain, decision trees are constructed recursively by dividing the data based on
input characteristics and continuing the process until subsets have homogenous class labels or
a stopping requirement is satisfied.

3.4.2 Support Vector Machine (SVM)
Robust machine learning methods called support vector machines (SVM) are used in
classification. Their primary objective is to determine which hyperplane is best for
classifying the data and maximising the space between the hyperplane and the closest data
points. SVM is useful for detecting phishing websites since it can distinguish between
authentic and phishing webpages using characteristics gleaned from the HTML content and
URL. SVM can detect abnormalities in future data and learn patterns from labelled data,
which enables it to initiate mitigation measures.

3.4.3 Gradient Boost Classifier (GBC)
Phishing website detection can be aided by Gradient Boosting technique. The fundamental
principle of boosting is to combine weak learners into a powerful model. For this purpose,
Gradient Boosting is a very dependable technique that improves performance on a range of
risk functions and removes multicollinearity, allowing for the development of accurate
prediction models. Suitable for categorization tasks, a strong learner is generated from an
ensemble of weak learners.

3.4.4 Graph Neural Network (GNN)
Graph neural networks (GNNs) are specialised deep learning models designed to handle and
analyse graph-structured data. The graphs represent entity relationships which make up the
nodes and edges. They provide an adaptable framework for describing and understanding
diverse patterns in nature, and they function as a fundamental instrument for gathering data
from the natural world. By successfully identifying structural information and obtaining
meaningful high-level representations from graph-structured data, GNNs are superior
representation learners.

The justification for choosing these models is that they perform well, especially when

high-dimensional data and substantial class differences are present. They mimic non-linear
decision boundaries well, are noise-resistant, and perform well with both big and small
feature sets. Notably, these models provide good accuracy without overfitting, even with a
greater number of characteristics. They exhibiting enhanced explainability, scalability,

10

flexibility, and resource efficiency, they offer significant insights into crucial variables for
categorization, making them useful instruments for phishing website detection applications.

3.5 Evaluation Methodology
To assess the performance of the hybrid phishing website detectors, the models utilize a
dataset that hold legit and phishing webpages. The ratio of webpages that are correctly
grouped serves as an additional metric to assess the algorithm's effectiveness, representing
the portion of URLs correctly categorized.

The accuracy, F1-score and AUC are the chosen evaluation metrics for this research.
Selecting the right assessment metric for classification tasks depends on the class distribution
of the dataset and whether the focus is on positive or negative predictions. Accuracy
suits balanced problems where the importance of positive and negative predictions is equal.
On the other hand, as the F1 score combines accuracy and recall into a single value,
accurately expressing model performance, it is favoured in unbalanced circumstances where
positive examples are prioritised. Furthermore, the F1 score assesses performance at a
particular threshold, but the AUC measure sheds light on a model's capacity to distinguish
between true and false occurrences across a range of thresholds, independent of class
imbalance.

4 Design Specification

This chapter discusses the underlining architecture to facilitate the implementation of the
proposed phishing website detection system. It describes the GA and how it fits into the
proposed hybrid model.

4.1 Genetic Algorithm (GA)
Genetic Algorithm (GA) emulates natural selection to solve optimization problems, using a
population of potential solutions represented as individuals (chromosomes), evolving through
selection, crossover, and mutation (usually referred to as the GA operations or steps). The
steps or operations involved in the GA-based feature selection are as follows:
• Initial Population: In GA, the initial population comprises individuals representing feature

combinations from the dataset. Each feature acts as a binary switch within the
chromosome, denoted as either on (1) or off (0).

• Fitness Function: Evaluates each individual's performance relative to others, assigning a
score based on its ability to predict phishing or legitimate websites. Higher scores indicate
better-performing individuals, guiding the selection of the top candidates for the next
iteration.

• Selection: After obtaining scores, the best chromosomes are chosen for the next
generation using an efficient method called tournament selection.

• Crossover: In crossover, genes from two parent chromosomes are mixed to produce new
offspring, akin to combining traits from parents to create offspring. This process is known
as a two-point crossover, which is one of the several types of crossover operators used to
recombine the genetic material of two-parent individuals to produce new offspring.

11

• Mutation: This ensures population diversity and prevents premature convergence of the
algorithm by randomly altering parts of a chromosome to explore potentially better
solutions using an efficient method called bit-flip mutation.

By taking these stages repeatedly, the population has evolved towards ever-more-optimal
solutions.

4.2 Proposed Model
The model we propose uses the base models to perform the classification. Based on the
results of the predictions, the GA is used to perform dimensionality reduction i.e. the GA
applies the fitness function to evaluate which genomes (features) in the population are
optimal for analysing phishing websites.
Hyperparameter tuning is used to select optimal parameters for each model that will be used
for the analysis. The proposed model uses the optimal feature selection from the GA and the
hyperparameter tuned models to perform analysis for each model built for phishing website
detection. A schematic overview of the proposed framework for automated phishing
detection is shown below.

Figure 2. Model Architecture

5 Implementation

12

This chapter describes each machine learning model's implementation of the previously
defined system design and how the models function in relation to the selected evaluation
metrics. Additionally, the main conclusions and the outcomes of each machine learning
model's system design implementation are examined.

A comprehensive overview of the insights gathered throughout the investigation is

provided by the EDAs carried out on the dataset. Studying the dataset in depth leads to a
better understanding of its statistical significance. A pie chart representing the class
distribution of phishing to legitimate websites was used to get this data shown in figure 3
below.

Figure 3. Class Distribution of Websites

5.1 Feature Extraction
To extract features from the dataset, two python modules were created, namely,
features_to_extract.py and features_extraction.py. the features_to_extract.py defined
functions used to generate and extract a feature from the raw dataset. On the other hand, the
features_extraction.py is used to assemble the features that have been extracted from the raw
dataset. After extracting these features, they are converted to Pandas data frame and stores as
a csv file containing the new dataset used for analysing the phishing websites. The table x in
the appendix shows a summary of the extracted features and their description.

5.2 Experiment Setup
This study implemented four ML and DL models including SVM, RFC, GBC and GNN. Two
experiments were carried out, experiment 1 was designed to use the default parameters while

13

experiment 2 was designed with GA feature selection and hyperparameter tuning. These
models were built using run_svm_model, run_rfc_model, run_gbc_model and
run_gnn_model function respectively. These functions create an instance of the model being
analysed using the default parameters or hyperparameters based on the value of the
grid_params arguments given to the function. The function then invokes the run-
_model_analysis function which performs model training by calling the train_model
function, generate model predictions by calling the generate_model_prediction function,
generate model evaluation summary by calling the generate_summary_result function.
Lastly, displays analysis summary by calling the generate_analysis_summary function. The
output of the generate_summary_result function is the stored in the analysis_result global
variable.

5.3 Implementation of Genetic Algorithm (GA)
To implement the GA for feature selection, the creator module from deap library is used to
define the representation of an individual (aka chromosome or genome) in the population.
Next, the instance of the Toolbox (toolbox) is created from the base module and the created
instance of the toolbox to register and configure GA operations. The toolbox instance is used
to register the fitness function used to evaluate the fitness of an individual using the provided
model and fitness function get_model_fitness. Then, the toolbox instance registers other GA
operations namely – mate (also known as the Crossover operation with the attribute
“cxTwoPoint” is used to swap segments between two parents to create new offspring),
mutate (also known as the Mutation operation with the attribute “mutFlipBit” is used to flip a
bit in the chromosome with a probability of 0.05) and select (also known as the Selection
operation with the attribute “selTournament” is used to select the best individuals out of a
randomly chosen subset of the population) operations respectively. To execute the GA, the
initial population is created by calling the toolbox.population(n=num_of_population)
method with num_of_population given as the number of individuals in the initial population,
and the evolutionary process is initiated by calling the eaMuPlusLambda module in the
algorithms module. The selection, crossover, and mutation are done using the
`algorithms.eaMuPlusLambda` function. This function evolves the population over 10
generations, employing the specified crossover and mutation operators with given
probabilities `cxpb` and `mutpb`, respectively. The model tracks statistics such as the avg,
min and max fitness values of the population using the `stats` object. Additionally, a
`HallOfFame` object is used to maintain the best individuals across generations. After
evolution, the best individual from the final population is selected using `tools.selBest`, and it
is added to the `hall_of_fame` to ensure that the best solution is preserved. Finally, the
`hall_of_fame` holds the best individuals from all generations and is returned as the output of
the genetic algorithm.

For the GA implementation to rank and select the best-performing individual in the
population for a given generation, the get_model_fitness was created. The get_model_fitness
function accepts five arguments namely – individual (binary string for the selected features),
predictors (the independent variables in the dataset), target (the dependent variable in the
dataset), model (the model used to analyse the individual), and is_func (a Boolean variation

14

use to build neural network model should the model need to be compiled).To calculate the
fitness of the individual, the fitness function uses cross_val_score from the sci-kit learn
library to evaluate the performance of a model using cross-validation. The cross-validation
method is a statistical tool used to evaluate a model's efficiency on unseen data. The
generalization function is particularly useful for evaluating how well your model generalizes
to independent data. The cross_val_score splits the dataset into k folds, the model is trained
on k-1 folds, and the model is validated on the remaining fold, repeating this process k times.
Each iteration returns a list of scores, which can be used to estimate the model's performance
by calculating the mean from the list of scores.

5.4 Implementation of Support Vector Machine (SVM)
To implement the SVM model, the run_svm_model function was used to assemble the SVM
model. The function accepts four parameters (processed_analysis_dataset, analysis_result,
model_name, grid_params). The processed_analysis_dataset parameter contains the
analysis dataset which includes both the training and testing datasets for the dependent and
independent variables. The analysis_result parameter is used to track analysis summary for
SVM model. The model_name is a dictionary with 3 keys – (name which tracks the full
model’s name, short which tracks the abbreviated model name, and analysis which tracks the
descriptive title for SVM model analysis). The grid_params parameter with a default value
of None is used to determine if the implementation is for the baseline experiment or for the
hyperparameter tuned model. The grid_params parameter had the following variables
defined as follows for the hyperparameter tuned model: kernel was set to [‘linear', 'rbf'], C is
[0.1, 1, 10, 100, 1000], and gamma [1, 0.1, 0.01, 0.001, 0.0001].
The SupportVectorMachine module was invoked to run the SVM model from the scikit-
learn library. “123” was assigned to random_state parameter when creating an instance of
the class. Next, the value of the grid_params is checked, if it contains a value not equal to
None, the GridSearchCV module with the SVM model instance and the grid_params are
used to create a new instance of a hyperparameter tuned SVM model. To build and evaluate
the SVM model, the run_model_analysis function was called with the (model, model_name,
processed_analysis_dataset) parameters. After the analysis has been completed, the
run_model_analysis function returns the evaluation estimates stored in the analysis_result
dictionary.

5.5 Implementation of Random Forest Classifier (RFC)
To implement the RFC model, the run_rfc_model function was used to assemble the RFC
model. The function accepts four parameters (processed_analysis_dataset, analysis_result,
model_name, grid_params). The processed_analysis_dataset parameter contains the
analysis dataset which includes both the training and testing datasets for the dependent and
independent variables. The analysis_result parameter is used to track analysis summary for
RFC model. The model_name is a dictionary with 3 keys same as above but for RFC model
analysis). The grid_params parameter with a default value of None is used to determine if
the implementation is for the baseline experiment or for the hyperparameter tuned model.
The grid_params parameter had the following variables defined as follows for the
hyperparameter tuned model: n_estimators was set as [25, 50, 100, 150], ['sqrt', 'log2', None]

15

were assigned variables for max_features, max_depth was assigned [3, 6, 9], [3, 6, 9] for
max_leaf_nodes, criterion ['gini', 'entropy'], bootstrap [True].
The RandomForestClassifier module was invoked to run the RFC model from the scikit-
learn library. The random_state parameter was set to "123" when an instance of the class was
created. Next, the value of the grid_params is checked, if it contains a value not equal to
None, the GridSearchCV module with the RFC model instance and the grid_params are
used to create a new instance of a hyperparameter tuned RFC model. The same functions and
steps are followed from the SVM implementation to create and assess the RFC model.

5.6 Implementation of Gradient Boost Classifier (GBC)
To implement the GBC model, the run_gbc_model function was used to assemble the GBC
model. The function accepts four parameters (processed_analysis_dataset, analysis_result,
model_name, grid_params). The processed_analysis_dataset parameter contains the
analysis dataset which includes both the training and testing datasets for the dependent and
independent variables. The analysis_result parameter is used to track analysis summary for
GBC model. The model_name is the same as the above. The grid_params parameter with a
default value of None is used to determine if the implementation is for the baseline
experiment or for the hyperparameter tuned model. The grid_params parameter had the
following variables defined as follows for the hyperparameter tuned model: n_estimators was
set as [50, 100, 200], learning_rate [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3], and max_depth [3, 5,
7].
The GradientBoostClassifier module was invoked to run the GBC model from the scikit-
learn library. The random_state parameter was set to "123" when an instance of the class was
created. Next, the value of the grid_params is checked, if it contains a value not equal to
None, the GridSearchCV module with the GBC model instance and the grid_params are
used to create a new instance of a hyperparameter tuned GBC model. The same functions and
steps are followed to create and assess the GBC model.

5.7 Implementation of Graph Neural Network (GNN)

The Keras Model class was imported from the model module of Tensorflow's Keras library,
and was used to create the GNN model. To construct the graph convolutional layers, the
layers module additionally imported the Dense class from the Tensorflow Keras library. An
instance of the Keras Model class is included in the graph neural network model, which is
assembled using the build_gnn_model function. To assemble the neural network with the
input, graph convolutional layers as the hidden layers, and output layers, the input dimension
is used in the construction of the first convolutional layer (gc1) and is fed to a dense layer to
create convolutional layer (gc2) using the "relu" activation function. The output layer was
assigned "sigmoid". "binary_crossentropy" was the defined loss function, "adam" as the
optimizer value, and "accuracy" as the metrics parameter when the model was constructed.
During training, the Adam optimizer dynamically modifies weights and biases to accelerate
convergence. A three-parameter neural network model instance was created using the

16

KerasClassifier wrapper. The parameters are the build_gnn_model function, epochs
parameter was set to “10” and the batch_size was set to “32”. The model_name parameter is
a dictionary with three keys same as the models above. The same functions and steps are
followed to build and evaluate the GNN model.

6 Evaluation

The objective of this section is to give a complete analysis of the research study's results and
primary conclusions, as well as the ramifications of these findings. The aim of this study was
to assess the effectiveness of hybrid machine learning models in the detection of malicious
websites. The SVM, RFC, GBC and GNN were selected as the base models to be enhanced
using GA to select the best features for this reason. Two experiments were carried out,
experiment 1 was done with just the base models and experiment 2 was done with feature
extraction using the genetic algorithm. To quantify how well the ML and DL models were
implemented, the evaluation metrics described in chapter 3 were used.

6.1 Experiment 1

Experiment 1 was carried out to evaluate the performance of SVM, RFC, GBC and GNN.
When the accuracy, F1-score and AUC was calculated, the GNN demonstrated to be the least
effective model across recording 75%, 76.19%, and 76.26% respectively. GBC performed
best without any hyperparameter tuning or GA feature selection with records of 95%,
94.12%, and 94.44% on the accuracy, F1-score and AUC respectively. RFC measured good
performance with above 80% across all metrics. SVM only recorded 80% in accuracy and
below 80% on F1-score and AUC. The table below clearly shows the summary of the base
models’ performance.

Table 2. Performance Score for Base Models

 Accuracy (%) F1-Score (%) AUC (%)
SVM 80 77.78 79.80
RFC 85 82.35 84.34
GBC 95 94.12 94.44
GNN 75 76.19 76.26

6.2 Experiment / Case Study 2

Experiment 2 was carried out to evaluate the performance of SVM, RFC, GBC and GNN
when hybridized using GA and hyperparameter tuning. The accuracy, F1-score and AUC was
quantified, the GA-GBC demonstrated to be the least effective model across with a reduction
in the performance. There was a 5% drop in performance in the accuracy, F1-score and AUC.
GA-RFC and GA-SVM had almost identical improvements of about 10% across all metrics.
The most staggering improvement using GA and hyperparameter tuning was in the GA-
GNN. The GA-GNN demonstrated very good performance with a huge jump in accuracy
from 75% to 95%, F1-score and AUC skyrocketed from 76.19% to 94.74% and 76.26% to

17

95.45%, respectively. GA-RFC obtained identical evaluation to GA-GNN. The table below
clearly depicts the performance of the GA and hyperparameter tuned models.

Table 3. Performance Score for Improved Models

 Accuracy (%) F1-Score (%) AUC (%)
GA-SVM 90 90 90.91
GA-RFC 95 94.74 95.45
GA-GBC 90 87.50 88.89
GA-GNN 95 94.74 95.45

6.3 Discussion

Two experiments were undertaken to determine the effectiveness of optimizing single base

SVM, RFC, GBC and GNN models for the purpose of identifying phishing websites. In

experiment 1, the models were built as single base without hyperparameter tuning or feature

extraction using the GA described in chapter 4. The findings of experiment 1 showed that

GNN performed the poorest across all evaluation metrics. When the SVM was coupled with

the GA to make the GA-SVM, there was significant improvement across all metrics due to

the selection of features using the GA. The GA-SVM recorded 10% increase in accuracy,

12% increase in the F1-score and almost 11% increase in the AUC.

Interestingly, there was a change in the performance of GBC as its performance declined

even with the use of GA and hyperparameter tuning across all quantification measures.

However, the GNN was the most improved model when combined with GA across all

measures. There was a 18%, 19% and 20% surge in F1-score, AUC and accuracy,

respectively. The experiment demonstrates that hybrid models could effectively detect

phishing websites better than some single base models. The bar chart in figure 4 below shows

a comparative summary between the base models and hybrid models. It was revealed in this

experiment that the more data which was used in training testing, the lower the performance

of the hybrid models.

18

Figure 4. Comparative Summary between the Base Models and Hybrid Models

6.4 GA Feature Selection: Addressing Overfitting and Underfitting
With the combination of the genetic algorithm and hyperparameter tuning model
implementation, the efficiency of the model dropped significantly when the number of
records in the dataset became large enough to run the models. Further investigation suggests
that feature selection can result in overfitting or underfitting the model. By “overfitting”, it
means minimisation of the feature selection beyond the point at which generalisation
performance ceases to improve and subsequently begins to decline suggesting that selecting
features that are beneficial only to the training data. Underfitting means the minimisation of
the feature selection beyond the point the implemented where the implemented model is too
simple to capture the underlying patterns in the data. This means that the model performs
poorly on both the training data and unseen test data. Essentially, the model is not complex
enough to learn the relationships within the dataset.

To mitigate the effect of overfitting the GA feature selection, robust cross-validation during
feature selection to prevent overfitting is adopted and this approach uses a separate test set to
validate the final selected feature.

7 Conclusion and Future Work

To conclude, the goal of this study was to determine if phishing website detection might be
improved by integrating Genetic Algorithm (GA) with supervised machine learning and deep
learning techniques. Based on the critical review of the outcome of the experiments, the
phishing detection systems performed far better when hyperparameter tuning and GA were
integrated with them; more notable with the GNN than the base SVM, RFC and GBC
machine learning models. The experiment indicated that hybrid models offer significant
improvements in accuracy, F1-score, and AUC over single-base models. This implies that

0

20

40

60

80

100

120

SVM GA-
SVM

RFC GA-RFC GBC GA-GBC GNN GA-
GNN

Accuracy (%) F1-Score (%) AUC (%)

19

using GA for feature selection and optimisation might improve phishing detection systems'
effectiveness. This finding has important ramifications for preventing phishing scams on
websites. By creating more robust and effective detection systems, organisations may better
defend against the exposure of their sensitive data and avoid financial losses and reputational
harm. The results underline the significance of GA feature selection in enhancing detection
accuracy and demonstrate the potential of hybrid models in tackling the problems related to
phishing website identification. Despite the positive findings, it is imperative to acknowledge
the study's limitations. One of the limitations is that with more data used for training and
testing the lower the performance of the hybrid models; which subsequently makes the
single-base models perform better.

Further studies may include the use of different datasets to mitigate the effects leading
to the performance decline. Applying more models to the modular architecture might
improve system adaptability by making it simpler to switch out models and customise the
system for more sophisticated attack scenarios. As cyber threats change, this research
provides useful information for enhancing phishing detection systems and strengthening
cybersecurity posture.

References

Al-Ahmadi, S. and Lasloum, T. (2020) 'PDMLP: Phishing Detection using Multilayer
Perceptron,' International Journal of Network Security and Applications, 12(3), pp. 59–72.
https://doi.org/10.5121/ijnsa.2020.12304.

Ali, W. (2017). Phishing Website Detection based on Supervised Machine Learning with
Wrapper Features Selection. International Journal of Advanced Computer Science and
Applications, 8(9). https://doi.org/10.14569/ijacsa.2017.080910

CybSafe (2023). The ripple effect: How one phishing attack can cause disaster across your
organization, CybSafe. Available at: https://www.cybsafe.com/blog/how-can-phishing-affect-
a-business/ (Accessed: 21 April 2024).

Das Guptta, S., Shahriar, K. T., Alqahtani, H., Alsalman, D., & Sarker, I. H. (2022a).
Modeling hybrid feature-based phishing websites detection using Machine Learning
Techniques. Annals of Data Science, 11(1), 217–242. doi:10.1007/s40745-022-00379-8

Ding, Y., Luktarhan, N., Li, K., & Slamu, W. (2019). A keyword-based combination
approach for detecting phishing webpages. Computers & Security, 84, 256–275.
doi:10.1016/j.cose.2019.03.018

Elsadig, M. et al. (2022) 'Intelligent deep machine learning cyber phishing URL detection
based on BERT features extraction,' Electronics, 11(22), p. 3647.
https://doi.org/10.3390/electronics11223647.

Goel, D., & Jain, A. K. (2018). Mobile phishing attacks and Defence Mechanisms: State of
Art and Open Research challenges. Computers & Security, 73, 519–544.
doi:10.1016/j.cose.2017.12.006

https://doi.org/10.14569/ijacsa.2017.080910

20

Das Guptta, S. et al. (2022) ‘Modeling hybrid feature-based phishing websites detection
using Machine Learning Techniques’, Annals of Data Science, 11(1), pp. 217–242.
doi:10.1007/s40745-022-00379-8.

Harinahalli Lokesh, G., & BoreGowda, G. (2021). Phishing website detection based on
effective machine learning approach. Journal of Cyber Security Technology, 5(1), 1–14.
https://doi.org/10.1080/23742917.2020.1813396

He, M., Horng, S. J., Fan, P., Khan, M. K., Run, R. S., Lai, J. L., Chen, R. J., & Sutanto, A.
(2011). An efficient phishing webpage detector. Expert Systems with Applications, 38(10),
12018–12027. https://doi.org/10.1016/j.eswa.2011.01.046

Huang, Y. et al. (2019) 'Phishing URL Detection via CNN and Attention-Based Hierarchical
RNN,' IEEE [Preprint]. https://doi.org/10.1109/trustcom/bigdatase.2019.00024.

Khan, Md.F. (2021) 'Detection of phishing websites using deep learning techniques,' Turkish
Journal of Computer and Mathematics Education (TURCOMAT), 12(10), pp. 3880–3892.
https://doi.org/10.17762/turcomat.v12i10.5094.

Kumar, J. et al. (2020) ‘Phishing website classification and Detection Using Machine
Learning’, 2020 International Conference on Computer Communication and Informatics
(ICCCI) [Preprint]. doi:10.1109/iccci48352.2020.9104161.
Li, Y., Yang, Z., Chen, X., Yuan, H., & Liu, W. (2019). A stacking model using URL and
HTML features for phishing webpage detection. Future Generation Computer Systems, 94,
27–39. doi:10.1016/j.future.2018.11.004

Nguyen, H. H., & Nguyen, D. T. (2016). Machine learning based phishing web sites
detection. Lecture Notes in Electrical Engineering, 371, 123–131.
https://doi.org/10.1007/978-3-319-27247-4_11

Prakash, P. et al. (2010) 'PhishNet: Predictive Blacklisting to Detect Phishing Attacks,' IEEE
[Preprint]. https://doi.org/10.1109/infcom.2010.5462216.

Rao, R.S. and Ali, S.T. (2015) 'PhishShield: A Desktop Application to Detect Phishing
Webpages through Heuristic Approach,' Procedia Computer Science, 54, pp. 147–156.
https://doi.org/10.1016/j.procs.2015.06.017.

Rao, R.S. and Pais, A.R. (2018) 'Detection of phishing websites using an efficient feature-
based machine learning framework,' Neural Computing and Applications, 31(8), pp. 3851–
3873. https://doi.org/10.1007/s00521-017-3305-0.

Rao, R. S., Vaishnavi, T., & Pais, A. R. (2020). CatchPhish: detection of phishing websites
by inspecting URLs. Journal of Ambient Intelligence and Humanized Computing, 11(2), 813–
825. https://doi.org/10.1007/s12652-019-01311-4

Safi, A., & Singh, S. (2023). A systematic literature review on phishing website detection
techniques. Journal of King Saud University - Computer and Information Sciences, 35(2),
590–611. https://doi.org/10.1016/j.jksuci.2023.01.004

Şahingöz, Ö.K. et al. (2019) 'Machine learning based phishing detection from URLs,' Expert
Systems With Applications, 117, pp. 345–357. https://doi.org/10.1016/j.eswa.2018.09.029.

https://doi.org/10.1016/j.eswa.2011.01.046
https://doi.org/10.17762/turcomat.v12i10.5094
https://doi.org/10.1007/s00521-017-3305-0

21

Shahriar, H. and Zulkernine, M. (2012) 'Trustworthiness testing of phishing websites: A
behavior model-based approach,' Future Generation Computer Systems, 28(8), pp. 1258–
1271. https://doi.org/10.1016/j.future.2011.02.001.

Somesha, M. et al. (2020) 'Efficient deep learning techniques for the detection of phishing
websites,' Sādhanā, 45(1). https://doi.org/10.1007/s12046-020-01392-4.

Subasi, A., & Kremic, E. (2020). Leveraging AI and machine learning for societal
challenges, cas 2019 comparison of adaboost with multiboosting for phishing website
detection. Procedia Computer Science, 168, 272–278.
https://doi.org/10.1016/j.procs.2020.02.251

Tang, L., & Mahmoud, Q. H. (2021). A Survey of Machine Learning-Based Solutions for
Phishing Website Detection. In Machine Learning and Knowledge Extraction (Vol. 3, Issue
3, pp. 672–694). MDPI. https://doi.org/10.3390/make3030034

Truta, F. (no date) Businesses can lose half of customers after a data breach, research shows,
Bitdefender Blog. Available at:
https://www.bitdefender.co.uk/blog/businessinsights/businesses-can-lose-up-to-58-of-
customers-after-a-data-breach-research-shows/ (Accessed: 26 May 2024).

van Geest, R. J., Cascavilla, G., Hulstijn, J., & Zannone, N. (2024). The applicability of a
hybrid framework for automated phishing detection. Computers & Security, 139,
103736. doi:10.1016/j.cose.2024.103736

Vijayalakshmi, M. et al. (2020) 'Web phishing detection techniques: a survey on the
state‐of‐the‐art, taxonomy and future directions,' IET Networks, 9(5), pp. 235–246.
https://doi.org/10.1049/iet-net.2020.0078.

Wang, M. et al. (2024) ‘Phishing webpage detection based on global and local visual
similarity’, Expert Systems with Applications, 252, p. 124120.
doi:10.1016/j.eswa.2024.124120.

Yang, P., Zhao, G. and Zeng, P. (2019) 'Phishing website detection based on
multidimensional features driven by deep learning,' IEEE Access, 7, pp. 15196–15209.
https://doi.org/10.1109/access.2019.2892066.

Zhuang, W., Jiang, Q., & Xiong, T. (2012). An intelligent anti-phishing strategy model for
phishing website detection. Proceedings - 32nd IEEE International Conference on Distributed
Computing Systems Workshops, ICDCSW 2012, 51–56.
https://doi.org/10.1109/ICDCSW.2012.66

Zouina, M. and Outtaj, B. (2017) 'A novel lightweight URL phishing detection system using
SVM and similarity index,' Human-centric Computing and Information Sciences, 7(1).
https://doi.org/10.1186/s13673-017-0098-1.

https://doi.org/10.1007/s12046-020-01392-4
https://doi.org/10.3390/make3030034
https://doi.org/10.1109/access.2019.2892066
https://doi.org/10.1186/s13673-017-0098-1

