
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Using Genetic Algorithms for Optimized 
Feature Selection in Machine Learning and 
Deep Learning Models to Detect Phishing 

Websites 
 
 
 
 
 

MSc Research Project  
Msc Cyber Security   

 
 
 

Akinola David Omotola  
Student ID: x22133755 

 
 
 

School of Computing  
National College of Ireland 

 
 
 
 
 
 
 
 
 
 
 

Supervisor: Raza ul Mustafa 



 

 

 
National College of Ireland 

 
MSc Project Submission Sheet 

 
School of Computing 

 
Student Name: 

 
……. Akinola David Omotola…… 

 
Student ID: 

 

……………… x22133755…… 
 
Programme: 

 
…………Msc Cybersecurity…………… 

 
Year: 

 
…2024.. 

 
Module: 

 
MSc Research Project 

 
Supervisor: 

 
……………………………Raza ul Mustafa………………………… 

Submission Due 
Date: 

 
……………………27/5/2024…………………………….……… 

 
Project Title: 

 
………Using Genetic Algorithms for Optimized Feature Selection in 
Machine Learning and Deep Learning Models to Detect Phishing 
Websites………… 

Word Count: 
 
……8116……  Page Count…………21…………. 

 
I hereby certify that the information contained in this (my submission) is information 
pertaining to research I conducted for this project.  All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the 
rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are 
required to use the Referencing Standard specified in the report template. To use other 
author's written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 
 
Signature: 

 
…………… Akinola David Omotola… 

 
Date: 

 
………27/5/2024……………………………… 

 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 
 
Attach a completed copy of this sheet to each project (including multiple 
copies) 

□ 

Attach a Moodle submission receipt of the online project 
submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 
for your own reference and in case a project is lost or mislaid.  It is not 
sufficient to keep a copy on computer.   

□ 

 
Assignments that are submitted to the Programme Coordinator Office must be placed 
into the assignment box located outside the office. 
 
Office Use Only 
Signature:  
Date:  
Penalty Applied (if applicable):  



 

1 
 

 

 
 

Using Genetic Algorithms for Optimized Feature 
Selection in Machine Learning and Deep Learning 

Models to Detect Phishing Websites 
 

Akinola David Omotola  
X22133755  

 
 

Abstract 
Given the advancement of network technology and the global rise in internet usage, 

cybersecurity concern has also risen. Phishing attacks which use misleading tactics to 
leak sensitive information bring about significant financial losses, reputational harm, 
system disruptions and legal consequences for both victim and organisation. This 
growing threat demonstrates the critical need for more robust detection systems, 
especially when accounting for evolving attack tactics. This study addresses the issue by 
investigating the use of a Genetic Algorithm (GA) combined with Support Vector 
Machine (SVM), Random Forest Classifier (RFC), Gradient Boost Classifier (GBC) and 
Graph Neural Network (GNN) to identify phishing websites. The findings of the 
experiment show that hybrid models perform better than single-base models, providing 
higher accuracy, F1-score, and AUC on a small dataset. According to this research, the 
GA-GNN and GA-RFC were the best and most improved model with accuracy of 95%, 
F1-score of 94.74% and AUC of 95.45%. The paper does admit several limitations 
such as, performance drop with larger sample size. Nonetheless, the study highlights the 
promise of hybrid models in tackling phishing detection problems and raising detection 
precision. 

 
 

1 Introduction 
This chapter is an introduction to phishing website. It highlights the impact and significance 
of phishing websites. This chapter provides defines the problem and the motivation behind 
this study. It discusses the objectives needed to answer the question posed by the problem. 
This chapter gives a background of what this research study about and why it is important.   

1.1 Background 
 
The rapid evolution of computer technology has greatly transformed the modern world with 
the global internet user population increasing from 60% to 66% in the last half decade 
(Petrosyan, 2024). This increased dependence on internet platforms across several industries 
has been made clearer by the COVID-19 pandemic, exposing large amounts of data to 
security risks such as DDoS, XSS scripting, SQL injection, phishing and many more attacks 
(Tang & Mahmoud, 2021). 
 Amidst this digital expansion, cybersecurity threats have also increased making it 
easier for nefarious actions to be carried out by persons with the intent to damage computing 
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systems, jeopardise data integrity, or cause harm. Cybercriminals exploit opportunities to 
perpetrate phishing attacks, a significant cybersecurity challenge (Ali, 2017; Harinahalli 
Lokesh & BoreGowda, 2021). Phishing attacks use deceptive communication channels such 
as emails and internet advertisements that target people to make them give sensitive 
information by impersonating reputable entities (Safi & Singh, 2023; Zhuang et al., 2012).  

The impact of phishing attacks can be both devastating to individuals and 
organizations. Phishing attacks cause huge monetary loss for organisations. In 2019, hackers 
used approaches including credential theft and fake invoicing to inflict $1.7 billion worth 
damages. Further, these attacks harm organizations’ reputation since hackers can spread spam 
pretending to be the company which undermines the trust of partners and customers and lead 
to reduced sales. According to a survey, 41% of UK customers never come back to a brand 
after a breach, and 44% of consumers stop shopping with it for months. Phishing attacks 
cause system failures and lost productivity by infecting systems with malware or 
ransomware. For UK organisations, they constitute the most disruptive type of cyberattack; in 
the last year, two-thirds of them experienced interruption. Furthermore, there are harsh legal 
penalties for improper treatment of data; under UK GDPR legislation, fines can amount to 
£17.5 million, or 4% of annual worldwide revenue. For example, Equifax was forced to pay 
up to $700 million for their data breaches, while British Airways was fined of up to £20 
million (CybSafe, 2023). Figure 1 below shows the industries most targeted by phishing 
attacks. 
 

 
Figure 1. Percentage of Attacks Ranked by Industry (Petrosyan, 2024) 

 

1.2 Motivation 
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The rising threat of phishing attacks pose a significant challenge for vulnerable users within 
information systems making it difficult to implement effective mitigation strategies. Business 
Email Compromise (BEC) assaults surged with a 57% increase in average requested wire 
transfer that amounted to $293,359. The financial sector and social media make up almost 
half of the all targets boasting of a combined 46% of all phishing attacks, while online 
payment providers face 5.8%. With phishing related data breaches rising to 82% and human 
intelligence-driven tactics dominating cyber threats, the existing gaps in literature denote that 
classifier considerations are limited and imbalanced datasets impact how efficient current 
machine learning (ML) and deep learning (DL) techniques are. To improve phishing 
prevention techniques against emerging attacks requires addressing these issues. Combating 
phishing attempts that target individuals and financial institutions require early identification. 
Intelligent detection systems are essential, especially those that use supervised ML and DL 
algorithms, as traditional solutions that rely on static databases find it difficult to keep up 
with new threats (He et al., 2011; Nguyen & Nguyen, 2016). 

1.3 Problem Statement 
There are unmet research needs related to the inefficiencies of traditional detection 
frameworks and the robustness of hybrid models as the remedy for such problems such as 
sophisticated evasion techniques and adversarial attacks. These attacks have been proven to 
bypass base models inadequacies. Single-base models are sometimes not capable of handling 
complex multi-faceted feature set (Saravanan and Subramanian 2020; van Geest et al., 2024).  

1.4 Research Question 
This study aims to address the critical research question:  
“How does combining Genetic Algorithm with Supervised ML, and DL algorithms improve 
phishing website detection?” 
The study aims to assess the effectiveness of combining various algorithms for phishing 
website detection, including Genetic Algorithm, supervised machine learning and deep 
machine learning. By conducting experiments, it seeks to evaluate the performance of this 
combination in accurately identifying phishing websites and compare it with individual 
algorithms. Through empirical evidence, the research aims to contribute insights into 
enhancing cybersecurity against phishing attacks. 

1.5 Research Objectives 
To address the problem and answer the research question, this study aims to offer an 
alternative framework to efficiently detect phishing websites. This study integrates Genetic 
Algorithm with base machine learning and deep learning models in order mitigate the 
drawbacks of stand-alone models. Using extensive assessment criteria, such as false positives 
and detection rates, this study seeks to improve cybersecurity defenses against phishing 
attempts. To accomplish this task, the following objectives will be met. 
 

• Critically review works done by previous researchers in phishing website detection 
using hybrid models. Additionally, the literature around the use of the GA in the 
detection of phishing websites will be explored. 
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• Implement a hybrid model using a combination of GA with Graph Neural Network 
(GNN), Gradient Boost Classifier (GBC), Support Vector Machine (SVM) and 
Random Forest Classifier (RFC) using phishing website dataset from a publicly 
available source – Mendeley. 

• Evaluate the implemented models based on their Accuracy, AUC, F-measure, 
supervised learning models – Evaluate the efficacy of the hybridized GNN, GBC, 
SVM and RFC on the same datasets. 

 
The chapters are arranged as follows: The key ideas of the phishing life cycle, types of 

phishing attacks, technical methods for identifying phishing websites, and a critical 
evaluation of the state of the art research are presented in Chapter 2. The methodology used 
in this study, including the research plan, data-gathering techniques, and analytical 
techniques is covered in Chapter 3. Chapter 4 describes how the proposed model was 
implemented and gives the study's findings. Chapter 5 provides a complete examination of 
the study's findings, including conclusions based on the findings, constraints discovered 
during the research, and prospective directions for further research. 

 
2 Literature Review 
 
This chapter discusses the relevant literature pertinent to phishing website detection. It 
highlights the lifecycle, different phishing attack types and detection methods. This chapter 
provides critical analyses of the existing body of work, identifies the gaps and key 
contributions. This chapter lays the groundwork for this research study and methodological 
approach adopted. 

To avoid data breaches and protect sensitive information from exposure during 
the reconnaissance, weaponization, distribution, exploitation, and exfiltration stages of the 
phishing lifecycle, strong cybersecurity measures must be implemented. Understanding these 
stages and implementing appropriate defence systems can help organisations to minimize risk 
(Goel et al., 2017; Ding et al., 2019). 

2.1 Types of Phishing 
 
The two most common types of phishing assaults are malware-based and deceptive. 
Malware-based phishing or "pharming" is perpetrated by luring unsuspecting individuals or 
organisations into installing malicious software (malware) on their systems. Attackers 
frequently employ phishing websites that appear authentic, sometimes from trusted sources 
such as financial institutions or government agencies, to trick victims into updating account 
information or opening attachments. In contrast, misleading phishing includes hackers 
impersonating legitimate businesses or organisations in order to trick victims into providing 
critical information. Attackers establish a false feeling of urgency or trust, frequently 
mimicking banks, social media sites, or coworkers, to trick victims into compromising their 
security (Bergholz et al., 2010; Almomani et al., 2013b). This study focuses on the latter. 
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2.2 Phishing Website Detection Method 
Various technologies have been developed to address the issue of phishing websites. These 

include anti-phishing solutions such as List-based techniques, Heuristic-based techniques, 

Visual Similarity-based techniques, and Machine learning-based techniques. 

List-based approaches use web browser whitelists and blacklists. Whitelists include 

trusted URLs, which increase false positives while blacklists exclude known phishing URLs, 

which increases false negatives. The drawback of this method is that it is unable to identify 

phishing websites that are not on the blacklist or whitelist, as well as websites that have 

content that is identical to that of phishing websites that have been restricted (Rao et al., 

2020).  

Heuristic methods extract characteristics from source code and third parties which 

make them good at identifying novel phishing attacks. However, they suffer when it comes to 

differences in website features (Rao et al., 2015). Another drawback is that phishing sites 

located on hacked servers may go undetected if third-party services are used, leading to the 

mistaken classification of these websites as legitimate due to their inclusion in search results 

(Rao et al., 2020).  

The two types of existing similarity-based phishing detection techniques are 

screenshot similarity and HTML code similarity. In order to identify phishing, researchers 

first analysed HTML codes. However, these techniques may not be successful if attackers 

produce pages that appear similar but use different HTML codes, or if they substitute pictures 

or embedded objects for HTML. Because of this, some researchers can now determine 

similarity from snapshots of displayed webpages (Wang et al., 2024).  

Machine learning-based methods have become more widely adopted because of the 

limitations of the above methods. ML algorithms rely on training data size and feature set, 

they provide great efficacy in recognizing phishing attempts with huge datasets by utilizing 

machine learning algorithms such as RF, LR, DT and NB (Kumar et al., 2020). Combining 

heuristic and ML or DL techniques (hybrid models) show potential in effectively tackling 

computational issues by using the advantages of both approaches (Saravanan and 

Subramanian, 2020). 

2.3 State of the Art 
Several studies have conducted comprehensive analyses that have compared the effectiveness 
of several machine learning models in detecting phishing websites using different benchmark 
datasets. Many studies such as (Subasi et al., 2020; Zouina and Outtaj, 2017; Huang et al., 
2019; and Somesha et al., 2020) focused on URL-based phishing website detection using 
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machine learning and deep learning approaches with high detection rates. However, the 
limitation with these approaches is that they disregard the HTML content which contains 
relevant information that could make the website phishing detection models more effective. 
Because the HTML feature has not been used in the training of these models, these models 
could falsely classify phishing websites as legitimate. 

Fewer studies such as (Li et al., 2019and and guptta2024) have used hybrid (i.e. URL-
based and HTML-based) features to build more robust phishing website detection models. 
These models have demonstrated very high detection rates. However, most of these studies 
implement single-model methods which are stifled by the models’ inherent cons. 
Vijayalakshmi et al. (2020) conducted an in-depth exploration of website phishing detection 
methodologies, categorizing them into URL-based, content-based, and hybrid-based 
approaches. Through an extensive analysis, they assessed detection techniques such as list-
based, heuristic rule, and learning-based methods, aiming to offer a comprehensive overview 
of the field. By evaluating these methods across dimensions such as performance, limitations, 
reliance on third-party services, and language independence, the study provides valuable 
insights into their efficacy and applicability. However, while the survey includes some 
discussion of deep learning (DL) models, it lacks detailed elucidation of their feature 
extraction mechanisms from HTML data, indicating scope for further investigation into this 
aspect of phishing detection strategies.  

Saravanan and Subramanian 2020 opined that the current research was limited by 
poor hyperparameter tuning and inadequate feature selection methods. The authors then 
proposed a hybrid model that used GA to select the best features given that irrelevant features 
impact the model’s building time and accuracy. The ARTMAP module utilizes a supervised 
neural network for classification, automatically categorizing input patterns into recognized 
classes based on predictive capabilities made of two self-organized ART modules joined by a 
self-associative memory and an internal controller. The network aims to optimize accuracy 
and reduce error. The proposed model showed improved performance in accuracy, error rate 
and detection time although stymied by using only URL-based features. 

Rao et al. (2018) proposed a new classification methodology that utilizes heuristic-
based feature extraction techniques. This approach categorized the selected features into three 
main groups. Despite achieving an impressive accuracy rate of 99.55%, the methodology is 
limited by its reliance on third-party services, which introduces variability in the speed of 
website classification. Additionally, the model's effectiveness heavily relies on good quality 
and ample quantity of the training dataset used. Furthermore, the extraction of broken link 
features can lead to increased computational overhead, especially noticeable in websites with 
complex hyperlink structures. These limitations underscore the need for further refinement 
and optimization of the proposed methodology.  
 

Table 1. Summary Table for State of the Art  

 
Reference Paper Strengths Drawbacks 
Subasi et al., (2020) - Investigates ensemble methods. 

Introduces boosting + bagging 
model. 

- Comparison limited to UCI dataset 
- Focuses on URL-based features 
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- Measures time complexity 
Zouina and Outtaj, 
(2017) 

- Introduces lightweight SVM model 
suitable for mobile devices 

- Only URL-based features are applied in the 
model, disregarding the HTML content 

Huang et al., (2019) - Introduce PhishingNet for timely 
phishing URL detection that extract 
character-level spatial features and 
word-level temporal features using 
CNN and RNN. 

- Only URL-based features are applied in 
training the model, disregarding the HTML 
content 

Somesha et al., 
(2020) 

- Investigates deep learning method. 
- Testing done with different number 
of layers 

- Use of third-party feature  
- May miss phishing sites utilizing embedded 
objects like Flash, JavaScript, and HTML files 
to substitute textual content. 

Li et al., (2019) - Designed lightweight features for 
URLs and HTML, and introduce 
HTML string embedding.  
- Used stacking model to enhance 
phishing webpage detection. 
- Used multiple datasets for 
evaluation. 

- May not address real-time threat detection 

Guptta et al., (2022) - Introduces a machine learning-
based method for real-time phishing 
website detection 
- Focusing on hybrid features 
derived from URLs and hyperlinks. 

- May not address real-time threat detection 

Saravanan and 
Subramanian 
(2020) 

- Used reduced feature vector 
- Introduced a stacking model using 
ARTMAP 

- May not address real-time threat detection 
- Used only URL-based features 

Rao et al. (2018) - Proposes a novel classification 
model leveraging heuristic features.  
- Evaluation of various types of 
Random Forest (RF) algorithms. 

- Use of third-party services. 
- Use of only URL-based features 
- Increased computational overhead due to 
broken link features 

 
The adoption of deep learning techniques underscores the significance of leveraging 

advanced computational methods capable of discerning intricate patterns within URL 
structures, content features and domain-specific features associated with phishing attempts. 
This highlights the potential of sophisticated neural network architectures in bolstering 
cybersecurity measures by accurately identifying malicious online activities. The utilization 
of deep learning techniques, coupled with domain-specific features, underscores the potential 
for enhancing detection accuracy and robustness in identifying fraudulent online activities. 
 

3 Research Methodology 
 
This chapter outlines the suitable processes for executing the research experiment, following 
a minor modification of the traditional CRISP-DM methodology to make a suitable standard 
data science framework for this research study (see Figure 1 below). It covers the definition 
of objectives, data gathering, data preparation, modelling and the evaluation methodology. 
The chapter describes the research processes from data collection and processing to the ML 
algorithms, and evaluating their performance in detection of phishing websites. 
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Figure 2. Phishing Website Detection Implementation Process 

 

3.1 Definition of Objectives 
Protecting people and companies from phishing attacks, mitigating the drawbacks of single-
base models, and improving the overall detection rate of phishing website detectors is the 
main justification for using a hybrid ML to identify phishing websites. Phishing websites try 
to trick its victims into revealing personal information or committing dangerous activities. 
Businesses may examine and categorise website URLs using machine learning, identifying 
possible phishing attempts based on unique characteristics and patterns. Sensitive data is 
protected, cybersecurity measures are strengthened, data breach risks are reduced, and 
consumer trust is increased by implementing an efficient hybrid ML model for phishing 
website detection. Businesses may deploy resources more effectively and prevent cybercrime 
by automating the detection process. 

3.2 Data Gathering 
This study is aimed at the detection of phishing websites using hybrid ML and DL 
approaches, the website datasets used were obtained from Mendeley. The dataset consists of 
80,000 combine legitimate and phishing website records built for the training and testing of 
the implemented models, collected from Google, Ebbu2017 Phishing Dataset, PhishTank, 
OpenPhish and PhishRepo. The URL and the HTML page are included in each instance. The 
root file, index.sql, is used to map URLs to the appropriate HTML pages. The index.sql file 
contains five attributes – rec_id, url, website, result and created_date.  

3.3 Data Preparation  
The process of refining raw data, or data cleaning, is a necessary first step in order to 
effectively gather information and carry out accurate data mining. Gathering, organising, and 
classifying the websites was the initial stage in this procedure. First, the data frame is 
analysed and checked for missing values which are then removed. The features which do not 
contribute to the classification of websites are also removed from the dataset. 
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3.4 Modelling 
To implement the phishing website detection system models that will satisfy the aim of this 
research, four machine learning models are selected and are described as follows: 

3.4.1 Random Forest Classifier (RFC) 
In many phishing detection systems, random forest is a widely supervised method for 
classification. A random subset of the training data and features is used to train each of the 
decision trees that the algorithm creates. Each tree evaluates the fresh sample during 
classification, and the final prediction is made using the majority vote. To maximise 
information gain, decision trees are constructed recursively by dividing the data based on 
input characteristics and continuing the process until subsets have homogenous class labels or 
a stopping requirement is satisfied.  

3.4.2 Support Vector Machine (SVM) 
Robust machine learning methods called support vector machines (SVM) are used in 
classification. Their primary objective is to determine which hyperplane is best for 
classifying the data and maximising the space between the hyperplane and the closest data 
points. SVM is useful for detecting phishing websites since it can distinguish between 
authentic and phishing webpages using characteristics gleaned from the HTML content and 
URL. SVM can detect abnormalities in future data and learn patterns from labelled data, 
which enables it to initiate mitigation measures.  

3.4.3 Gradient Boost Classifier (GBC) 
Phishing website detection can be aided by Gradient Boosting technique. The fundamental 
principle of boosting is to combine weak learners into a powerful model. For this purpose, 
Gradient Boosting is a very dependable technique that improves performance on a range of 
risk functions and removes multicollinearity, allowing for the development of accurate 
prediction models. Suitable for categorization tasks, a strong learner is generated from an 
ensemble of weak learners.  

3.4.4 Graph Neural Network (GNN) 
Graph neural networks (GNNs) are specialised deep learning models designed to handle and 
analyse graph-structured data. The graphs represent entity relationships which make up the 
nodes and edges. They provide an adaptable framework for describing and understanding 
diverse patterns in nature, and they function as a fundamental instrument for gathering data 
from the natural world. By successfully identifying structural information and obtaining 
meaningful high-level representations from graph-structured data, GNNs are superior 
representation learners. 

 
The justification for choosing these models is that they perform well, especially when 

high-dimensional data and substantial class differences are present. They mimic non-linear 
decision boundaries well, are noise-resistant, and perform well with both big and small 
feature sets. Notably, these models provide good accuracy without overfitting, even with a 
greater number of characteristics. They exhibiting enhanced explainability, scalability, 
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flexibility, and resource efficiency, they offer significant insights into crucial variables for 
categorization, making them useful instruments for phishing website detection applications. 

3.5 Evaluation Methodology 
To assess the performance of the hybrid phishing website detectors, the models utilize a 
dataset that hold legit and phishing webpages. The ratio of webpages that are correctly 
grouped serves as an additional metric to assess the algorithm's effectiveness, representing 
the portion of URLs correctly categorized.  

The accuracy, F1-score and AUC are the chosen evaluation metrics for this research. 
Selecting the right assessment metric for classification tasks depends on the class distribution 
of the dataset and whether the focus is on positive or negative predictions. Accuracy 
suits balanced problems where the importance of positive and negative predictions is equal. 
On the other hand, as the F1 score combines accuracy and recall into a single value, 
accurately expressing model performance, it is favoured in unbalanced circumstances where 
positive examples are prioritised. Furthermore, the F1 score assesses performance at a 
particular threshold, but the AUC measure sheds light on a model's capacity to distinguish 
between true and false occurrences across a range of thresholds, independent of class 
imbalance.  
 
4 Design Specification 
 
This chapter discusses the underlining architecture to facilitate the implementation of the 
proposed phishing website detection system. It describes the GA and how it fits into the 
proposed hybrid model. 

4.1 Genetic Algorithm (GA) 
Genetic Algorithm (GA) emulates natural selection to solve optimization problems, using a 
population of potential solutions represented as individuals (chromosomes), evolving through 
selection, crossover, and mutation (usually referred to as the GA operations or steps). The 
steps or operations involved in the GA-based feature selection are as follows: 
• Initial Population: In GA, the initial population comprises individuals representing feature 

combinations from the dataset. Each feature acts as a binary switch within the 
chromosome, denoted as either on (1) or off (0). 

• Fitness Function: Evaluates each individual's performance relative to others, assigning a 
score based on its ability to predict phishing or legitimate websites. Higher scores indicate 
better-performing individuals, guiding the selection of the top candidates for the next 
iteration. 

• Selection: After obtaining scores, the best chromosomes are chosen for the next 
generation using an efficient method called tournament selection. 

• Crossover: In crossover, genes from two parent chromosomes are mixed to produce new 
offspring, akin to combining traits from parents to create offspring. This process is known 
as a two-point crossover, which is one of the several types of crossover operators used to 
recombine the genetic material of two-parent individuals to produce new offspring. 
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• Mutation: This ensures population diversity and prevents premature convergence of the 
algorithm by randomly altering parts of a chromosome to explore potentially better 
solutions using an efficient method called bit-flip mutation. 

By taking these stages repeatedly, the population has evolved towards ever-more-optimal 
solutions. 
 

4.2 Proposed Model 
The model we propose uses the base models to perform the classification. Based on the 
results of the predictions, the GA is used to perform dimensionality reduction i.e. the GA 
applies the fitness function to evaluate which genomes (features) in the population are 
optimal for analysing phishing websites.  
Hyperparameter tuning is used to select optimal parameters for each model that will be used 
for the analysis. The proposed model uses the optimal feature selection from the GA and the 
hyperparameter tuned models to perform analysis for each model built for phishing website 
detection. A schematic overview of the proposed framework for automated phishing 
detection is shown below. 
 

 
 

Figure 2. Model Architecture 

 
 
 

5 Implementation 
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This chapter describes each machine learning model's implementation of the previously 
defined system design and how the models function in relation to the selected evaluation 
metrics. Additionally, the main conclusions and the outcomes of each machine learning 
model's system design implementation are examined. 

 
A comprehensive overview of the insights gathered throughout the investigation is 

provided by the EDAs carried out on the dataset. Studying the dataset in depth leads to a 
better understanding of its statistical significance. A pie chart representing the class 
distribution of phishing to legitimate websites was used to get this data shown in figure 3 
below. 

 

 
 

Figure 3. Class Distribution of Websites 

 
 

5.1 Feature Extraction 
To extract features from the dataset, two python modules were created, namely, 
features_to_extract.py and features_extraction.py. the features_to_extract.py defined 
functions used to generate and extract a feature from the raw dataset. On the other hand, the 
features_extraction.py is used to assemble the features that have been extracted from the raw 
dataset. After extracting these features, they are converted to Pandas data frame and stores as 
a csv file containing the new dataset used for analysing the phishing websites. The table x in 
the appendix shows a summary of the extracted features and their description. 
 

5.2 Experiment Setup 
This study implemented four ML and DL models including SVM, RFC, GBC and GNN. Two 
experiments were carried out, experiment 1 was designed to use the default parameters while 
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experiment 2 was designed with GA feature selection and hyperparameter tuning.  These 
models were built using run_svm_model, run_rfc_model, run_gbc_model and 
run_gnn_model function respectively. These functions create an instance of the model being 
analysed using the default parameters or hyperparameters based on the value of the 
grid_params arguments given to the function. The function then invokes the run-
_model_analysis function which performs model training by calling the train_model 
function, generate model predictions by calling the generate_model_prediction function, 
generate model evaluation summary by calling the generate_summary_result function. 
Lastly, displays analysis summary by calling the generate_analysis_summary function. The 
output of the generate_summary_result function is the stored in the analysis_result global 
variable. 

5.3  Implementation of Genetic Algorithm (GA) 
To implement the GA for feature selection, the creator module from deap library is used to 
define the representation of an individual (aka chromosome or genome) in the population. 
Next, the instance of the Toolbox (toolbox) is created from the base module and the created 
instance of the toolbox to register and configure GA operations. The toolbox instance is used 
to register the fitness function used to evaluate the fitness of an individual using the provided 
model and fitness function get_model_fitness. Then, the toolbox instance registers other GA 
operations namely – mate (also known as the Crossover operation with the attribute 
“cxTwoPoint” is used to swap segments between two parents to create new offspring), 
mutate (also known as the Mutation operation with the attribute “mutFlipBit” is used to flip a 
bit in the chromosome with a probability of 0.05) and select (also known as the Selection 
operation with the attribute “selTournament” is used to select the best individuals out of a 
randomly chosen subset of the population) operations respectively. To execute the GA, the 
initial population is created by calling the toolbox.population(n=num_of_population) 
method with num_of_population given as the number of individuals in the initial population, 
and the evolutionary process is initiated by calling the eaMuPlusLambda module in the 
algorithms module. The selection, crossover, and mutation are done using the 
`algorithms.eaMuPlusLambda` function. This function evolves the population over 10 
generations, employing the specified crossover and mutation operators with given 
probabilities `cxpb` and `mutpb`, respectively. The model tracks statistics such as the avg, 
min and max fitness values of the population using the `stats` object. Additionally, a 
`HallOfFame` object is used to maintain the best individuals across generations. After 
evolution, the best individual from the final population is selected using `tools.selBest`, and it 
is added to the `hall_of_fame` to ensure that the best solution is preserved. Finally, the 
`hall_of_fame` holds the best individuals from all generations and is returned as the output of 
the genetic algorithm. 
 
For the GA implementation to rank and select the best-performing individual in the 
population for a given generation, the get_model_fitness was created. The get_model_fitness 
function accepts five arguments namely – individual (binary string for the selected features), 
predictors (the independent variables in the dataset), target (the dependent variable in the 
dataset), model (the model used to analyse the individual), and is_func (a Boolean variation 
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use to build neural network model should the model need to be compiled).To calculate the 
fitness of the individual, the fitness function uses cross_val_score from the sci-kit learn 
library to evaluate the performance of a model using cross-validation. The cross-validation 
method is a statistical tool used to evaluate a model's efficiency on unseen data. The 
generalization function is particularly useful for evaluating how well your model generalizes 
to independent data. The cross_val_score splits the dataset into k folds, the model is trained 
on k-1 folds, and the model is validated on the remaining fold, repeating this process k times. 
Each iteration returns a list of scores, which can be used to estimate the model's performance 
by calculating the mean from the list of scores. 

5.4 Implementation of Support Vector Machine (SVM) 
To implement the SVM model, the run_svm_model function was used to assemble the SVM 
model. The function accepts four parameters (processed_analysis_dataset, analysis_result, 
model_name, grid_params). The processed_analysis_dataset parameter contains the 
analysis dataset which includes both the training and testing datasets for the dependent and 
independent variables. The analysis_result parameter is used to track analysis summary for 
SVM model. The model_name is a dictionary with 3 keys – (name which tracks the full 
model’s name, short which tracks the abbreviated model name, and analysis which tracks the 
descriptive title for SVM model analysis). The grid_params parameter with a default value 
of None is used to determine if the implementation is for the baseline experiment or for the 
hyperparameter tuned model. The grid_params parameter had the following variables 
defined as follows for the hyperparameter tuned model: kernel was set to [‘linear', 'rbf'], C is 
[0.1, 1, 10, 100, 1000], and gamma [1, 0.1, 0.01, 0.001, 0.0001].  
The SupportVectorMachine module was invoked to run the SVM model from the scikit-
learn library. “123” was assigned to random_state parameter when creating an instance of 
the class. Next, the value of the grid_params is checked, if it contains a value not equal to 
None, the GridSearchCV module with the SVM model instance and the grid_params are 
used to create a new instance of a hyperparameter tuned SVM model. To build and evaluate 
the SVM model, the run_model_analysis function was called with the (model, model_name, 
processed_analysis_dataset) parameters. After the analysis has been completed, the 
run_model_analysis function returns the evaluation estimates stored in the analysis_result 
dictionary. 

5.5 Implementation of Random Forest Classifier (RFC) 
To implement the RFC model, the run_rfc_model function was used to assemble the RFC 
model. The function accepts four parameters (processed_analysis_dataset, analysis_result, 
model_name, grid_params). The processed_analysis_dataset parameter contains the 
analysis dataset which includes both the training and testing datasets for the dependent and 
independent variables. The analysis_result parameter is used to track analysis summary for 
RFC model. The model_name is a dictionary with 3 keys same as above but for RFC model 
analysis). The grid_params parameter with a default value of None is used to determine if 
the implementation is for the baseline experiment or for the hyperparameter tuned model. 
The grid_params parameter had the following variables defined as follows for the 
hyperparameter tuned model: n_estimators was set as [25, 50, 100, 150], ['sqrt', 'log2', None] 
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were assigned variables for max_features, max_depth was assigned [3, 6, 9], [3, 6, 9] for 
max_leaf_nodes, criterion ['gini', 'entropy'], bootstrap [True].  
The RandomForestClassifier module was invoked to run the RFC model from the scikit-
learn library. The random_state parameter was set to "123" when an instance of the class was 
created. Next, the value of the grid_params is checked, if it contains a value not equal to 
None, the GridSearchCV module with the RFC model instance and the grid_params are 
used to create a new instance of a hyperparameter tuned RFC model. The same functions and 
steps are followed from the SVM implementation to create and assess the RFC model. 
 

5.6 Implementation of Gradient Boost Classifier (GBC) 
To implement the GBC model, the run_gbc_model function was used to assemble the GBC 
model. The function accepts four parameters (processed_analysis_dataset, analysis_result, 
model_name, grid_params). The processed_analysis_dataset parameter contains the 
analysis dataset which includes both the training and testing datasets for the dependent and 
independent variables. The analysis_result parameter is used to track analysis summary for 
GBC model. The model_name is the same as the above. The grid_params parameter with a 
default value of None is used to determine if the implementation is for the baseline 
experiment or for the hyperparameter tuned model. The grid_params parameter had the 
following variables defined as follows for the hyperparameter tuned model: n_estimators was 
set as [50, 100, 200], learning_rate [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3], and max_depth [3, 5, 
7].  
The GradientBoostClassifier module was invoked to run the GBC model from the scikit-
learn library. The random_state parameter was set to "123" when an instance of the class was 
created. Next, the value of the grid_params is checked, if it contains a value not equal to 
None, the GridSearchCV module with the GBC model instance and the grid_params are 
used to create a new instance of a hyperparameter tuned GBC model. The same functions and 
steps are followed to create and assess the GBC model. 
 

5.7 Implementation of Graph Neural Network (GNN) 
 
The Keras Model class was imported from the model module of Tensorflow's Keras library, 
and was used to create the GNN model. To construct the graph convolutional layers, the 
layers module additionally imported the Dense class from the Tensorflow Keras library. An 
instance of the Keras Model class is included in the graph neural network model, which is 
assembled using the build_gnn_model function. To assemble the neural network with the 
input, graph convolutional layers as the hidden layers, and output layers, the input dimension 
is used in the construction of the first convolutional layer (gc1) and is fed to a dense layer to 
create convolutional layer (gc2) using the "relu" activation function. The output layer was 
assigned "sigmoid". "binary_crossentropy" was the defined loss function, "adam" as the 
optimizer value, and "accuracy" as the metrics parameter when the model was constructed. 
During training, the Adam optimizer dynamically modifies weights and biases to accelerate 
convergence. A three-parameter neural network model instance was created using the 
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KerasClassifier wrapper. The parameters are the build_gnn_model function, epochs 
parameter was set to “10” and the batch_size was set to “32”. The model_name parameter is 
a dictionary with three keys same as the models above. The same functions and steps are 
followed to build and evaluate the GNN model. 
 

6 Evaluation 
 
The objective of this section is to give a complete analysis of the research study's results and 
primary conclusions, as well as the ramifications of these findings. The aim of this study was 
to assess the effectiveness of hybrid machine learning models in the detection of malicious 
websites. The SVM, RFC, GBC and GNN were selected as the base models to be enhanced 
using GA to select the best features for this reason. Two experiments were carried out, 
experiment 1 was done with just the base models and experiment 2 was done with feature 
extraction using the genetic algorithm. To quantify how well the ML and DL models were 
implemented, the evaluation metrics described in chapter 3 were used. 

 

6.1 Experiment 1 
 
Experiment 1 was carried out to evaluate the performance of SVM, RFC, GBC and GNN. 
When the accuracy, F1-score and AUC was calculated, the GNN demonstrated to be the least 
effective model across recording 75%, 76.19%, and 76.26% respectively. GBC performed 
best without any hyperparameter tuning or GA feature selection with records of 95%, 
94.12%, and 94.44% on the accuracy, F1-score and AUC respectively. RFC measured good 
performance with above 80% across all metrics. SVM only recorded 80% in accuracy and 
below 80% on F1-score and AUC. The table below clearly shows the summary of the base 
models’ performance. 
 

Table 2. Performance Score for Base Models 

 Accuracy (%) F1-Score (%) AUC (%) 
SVM 80  77.78 79.80 
RFC 85 82.35 84.34 
GBC 95 94.12 94.44 
GNN 75 76.19 76.26 

6.2 Experiment / Case Study 2 
 
Experiment 2 was carried out to evaluate the performance of SVM, RFC, GBC and GNN 
when hybridized using GA and hyperparameter tuning. The accuracy, F1-score and AUC was 
quantified, the GA-GBC demonstrated to be the least effective model across with a reduction 
in the performance. There was a 5% drop in performance in the accuracy, F1-score and AUC. 
GA-RFC and GA-SVM had almost identical improvements of about 10% across all metrics. 
The most staggering improvement using GA and hyperparameter tuning was in the GA-
GNN. The GA-GNN demonstrated very good performance with a huge jump in accuracy 
from 75% to 95%, F1-score and AUC skyrocketed from 76.19% to 94.74% and 76.26% to 
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95.45%, respectively. GA-RFC obtained identical evaluation to GA-GNN. The table below 
clearly depicts the performance of the GA and hyperparameter tuned models. 

Table 3. Performance Score for Improved Models 
 

 Accuracy (%) F1-Score (%) AUC (%) 
GA-SVM 90 90 90.91 
GA-RFC 95 94.74 95.45 
GA-GBC 90 87.50 88.89 
GA-GNN 95 94.74 95.45 

6.3 Discussion 
 
Two experiments were undertaken to determine the effectiveness of optimizing single base 

SVM, RFC, GBC and GNN models for the purpose of identifying phishing websites. In 

experiment 1, the models were built as single base without hyperparameter tuning or feature 

extraction using the GA described in chapter 4. The findings of experiment 1 showed that 

GNN performed the poorest across all evaluation metrics. When the SVM was coupled with 

the GA to make the GA-SVM, there was significant improvement across all metrics due to 

the selection of features using the GA. The GA-SVM recorded 10% increase in accuracy, 

12% increase in the F1-score and almost 11% increase in the AUC. 

Interestingly, there was a change in the performance of GBC as its performance declined 

even with the use of GA and hyperparameter tuning across all quantification measures. 

However, the GNN was the most improved model when combined with GA across all 

measures. There was a 18%, 19% and 20% surge in F1-score, AUC and accuracy, 

respectively. The experiment demonstrates that hybrid models could effectively detect 

phishing websites better than some single base models. The bar chart in figure 4 below shows 

a comparative summary between the base models and hybrid models. It was revealed in this 

experiment that the more data which was used in training testing, the lower the performance 

of the hybrid models. 
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Figure 4. Comparative Summary between the Base Models and Hybrid Models 

 

6.4 GA Feature Selection: Addressing Overfitting and Underfitting 
With the combination of the genetic algorithm and hyperparameter tuning model 
implementation, the efficiency of the model dropped significantly when the number of 
records in the dataset became large enough to run the models. Further investigation suggests 
that feature selection can result in overfitting or underfitting the model. By “overfitting”, it 
means minimisation of the feature selection beyond the point at which generalisation 
performance ceases to improve and subsequently begins to decline suggesting that selecting 
features that are beneficial only to the training data. Underfitting means the minimisation of 
the feature selection beyond the point the implemented where the implemented model is too 
simple to capture the underlying patterns in the data. This means that the model performs 
poorly on both the training data and unseen test data. Essentially, the model is not complex 
enough to learn the relationships within the dataset. 
 
To mitigate the effect of overfitting the GA feature selection, robust cross-validation during 
feature selection to prevent overfitting is adopted and this approach uses a separate test set to 
validate the final selected feature. 
 
 

7 Conclusion and Future Work 
 
To conclude, the goal of this study was to determine if phishing website detection might be 
improved by integrating Genetic Algorithm (GA) with supervised machine learning and deep 
learning techniques. Based on the critical review of the outcome of the experiments, the 
phishing detection systems performed far better when hyperparameter tuning and GA were 
integrated with them; more notable with the GNN than the base SVM, RFC and GBC 
machine learning models. The experiment indicated that hybrid models offer significant 
improvements in accuracy, F1-score, and AUC over single-base models. This implies that 

0

20

40

60

80

100

120

SVM GA-
SVM

RFC GA-RFC GBC GA-GBC GNN GA-
GNN

Accuracy (%) F1-Score (%) AUC (%)



 

19 
 

 

using GA for feature selection and optimisation might improve phishing detection systems' 
effectiveness. This finding has important ramifications for preventing phishing scams on 
websites. By creating more robust and effective detection systems, organisations may better 
defend against the exposure of their sensitive data and avoid financial losses and reputational 
harm. The results underline the significance of GA feature selection in enhancing detection 
accuracy and demonstrate the potential of hybrid models in tackling the problems related to 
phishing website identification. Despite the positive findings, it is imperative to acknowledge 
the study's limitations. One of the limitations is that with more data used for training and 
testing the lower the performance of the hybrid models; which subsequently makes the 
single-base models perform better.  

Further studies may include the use of different datasets to mitigate the effects leading 
to the performance decline. Applying more models to the modular architecture might 
improve system adaptability by making it simpler to switch out models and customise the 
system for more sophisticated attack scenarios. As cyber threats change, this research 
provides useful information for enhancing phishing detection systems and strengthening 
cybersecurity posture. 
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