

Enhancing Malware Detection Using Stacked BiLSTM with

Attention Mechanism: A Deep Learning Approach

MSc Research Project

MSc Cybersecurity

Srinivasan Masilamani

Student ID: 21159904

School of Computing

National College of Ireland

Supervisor: Arghir Nicolae Moldovan

 National College of Ireland

MSc Project Submission Sheet

School of Computing

StudentName:

Srinivasan Masilamani

Student ID:

21159904

Programme:

Msc Cyber Security

Year:

2023-2024

Module:

Msc Academic Internship

Supervisor:

Arghir Nicolae Moldovan

Submission Due

Date:

25 April 2024

Project Title:

Enhancing Malware Detection Using Stacked BiLSTM with

Attention Mechanism: A Deep Learning Approach

WordCount:…5652

 Page Count : 19

I hereby certify that the information contained in this (my submission) is information pertaining to

research I conducted for this project. All information other than my own contribution will be fully

referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work

is illegal (plagiarism) and may result in disciplinary action.

Signature:

…………Srinivasan Masilamani……………………………………

Date:

……………25/05/2024 …………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the

assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhancing Malware Detection Using Stacked BiLSTM with

Attention Mechanism: A Deep Learning Approach

Srinivasan Masilamani

x21159904

Abstract

The detection of malware offers quite a few challenges due to the ever-evolving nature of threats in the field

of cybersecurity obviously. Traditional methods of malware detection methods already struggling to keep pace

due to the rapidly changing landscape of malicious software. This study introduces a novel approach with the

help of deep learning techniques which will enhance malware detection efficiency and address the prior work

limitations like traditional methods which are already facing challenges. There are four models which are

going to be performed in this project ie., Convolutional Neural Network (CNN), Long Short-Term Memory

(LSTM), Bidirectional Long Short-Term Memory (BiLSTM) networks and Stacked BiLSTM with an

Attention Mechanism. These models are more effective in identifying complex patterns and dependencies

found in Portable Executable (PE) files, which are frequently used as vectors for the spread of malware. Using

an extensive dataset that includes both malware and benign PE files that are sourced from reliable repositories,

this study guarantees a strong training framework. While this project tests all the four models, and after

comparing the results, stacked BiLSTM with attention mechanism wins the accuracy margin. This study fills

a critical gap in malware detection by leveraging advanced machine learning techniques to enhance

cybersecurity defenses and mitigate the risks posed by evolving malware threats.

Keywords: Malware detection, Deep learning, Stacked BiLSTM, Attention mechanism, Cybersecurity

1. Introduction

Malware is a malicious type of software which means any type of software that is designed to cause

harm intentionally to a server, PC, computer, any kind of network etc (Sharma et al., 2021). Malware

could be of different forms such as worms, trojans, viruses, ransomware, spyware, adware et. Its main

objective is to prevent data theft or system disruption due to any type of financial fraud (Butt et al.,

2020). Now malware detection is the detection of malicious software. It is a process which is used to

classify and identify malicious types of software within a computing system. It includes use of a

different type of technologies and techniques as well for analyzing various files, network traffic, and

system behavior for detecting the presence of malware and mitigating its impact.

Figure 1.1: Malware Detection Techniques (Idika and Mathur, 2007)

Malware detection in Portable Executable (PE) files, usually found in Windows operating systems which is

used to focus mainly on identifying malware within executable files (.exe), dynamic link libraries (.dll) (Azeez

et al., 2021), and other executable formats. PE files contain executable types of code, resources, and metadata,

making them a common target for malware authors seeking to compromise systems and networks.

The Project analyzed various file properties of course, found various things in it like file size, header

information, section headers, import/export tables, and embedded resources, as well as dynamic analysis

methods, including sandboxing and code things, are commonly used to detect malware in PE files. In addition

to being effective tools for malware detection, machine learning and deep learning techniques have made it

possible to create models that are trained on big datasets and can certainly identify PE files in a reliable manner

like if it is spam or benign based on their characteristics and behavior.

1.1 Aim of the Study and Contribution:

This study aims to use deep learning models and to enhance the effectiveness and accuracy of this

malware detection project of Portable Executable (PE) files. This study has been used mainly four

deep learning models of course which includes CNN, LSTM, BiLSTM and Stacked BiLSTM with

Attention Mechanism. The dynamic and developing nature of malicious software mostly makes

traditional methods of malware detection not suitable of course, requiring the investigation of new

strategies. With the use of deep learning architectures, including Stacked BiLSTM with Attention

Mechanism, the project hopes to overcome some of the drawbacks of traditional type of models and

get superior precision in malware identification and classification. By giving a more reliable and

effective method of identifying malware, the research is looking to advance the field of cybersecurity

and improve the general security posture of networks and systems. this incorporation of BiLSTM based

model with attention mechanism which further enables to focus on relevant parts of input sequences

while neglecting the irrelevant information.

• Use of Attention mechanism with Stacked BiLSTM : this novel approach of incorporating

and utilizing the strength of stacked BiLSTM with attention mechanism. Stacking layers of

BiLSTM enhances the model’s capacity which will learn patterns and dependencies, while

attention mechanism will help the project to selectively attend the most informative part of the

input.

• Enhanced Feature: By using the Attention mechanism, the research can effectively extract

and give priority to critical features of the input sequence, which will lead to improved

classification of benign and malicious software.

• Improved Accuracy: Comparing the Evaluation result of the benchmark datasets, the effectiveness of

Stacked BiLSTM with attention mechanism is demonstrated in achieving higher accuracy in this

classification problem.

1.2 Research objectives:

The research objectives of this study are as follows:

1. To investigate and analyze traditional methods of malware detection to understand their limitations and

shortcomings in addressing obviously malware threats.

2. To do a comparative analysis of Stacked BiLSTM which is this projects work and with Prior work.

3. To develop and implement novel deep learning architectures, such as Stacked BiLSTM with Attention

Mechanism, and main aim of course to achieve superior accuracy and robustness compared to traditional

methods.

1.3 Research Questions :

The research questions addressed in this study are as follows:

1. How does the proposed novel deep learning architecture, Stacked BiLSTM with Attention Mechanism, perform

in terms of malware detection compared to traditional methods in terms of accuracy?

1.5 Research Gaps:

There are still a number of research gaps in the field of malware detection, despite giving very good

developments in the field. First off, all, the research is on the effectiveness of deep learning

architectures which is of course designed for malware detection tasks—like Stacked BiLSTM with

Attention Mechanism—is lacking. Although traditional type of techniques has given good and

encouraging outcomes, their capacity to adjust to quickly changing virus iterations is still restricted.

The diversity and size of existing datasets might not be sufficient to train reliable machine learning

models that can successfully generalize to real-world situations. Moreover, there is a knowledge

vacuum about the actual implementation of machine learning models for real-time virus detection in

applications. Further research is necessary to fully understand the issues that the incorporation of

machine learning into applications brings in terms of scalability, efficiency, and user experience. In

order to improve cybersecurity defenses against emerging threats and advance the state-of-the-art in

malware detection, it will be essential and important to address these research gaps.

2. Literature Review

2.1 Traditional Methods of Malware Detection

There are several traditional methods which had been used in malware detection including Signature-based

detection, Heuristic analysis, Behavior-based detection, Sandbox analysis, Anomaly detection, etc.

The spread of malware in modern computing presents a serious problem, which drives academics to come

up with creative ways to strengthen computer security. To tackle this threat, several approaches have been

developed, including behaviour-based and signature-based detection methods. (Botacin et al., 2022) presents

HEAVEN, a framework that combines hardware and software to speed up signature-based malware

detection in real-time. It achieves a 100% detection rate without any false positives and of course reduces

the amount of CPU cycles needed for scanning. Similarly, (Fortino et al., 2023) introduces SigIL, which

focuses again and do signature scanning on intermediate languages, making it possible to detect malware on

different devices. The complexities of signature-based malware detection are explored in (Goyal and Kumar,

2020) and (Jalilian et al., 2020), where (Goyal and Kumar, 2020) looks at both static and dynamic features

for classification obviously using machine learning classifiers and (Jalilian et al., 2020) suggests a of course

novel approach which is based on N-gram distribution and a Top K approach for file classification, both of

which show promise for malware detection. Besides this, (Assegie, 2021) presents an enhanced KNN model

derived from API call sequence analysis, with a remarkable 98.17% detection accuracy for malware.

Moreover, (Suryati and Budiono, 2020) concentrates on heuristic-based approaches designed especially for

Android devices, which target the Android OS. Similarly, (Yunmar et al., 2024) explores Android malware

detection which basically do expose the drawbacks of current hybrid solutions and promoting on-device

detection and better usability. Meanwhile, (Li et al., 2021) provides a more comprehensive overview of

heuristic-based malware detection techniques, stressing the necessity of precise detection in obviously

various malware kinds.

Table 2.1: Comparison Table on Traditional methods of malware detection

Study Methodology Features Algorithm Main Contribution

(Botacin

et al.,

2022)

Hardware and

software

combination

(HEAVEN)

Hardware-assisted

signature

matching, branch

pattern history

Machine learning Accelerated real-time

malware detection with

reduced CPU cycles

(Fortino et

al., 2023)

SigIL: Signature

scanning on

Intermediate

Language

Intermediate

representation of

binaries

Machine learning Cross-device malware

detection independent of

architectural specifics

(Goyal

and

Kumar,

2020)

Signature-based

malware

detection

String features for

static analysis,

nonrepetitive

consecutive API

calls for dynamic

analysis

Machine learning

classifiers (k-Nearest

Neighbors, Gaussian

Naive Bayes, Multi

Naive Bayes,

Decision Tree,

Support Vector

Machine, Random

Forest)

Detailed exploration of

both static and dynamic

features for classification

(Jalilian et

al., 2020)

Static signature-

based malware

detection

Opcode and binary

file signatures

N-gram distribution,

Top K approach

Proposal of a novel

signature-based detection

method

(Assegie,

2021)

Optimized KNN

model for

signature-based

malware

detection

API call sequences K-nearest Neighbor

(KNN)

Development of an

efficient KNN-based

model for real-time

intrusion detection

(Suryati

and

Budiono,

2020)

Heuristic-based

malware

detection for

Android

- Hybrid approach

integrating static and

dynamic methods

Identification of strengths

and limitations in hybrid

detection solutions

(Yunmar

et al.,

2024)

Survey on hybrid

Android malware

detection

- - Examination of challenges

and opportunities in

existing hybrid detection

approaches

(Li et al.,

2021)

Survey on feature

extraction

methods of

heuristic malware

detection

Features extraction

techniques

- Overview of feature

extraction methodologies

and associated

advantages/challenges

2.2 Advanced Methods of Malware Detection

There are various machine and deep learning models which are considered as advanced methods in malware

detection for PE files. Bai et al. (2014)'s suggested approach makes use of the PE file's format information

through extensive static analysis and mining. In this paper, all of the PE files' features were retrieved for the

PE header file, where the classification approach was used to improve the features' completeness and

decrease their dimensionality for accuracy. To differentiate between malware and benign software, a

classification system was used to train the chosen attributes.

Furthermore, (Qiang et al., 2022) suggests a strong dynamic analytic technique for malware identification that

makes use of particular fine-grained behavioral characteristics, like control flow traces, and combines CNN

and LSTM networks. Their suggested classifier of course shows robustness against hostile samples and

packing approaches, and it is effective in identifying known as well as unknown malware variants. For

example, (Demirci, 2022) suggests using generative pre-trained transformer-based (GPT-2) and stacked

bidirectional long short-term memory (Stacked BiLSTM) deep learning language models for detecting

malicious code. A stacked BiLSTM-based deep learning language model for malware detection is also

introduced in (Demirci, 2022), which uses assembly instructions taken out of Portable Executable (PE) files.

To attain high detection accuracy, they use Sentence Level Analysis Models (SLAM) and Document Level

Analysis Models (DLAM). Another study given by (Aslan et al., 2021) who suggested a Convolutional Neural

Network (CNN) model based on deep learning (DL) that classifies malware in PE binary files. To improve

classification performance, the CNN model makes use of fusion feature sets and large-scale learning

approaches.

3. Research Methodology

3.1 Methodology

Our approach is of course presenting structured way in understanding PE file malware classification in

this project. The process will involve business understanding first which is used to enhance malware detection

in PE files with the help of classification. Then it comprises collecting PE file datasets and exploring them,

cleaning them then preprocessing data. Then four DL models are going to be implemented which are,CNN,

LSTM, BiLSTM and stacked BiLSTM with an attention mechanism.

1. Business Understanding: The study's main focus for the business knowledge phase is of course the

necessity of strengthening defenses against malware attacks that target Windows systems. The

objective is to create a advanced type of detection system that can quickly detect and eliminate

threats concealed as Portable Executable (PE) files, given the increase in malicious software.

Security analysts, system administrators, and software engineers who are in charge of protecting

sensitive data and corporate assets are examples of stakeholders.

2. Data Understanding: To fully understand the data for this project, a through type of analysis and

examination for the PE file dataset have been derived from the supplied CSV file is very very

essential and required as well. This will definitely look at the attributes that the PEfile library was

able to extract in order to learn more about the traits of both malicious and benign PE files.

Developing efficient detection algorithms requires an understanding of the distribution of features

and the frequency of various malware variants.

3. Data Preparation: The third phase is data preparation which includes of course several steps which

ensure that the deep learning models have the dataset which should be well suited. First, this includes

fixing any missing values, eliminating outliers, and resolving data quality concerns to clean the

dataset. Then, to make model training easier, preprocessing operations including scaling numerical

features and encoding categorical variables are carried out. To balance the dataset and ensure a fair

representation of both classes, methods such as SMOTE oversampling are used in light of the

possible class imbalance of course between benign and malicious samples. Techniques for feature

selection can also be used to determine which features are most important for classifying malware.

4. Modelling: For this project, modeling will choose, optimise, and train deep learning models to

classify PE files which would be either harmful or benign. BiLSTM (Bidirectional Long Short-Term

Memory) and stacking BiLSTM with attention processes are the two main models that are taken into

consideration. These models are selected based on their capacity to efficiently extract sequential

patterns from PE file characteristics, an essential skill for identifying sophisticated malware

behaviors. The models are trained on the preprocessed dataset using the TensorFlow and Keras

libraries, with hyperparameters adjusted and architectures optimized for best results. Metrics like

accuracy, loss, and validation scores are used to track the model's performance during training in

order to guarantee convergence and avoid overfitting.

5. Evaluation: This project's evaluation includes a thorough analysis of how well the trained deep

learning models classified PE files as harmful or benign. A range of evaluation criteria are employed,

such as specificity, sensitivity, confusion matrices, accuracy, loss, and classification reports. The

models' capacity is of course to accurately classify samples, recognize real positives and negatives,

and reduce false positives and negatives is revealed by these metrics.

6. As an Additional work in this project, we could further utilize the Flask framework to incorporate the

trained deep learning model into an intuitive online application. Users can upload PE files to the

application to get real-time infection predictions. After a file is received, the program will use the

“pefile” library to extract pertinent features, which are then sent to the trained model for

categorization. After that, the algorithm predicts the file's likelihood of being benign or malicious,

giving consumers immediate feedback on the possible threat level. To enable ongoing development

and response to changing threats, monitoring technologies are also used to track program

performance and user interactions.

3.2. Libraries Imported

In this project, there are several libraries which have been used and imported for different and varied tasks

which include model development, preprocessing purpose, evaluation stage, visualization tasks and all. The

imported libraries comprise a few for data manipulation like numpy and pandas, for data visualization, we are

using seaborn and matplotlib, for building up deep learning models we have tensorflow and keras, scikit-learn

for preprocessing techniques and evaluation metrics, learn for addressing class imbalance using SMOTE

oversampling, and plotly for interactive visualization. In addition to these libraries, this study is going to deal

with sys and os modules as well which have been imported for system-related operations pickle and JSON for

serialization and deserialization of Python objects, and warnings module to suppress specific warnings during

runtime. These libraries collectively provide the necessary tools and functionalities to explore, preprocess,

train, evaluate, and deploy machine learning models for the classification of PE file malware.

3.4 Data Preprocessing:

In this study, this phase of the project is data preprocessing which is quite important and plays a vital role in

preparing the dataset for doing evaluation and model training. There are several processing techniques, but

this study is going to perform label encoding which converts the categorical type of variables into the

numerical type of representations. This will also make it suitable for deep learning algorithms and machine

learning algorithms as well. In addition to that, given the imbalance between the number of benign and

malicious PE files, we are going to employ the Synthetic Minority Over-sampling Technique (SMOTE)

which is applied to address the class imbalance by generating synthetic samples for the minority class

(malicious files) to balance the dataset. After that, this will ensure that ML models should be trained on a

balanced type of dataset and on comprehensive as well, thereby improving their ability to generalize and

accurately classify both benign and malicious files. Furthermore, there are some other preprocessing steps

such as handling missing values, scaling numerical features, and potentially selecting relevant features based

on feature importance analysis may also be performed to further enhance model performance.

3.5 Data Splitting (Training and Testing the Model):

After the data preprocessing the next phase is the data splitting phase which will divide the dataset in the ratio

of 80:20. Training, validation. This will ensure that for the training of models, an adequate amount of portion

of data should be allocated while also providing separate subsets for validation and evaluation to assess the

model's performance effectively. The 'Malware' column, which acts as the target variable indicating the

classification label of each PE file, is separated from the other features to complete the feature-target split.

The 'Malware' column have been of course removed from the dataset to extract the features (X), leaving only

the attributes needed for model training and prediction.

3.6 Dataset Description

Table: Details of dataset Used

Dataset Name: Benign & Malicious PE Files

Number of Files: dataset_malwares.csv (6.4 Mb)

Number of Rows: 19611

Number of Features: 78

Missing Values: 0

The dataset which this study is going to perform on Benign and Malicious Portable Executable (PE) files. This dataset

has been sourced from the Kaggle repository having the URL https://www.kaggle.com/datasets/amauricio/pe-files-

malwares. This dataset of course contains a collection of Portable Executable (PE) files which represent both benign

instances and malicious instances. Built as a component of a research project centered on malware detection and machine

learning, it is not a valuable tool for researching and creating defense strategies against online dangers. Using the pefile

Python module, extracted features from each PE file reveal details about the structure and properties of the executable

files. The features will obviously and of course cover a broad range of characteristics, such as metadata associated with

the PE file header, such as 'e_magic', 'e_cblp', 'e_cp', and 'e_crlc', which indicate characteristics such as file size and

signature, as well as details regarding memory allocation and file sections. The characteristics "Machine,"

"NumberOfSections," and "SizeOfOptionalHeader," which provide information about the executable's architecture,

segmentation, and optional header size, are other noteworthy features. Additionally, the dataset contains very very

important attributes like "AddressOfEntryPoint," "TimeDateStamp," and "ImageBase," which offer geographical and

temporal type of details regarding memory structure and file execution.

3.7 List of Models:

There are various deep-learning models which have been used in this paper to classify malware found in PE files.

A list of the models utilized in this report is provided below:

1. Convolutional Neural Network (CNN): The CNN model is firstly used in this study which is a deep learning

model to enhance malware detection. It has been trained on diverse dataset of Portable Executable (PE) files,

it identifies intricate type of patterns indicative of malicious behavior.

https://www.kaggle.com/datasets/amauricio/pe-files-malwares
https://www.kaggle.com/datasets/amauricio/pe-files-malwares

2. Long Short-Term Memory (LSTM): The LSTM model, has been used in this study to bolster malware

detection. This model addresses the shortcomings of traditional detection methods, which will enhanced

accuracy in identifying evolving malware threats.

3. BiLSTM (Bidirectional Long Short-Term Memory): The full form of BiLSTM is Bidirectional Long

Short-Term Memory. It is a neural network architecture and it is of course a variation of Long Short-Term

Memory (LSTM) that can process input sequences both forward and backwards. This deep learning model is

of course useful for sequential type of data, like PE file characteristics, since it integrates with bidirectional

processing, which allows it to capture dependencies in both past and future things. Its ability to pick up long-

term dependencies and remember data over lengthy periods is essential for identifying complex patterns that

point to virus behaviour.

4. Stacked BiLSTM with Attention Mechanism: This model combined with an attention mechanism, which

used to extend the BiLSTM architecture. By enabling the model to concentrate on relevant type of segments

of the input sequence, attention mechanisms improve the model's capacity to identify significant

characteristics and filter out unimportant noise. This model may learn hierarchical representations of the input

data by stacking many BiLSTM layers and integrating attention mechanisms, which may enhance

classification performance. Which is the reason behind why we chose this model as our novel approach.

These models were selected based on their capacity to handle sequential data efficiently and to represent complex

patterns found in PE file features. The goal of the classification system is obviosuly achieve high accuracy and

robustness in detecting malware in PE files by utilizing deep learning architectures such as BiLSTM and stacked

BiLSTM with attention methods.

3.8. Designing Our Workflow

So, basically this section is on design specifications of the workflow which will of course provides a complete

overview for the criteria and requirements needed to construct a malware classification system that uses deep learning

models. It provides a basic overview of the system's design, functionality, and technical specifications, acting as a

blueprint for the entire project. The project's goals and scope have been established, which highlights the necessity of

improving cybersecurity protocols by accurately identifying malware in PE files. It lists the important parties who are

involved, such as software developers, system administrators, and security analysts, whose specifications and input will

influence the design of the system.

The section then goes on to explain the system architecture, including all of the parts and how they work together.

A number of modules, including ones for data preparation, model training, evaluation, and deployment, are included in

the design of the system. Every module has various and separate responsibilities, including preprocessing and cleaning

the dataset, training deep learning models, assessing the performance of the models, and integrating the generated

models into applications. The technical specifications for every module, including the frameworks, libraries, and

implementation tools, are also described in the design specification. To handle class imbalance, for example, the data

preprocessing module needs libraries like pandas, numpy, and scikit-learn for data manipulation and preprocessing

methods like SMOTE. Similarly the model training module builds and trains CNN, LSTM, BiLSTM and stacked

BiLSTM models using deep learning frameworks like TensorFlow and Keras.

The section of course do outlines each module's input and output specifications. While the model training module

needs preprocessed feature vectors and associated malware labels, the data preprocessing module accepts input in the

form of a dataset with PE file features extracted using the pefile library. Performance measures including accuracy, loss,

confusion matrices, and classification reports are produced by the evaluation module and are essential for determining

the efficacy of the model.

Figure 3.1: Proposed Workflow

4. Implementation

4.1 CNN

A Convolutional Neural Network (CNN) is a deep learning architecture which has been designed for processing

and analyzing of course grid-like structured data, such as images, time series, and sequences (Dong et al., 2021). It

consists multiple layers, including convolutional, pooling, and fully connected layers, each serving a specific

purpose in feature extraction, dimensionality reduction, and classification. At its core, a CNN leverages

convolutional layers has been there which is used to detect local patterns and features within the input data through

a process called convolution. This CNN model consists of two Conv1D layers with 32 filters each and a kernel size

of 2, followed by Rectified Linear Unit (ReLU) activation functions to introduce non-linearity.

Figure4.1 :CNN architecture (Vinayakumar et al., 2019)

4.2 LSTM

A Long Short-Term Memory (LSTM) model is a type of recurrent neural network (RNN) architecture which has

been designed to address the gradient problem in sequential data (Sherstinsky, 2020). The LSTM architecture

comprises input, forget, and output gates, along with a memory cell that regulates the flow of information

(Staudemeyer and Morris, 2019). This LSTM model comprises several layers, starting with an LSTM layer with 8

units and return_sequences=False, indicating that it returns only the output of the last timestep and not the full

sequence. The input shape is determined by the dimensions of the training data (X_test) with a single feature.

4.3 BiLSTM

This study is going to be performed on Bidirectional Long Short-Term Memory (BiLSTM) neural network

architecture. This architecture is of course going to be implemented for the classification of PE files. To classify PE

file malware, a Bidirectional Long Short-Term Memory (BiLSTM) neural network architecture is used in this study.

The BiLSTM model's architecture consists of multiple layers that are planned to extract and process characteristics

from the input data (Aslan et al., 2021). With eight units, the first layer is a bidirectional LSTM layer that is set up

to return sequences to maintain temporal information. This type of layer will of course captures dependencies and

patterns within the data, it is also extracted from the PE files of sequential features. This layer adds non-linearity to

the model and most importantly it improves its representational ability. The output tensor is transformed into a one-

dimensional vector by adding a Flatten layer after the dense layer. This one-dimensional vector is then passed

through another dense layer with eight units and ReLU activation. To avoid overfitting, a Dropout layer is also

included, which randomly drops a portion of the units during training. Its dropout rate is 0.5.

Figure 4.2: BiLSTM architecture (https://paperswithcode.com/method/bilstm)

4.4 Stacked BiLSTM with Attention Mechanism

The next model is Stacked BiLSTM with Attention Mechanism. It is a hybrid model that combines two different

types of architectures. This architecture is a very very polished neural network which is designed for handling

sequential types of data which includes PE files which has been extracted its features. This Stacked BiLSTM with

Attention Mechanism architecture of course contain multiple types of layers whose main purpose to serve the

processing of the input data and capturing it. The Attention mechanism used to improve the model's capacity to

https://paperswithcode.com/method/bilstm

identify significant characteristics and omit unimportant data (Niu et al., 2021). Various input sequence segments

are given weights by this method in real-time, according on how relevant they are to the current job. This

approach is definitely implemented by the `Attention` class defined in the code. Initially, it sets up the trainable

weights {W} and {b}, which are then utilized to calculate the attention scores for every component in the input

sequence (Altaheri et al., 2023).

Figure 4.3: Stacked BiLSTM with Attention Mechanism Architecture (Rathore and Harsha, 2022)

5 Evaluation

5.1: CNN Results:

Figure 5.1: Classification report where accuracy : 54%

Figure 5.2: Confusion matrix

Figure 5.3: Accuracy and Loss Graph

This CNN model has been achieved very poor accuracy with 54% which indicates and has classified accurately PE files

as malicious or benign.

5.2: LSTM Results:

Figure 5.4 : Classification report where accuracy : 94%

Figure 5.5 Confusion matrix

Figure 5.6: Accuracy and Loss Graph

This LSTM model has been achieved quite good accuracy with 94% which indicates and has classified accurately

PE files as malicious or benign.

5.3: BiLSTM Results :

Figure 5.7: Classification report where accuracy: 95%

Figure 5.8: confustion matrix

Figure 5.9: Accuracy and Loss Graph

This Bidirectional Long Short-Term Memory (BiLSTM) model has been achieved quite good accuracy with 95%

which indicates good effectiveness and has classified accurately PE files as malicious or benign. By utilizing this type

of bidirectional architecture, it captures some sequential patterns with good ability within the data, this model showed

quite good strong performance.

5.4: Stacked-BiLSTM with Attention Mechanism:

Figure 5.10: Classification report where accuracy: 97%

Figure 5.11: confusion matrix

Figure 6.12: Accuracy and Loss Graph

This Stacked BiLSTM with Attention Mechanism has achieved a noteworthy and good accuracy of 0.97, surpassing the

BiLSTM model's performance. This suggests that the hybrid architecture achieves better classification performance by

efficiently capturing complex patterns in the input data by utilizing both BiLSTM layers and attention methods. The

Stacked BiLSTM with Attention Mechanism model, the better performing of the two models examined in this project,

combines the advantages of BiLSTM for sequential data processing and attention mechanisms for feature extraction.

This allows the model to distinguish between benign and malicious PE files with greater accuracy.

5.5 Classification Performance of Deep Learning Models

This section of classification performance of deep learning models which includes two models has been assessed

using recall, f1 score, and precision type of metrics. F1-score, precision, and recall metrics were used to evaluate

the classification performance of deep learning models. Precision, recall, and F1-score for the malware (1) and

benign (0) classes in the BiLSTM model were 0.98/0.92/0.95 and 0.93/0.98/0.95, respectively. In contrast, the

Stacked BiLSTM with Attention Mechanism scored higher—0.99/0.96/0.97 for malware and 0.96/0.99/0.97 for

benign—for both categories. With better precision and recall for both classes, the Stacked BiLSTM with Attention

Mechanism outperformed the other model, proving that it is capable of correctly identifying benign and malicious

PE files and so on for other models.

Table 5.1: Accuracy Table of all 4 models

Models Accuracy

CNN 54%

LSTM 94%

BiLSTM 95%

Stacked BiLSTM with Attention

Mechanism

97%

5.6 Comparative Analysis:

In comparative analysis, the Stacked BiLSTM with Attention Mechanism, our best model, outperforms prior work,

achieving an accuracy of 97%. While the CNN-BiLSTM from prior studies achieved a comparable accuracy of

95.7%, our BiLSTM model achieved 95%. The significant improvement in accuracy by the Stacked BiLSTM with

Attention Mechanism underscores its effectiveness in capturing complex patterns and dependencies within the data,

highlighting its superiority over traditional models. This demonstrates the potential of advanced deep learning

architectures for enhancing malware detection capabilities.

Table 5.3: Comparison of Deep Learning Models with prior work

Model Accuracy

CNN-BiLSTM (Prior work) 95.7%

Stacked BiLSTM with Attention Mechanism (Best Model) 97%

6 Conclusion and Future Works:

6.1 Conclusion:

In conclusion this study is presenting and working in malware detection domain with the help of deep learning

models. The dataset which has been employed in this report having collection if various malicious and benign Portable

Executable (PE files). This dataset has been sources from Kaggle and their link is already in the dataset description

section. PE file classification is done in a methodical manner through the project workflow, which includes data

loading, cleaning, visualization, preprocessing, model training, assessment. To categorize PE files as benign or

malicious, a variety of deep learning models were investigated, such as CNN, LSTM, BiLSTM and Stacked BiLSTM

with Attention Mechanism. With an accuracy of 97%, the Stacked BiLSTM with Attention Mechanism surpassed the

BiLSTM model, which had an accuracy of 95%. The latter proved to be more successful in correctly identifying risks

present in executable files, exhibiting higher precision, recall, and F1-score for both malware and benign

classifications. When a deep learning model like Stacked-BiLSTM with attentions mechanism is integrated with a

Flask web application, users may submit executable files and get instant safety feedback through an easy-to-use

interface. When a file is uploaded, the program runs it through the trained model and returns a classification result that

says whether or not the file contains malware. Users are of course notified of the danger involved in the file they have

submitted; a low-risk designation means the file is safe to use. With the help of this web application, users can

evaluate executable files' security before to interacting with them, which is a useful tool for improving cybersecurity

protocols.

6.2 Future Works

To further increase the effectiveness and reach of the malware detection system, I need a number of extension

obviously and upgrade opportunities as well which can be investigated in further work. First off, adding a bigger and

more varied set of PE files to the dataset would improve the model's capacity to generalize to previously unseen data

and accurately identify newly emerging malware types. Furthermore, adding more features that have been taken out of

PE files—like byte-level n-grams, dynamic analysis features, or API call sequences—might enhance classification

accuracy and offer more detailed depictions of malware activities. Additionally, by combining the predictions of several

base models, investigating ensemble learning strategies like model stacking or boosting may improve the classification

system's robustness and generalization skills. By using this method, of course the effects of individual model biases may

be lessened and overall performance may be enhanced. This study should deploy transformer based models which can

show promising results and may offer improved feature extraction which is capable for the analysis of PE files.

References

Sharma, N.A., Kumar, K., Raj, M.A. and Ali, A.S., 2021, December. A Systematic Review of Modern

Malicious Softwares and Applicable Recommendations. In 2021 IEEE Asia-Pacific Conference on Computer

Science and Data Engineering (CSDE) (pp. 1-6). IEEE.

Butt, U.J., Abbod, M.F. and Kumar, A., 2020. Cyber threat ransomware and marketing to networked

consumers. In Handbook of research on innovations in technology and marketing for the connected consumer

(pp. 155-185). IGI Global.

Idika, N. and Mathur, A.P., 2007. A survey of malware detection techniques. Purdue University, 48(2), pp.32-

46.

Azeez, N.A., Odufuwa, O.E., Misra, S., Oluranti, J. and Damaševičius, R., 2021, February. Windows PE

malware detection using ensemble learning. In Informatics (Vol. 8, No. 1, p. 10). MDPI.

Baldangombo, U., Jambaljav, N. and Horng, S.J., 2013. A static malware detection system using data mining

methods. arXiv preprint arXiv:1308.2831.

Botacin, M., Alves, M.Z., Oliveira, D. and Grégio, A., 2022. HEAVEN: A Hardware-Enhanced AntiVirus

ENgine to accelerate real-time, signature-based malware detection. Expert Systems with Applications, 201,

p.117083.

Fortino, G., Greco, C., Guzzo, A. and Ianni, M., 2023, September. SigIL: A Signature-Based Approach of

Malware Detection on Intermediate Language. In European Symposium on Research in Computer Security

(pp. 256-266). Cham: Springer Nature Switzerland.

Goyal, M. and Kumar, R., 2020, October. The pipeline process of signature-based and behavior-based

malware detection. In 2020 IEEE 5th International Conference on Computing Communication and

Automation (ICCCA) (pp. 497-502). IEEE.

Jalilian, A., Narimani, Z. and Ansari, E., 2020. Static signature-based malware detection using opcode and

binary information. In Data Science: From Research to Application (pp. 24-35). Springer International

Publishing.

Assegie, T.A., 2021. An optimized KNN model for signature-based malware detection. Tsehay Admassu

Assegie." An Optimized KNN Model for Signature-Based Malware Detection". International Journal of

Computer Engineering In Research Trends (IJCERT), ISSN, pp.2349-7084.

Suryati, O.T. and Budiono, A., 2020. Impact analysis of malware based on call network API with heuristic

detection method. International Journal of Advances in Data and Information Systems, 1(1), pp.1-8.

Yunmar, R.A., Kusumawardani, S.S. and Mohsen, F., 2024. Hybrid Android Malware Detection: A Review

of Heuristic-Based Approach. IEEE Access, 12, pp.41255-41286.

Li, N., Zhang, Z., Che, X., Guo, Z. and Cai, J., 2021. A survey on feature extraction methods of heuristic

malware detection. In Journal of Physics: Conference Series (Vol. 1757, No. 1, p. 012071). IOP Publishing.

Qiang, W., Yang, L. and Jin, H., 2022. Efficient and robust malware detection based on control flow traces

using deep neural networks. Computers & Security, 122, p.102871.

Demırcı, D. and Acarturk, C., 2022. Static malware detection using stacked BiLSTM and GPT-2. IEEE

Access, 10, pp.58488-58502.

Demirci, D., 2021. Static Malware Detection Using Stacked Bi-Directional LSTM (Master's thesis, Middle

East Technical University).

Chaganti, R., Ravi, V. and Pham, T.D., 2023. A multi-view feature fusion approach for effective malware

classification using Deep Learning. Journal of Information Security and Applications, 72, p.103402.

Aslan, M.F., Unlersen, M.F., Sabanci, K. and Durdu, A., 2021. CNN-based transfer learning–BiLSTM

network: A novel approach for COVID-19 infection detection. Applied Soft Computing, 98, p.106912.

Niu, Z., Zhong, G. and Yu, H., 2021. A review on the attention mechanism of deep learning. Neurocomputing,

452, pp.48-62.

Altaheri, H., Muhammad, G. and Alsulaiman, M., 2023. Dynamic convolution with multilevel attention for

EEG-based motor imagery decoding. IEEE Internet of Things Journal.

Rathore, M.S. and Harsha, S.P., 2022. An attention-based stacked BiLSTM framework for predicting

remaining useful life of rolling bearings. Applied Soft Computing, 131, p.109765.

Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P. and Venkatraman, S., 2019. Robust

intelligent malware detection using deep learning. IEEE access, 7, pp.46717-46738.

Dong, S., Wang, P. and Abbas, K., 2021. A survey on deep learning and its applications. Computer Science

Review, 40, p.100379.

Sherstinsky, A., 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)

network. Physica D: Nonlinear Phenomena, 404, p.132306.

Staudemeyer, R.C. and Morris, E.R., 2019. Understanding LSTM--a tutorial into long short-term memory

recurrent neural networks. arXiv preprint arXiv:1909.09586.

Bai, J., Wang, J. and Zou, G. (2014), 'A malware detection scheme based on mining format information,' The

Scientific World Journal, 2014

