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A B S T R A C T

Dry Electro Discharge Machining (dry EDM) is an eco-friendly alternative to conventional EDM. Its adoption in 
industrial applications is limited due to the difficulty of stabilizing and the complexity of the process. So, 
identifying proper input parameters is fundamental for improving the efficiency of this process, which can be 
used for machining hard-to-machine alloys. In this work, four Machine Learning (ML) approaches describe the 
correlation of the dry EDM process inputs and outputs with distilled water as coolant for Inconel 625 and Ti
tanium Grade 2. To compare the machinability of these two materials the Palatnik index Ψ was introduced that 
depends on physical properties. The prediction models based on Linear Regression (LR), Random Forest (RF), 
Support Vector Regression (SVR), and Artificial Neural Networks (ANN) receive the independent variables, pulse 
time, current, voltage, and gas pressure, to estimate the Material Removal Rate (MRR), the relative percentage 
wear of the working electrode (EW), the working electrode velocity (v), and the surface roughness parameters (Rz 
and Rsk). It was found that ANN outperforms other ML approaches in prediction of MRR, v, Rz and Rsk in case of 
prediction accuracy while the material and its Palatnik index is taken into account as an input. In addition, in the 
case of prediction of EWR, RF, ANN outperforms and other ML approaches considering all the prediction ac
curacy criteria. The average efficiency of the models in prediction of testing data which were not contributed to 
training stage according to the R-squared values for MRR, EW, and v were 0.6735, 0.7955, and 0.7739. The main 
aim of the research was to reduce the experimental time to identify optimal input parameters with respect to the 
desired output parameters using ML.

1. Introduction

1.1. Problem statement

Green technology and sustainable manufacturing concepts changed 
the machining industry, intending to minimize the environmental 
impact, carbon footprint, and life cycles of material [1]. Dry Electrical 
Discharge Machining (dry EDM) is a step toward achieving the afore
mentioned concepts because it improves the process’s sustainability 
with a gaseous medium instead of hydrocarbon-based dielectric. Despite 
its environmental advantage, dry EDM applicability is limited to 
machining small and micro-sized components due to its low material 
removal ability. In this context, several attempts have been made to 
enhance the Material Removal Rate (MRR) process by using external 
fields like ultrasonic and magnetic field assistance and rotation of 
electrode tubes. The results of these hybrid systems demonstrate 

relevant advances in the field in recent years.
On one hand, the application of a magnetic field in dry EDM shows a 

reduction in crater diameter and an increase in craters’ depth [2]. Also, 
the magnetic field facilitates the expulsion of debris from the machining 
gap to enhance the process stability and increase the MRR, resulting in a 
smoother surface finish [3]. Furthermore, the magnetic field expands 
ionization at the inception of the spark, which reduces the ignition delay 
time but increases working Electrode Wear (EW). The pulsating mag
netic field enables a greater thermal energy transfer to the workpiece 
due to its capacity to facilitate higher ionization and plasma confine
ment [4]. It improves the material removal mechanism and melting in 
dry EDM, which enhances geometric precision and the quality of the 
machined surface.

On the other hand, ultrasonic vibration of the workpiece also facil
itates the removal of debris from the machining gap [5]. It also enhances 
process stability and augments the number of normal discharges while 
limiting the probability of arcs occurring [3]. High-speed rotation of the 
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EW improves MRR and Surface Roughness (SR), but micro-cracks can 
appear during high-speed working electrode rotation [6,7]. However, 
establishing the aforementioned fields is not always possible because of 
the EDM machine’s limitations and the sample size.

The combination of liquid and gas was a relevant advancement in the 
dry EDM field to improve the efficiency of the process and surface 
quality in terms of SR [8–12]. Although this type of machining is not 
employed in industrial applications, the development of dry EDM is a 
promising field of research in light of the significant size of the EDM 
market and the quantifiable environmental benefits. For example, the 
powder mixed near dry electrical discharge machining shows different 
MRR due to the thermal phenomena with diverse combinations of tool 
electrodes (brass and copper) and workpiece material [13].

Wet EDM exhibits the advantage of good machining stability at high 
discharge energy compared with near-dry EDM (kerosene and air 
mixture, deionized water and air mixture), consequently resulting in an 
improved MRR and SR concerning wet EDM [14,15]. Also, near-dry 
EDM milling is a stable finishing process to achieve a mirror-like sur
face finish [11]. This surface finish has a SR (Ra) value of 0.32 µm using a 
kerosene mist and a copper-infiltrated graphite electrode with low pulse 
energy. Moreover, a comparative study shows the difference between 
different dielectric (glycerin-air and water–air medium, and other bio 
dielectrics) [16,17]. The glycerin-air dielectric medium yields a higher 
MRR than the water–air dielectric medium with the same parametric 
settings. Finally, lower pulse duration and lower discharge current are 
key factors that influence the surface finish in near-dry EDM [18]. Also, 
nitrogen and helium gases can prevent electrolysis and provide a better 
surface finish in near-dry EDM.

Nevertheless, the valuable advantages of the dry EDM process with 
the presence of coolant cannot be easily assessed without considering 
the effects of some factors on the process performance measures. In 
other words, the multi-objective problem that describes this process 
should be optimized at the design stage to exploit the advantages of 
green EDM with a combination of gas and liquid. Consequently, a ho
listic model is required to facilitate the selection of an optimal setting 
that simultaneously maximizes production rate and product qualities. In 
recent years, several approaches have focused on predicting and 
modeling surface structure, roughness, and morphology after EDM. The 
following section presents several related works in the field.

1.2. Literature survey

In the literature, analytical, numerical, data-driven, and Machine 
Learning (ML) approaches for modeling EDM and dry EDM processes 
have been studied to predict and optimize some process characteristics. 
Analytical and numerical models mainly focus on predicting discharge 
craters, temperature distribution, and volume of material with lots of 
simplification [19–25]. Nevertheless, the obtained models aid the 
comprehension of the process, but they have many limitations, such as 

low prediction accuracy and extension to a reliable industrial problem.
Data-Driven Modeling (DDM) and ML are prediction methods that 

facilitate the correlation between the process inputs and outputs with 
high accuracy [26]. Several works in the state-of-the-art EDM use the 
statistical process of DDM to measure the effects of process factors over 
performance measures. In recent years, ML models have been extended 
to several domains due to their benefits, such as accelerating innovation, 
improving customer experience, and reducing costs. Here, we present 
relevant research in the domain of ML and EDM.

Khan et al. [27] encompass the utilization of Artificial Neural Net
works (ANN) to predict SR (Ra) after EDM of titanium alloy. The effi
ciency of the ANN is measured using R-squared (R2) and the Mean 
Square Error (MSE) metrics. The results show that the developed ANN is 
adequate for predicting SR because the predicted errors are within an 
acceptable range.

Bhandare and Dabade [28] develop an ANN to investigate the MRR, 
EW, and SR parameter (Ra) of Inconel 718 during dry EDM. The results 
show that an ANN with a 4-24-3 structure has the highest predictive 
accuracy for MRR, EW, and Ra performance measures. Also, they reveal 
an overall correlation coefficient of 0.94455, indicating a high degree of 
accuracy and effectiveness in the model and the ANN.

Ishfaq et al. [29] perform EDM machining of nickel-based superalloy 
with five biodegradable dielectrics (sunflower, amla, olive, mustard, 
and coconut oils). The results show a significant reduction in CO2 
emission compared to EDM performed in kerosene. The efficiency of the 
ANN model achieves an R2 value greater than 0.9 and a reasonable 
prediction for Root MSE (RMSE). A multi-objective analysis based on a 
nonlinear optimization demonstrated that sunflower oil provides the 
optimal solution for the EDM process.

Quarto et al. [30] study ANN and Particle Swarm Optimization (PSO) 
models to improve the selection of optimal micro-EDM parameters. The 
authors use 134 cases to train and test an ANN, with 70–30 % division of 
the dataset. PSO identifies optimal process parameters with different 
multi-objective functions and constraints in the solution space. The re
sults are validated with twelve micro-EDM tests to compare MRR, EW, 
and dimensional deviation. The method shows efficiency when con
straints are fixed for the ANN inputs and the outputs respecting the 
imposed multi-objective function.

Sahayaraj et al. [31] employ the Radial Basis Function (RBF) and an 
ANN model to forecast the responses of MRR after the EDM process. The 
optimal architecture was determined through MATLAB by controlling 
the number of neurons and the number of hidden layers of the ANN. The 
results indicate that the Relative Error (RE) and the Sum of Squares Error 
(SSE) for the training and testing stages are 0.164 and 0.856, and 0.327 
and 2.877, respectively.

Velpula et al. [32] investigate the impact of several input parameters 
on MRR and EW after EDM in oil using an ANN. The experimental results 
show that the ANN predicts MRR and EW with an accuracy of 0.93 and 
0.94, respectively. It provides a reasonable methodology for predicting 

Nomenclature

AAD Average Absolute Deviation
AAE Average Absolute Error
ANN Artificial Neural Network
DC Discharge Crater
EDM Electro Discharge Machining
EW Working electrode wear
LR Linear Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage of Error
ML Machine Learning
MRR Material Removal Rate

MSE Mean Square Error
PSO Particle Swarm Optimization
RF Random Forest
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
RSM Response Surface Methodology
SML Supervised Machine Learning
SR Surface Roughness
SSE Sum of Squares Error
SVR Support Vector Regression
TWR Tool Wear Ratio
WE Working Electrode
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the EDM process parameters.
Surya et al. [33] exanimate the machining characteristics such as Ra, 

MRR, and dimensional accuracy of Molybdenum after wire-EDM using 
an ANN. The results show that predicted values for the 70 % training set 
correlate highly with the measured values.

Kumat et al. [34] predict titanium alloy micro-hardness after cryo
genic treatments and EDM processing based on several input parame
ters. Three grades of titanium alloy and three different electrodes are 
investigated during the experiment. The authors use an ANN to predict 
the material’s micro-hardness. The results demonstrated a high corre
lation between microhardness’s actual and predicted value.

Mondal et al. [35] use two types of predictive models for forecasting 
the MRR and SR after EDM using an ANN and the Response Surface 
Methodology (RSM) models. The results show that both models exhibit 
satisfactory accuracy, although the ANN-predicted model is more ac
curate. Also, the optimal input parameters for both models are reported.

Ganapathy et al. [36] investigate the correlation between ANN and 
RSM after EDM of unalloyed medium carbon (EN8) steel in EDM oil to 
predict MRR. The results show that the ANN-RSM approach is suitable 
for forecasting MRR according to R2, RMSE, and Percentage of Average 
Absolute Deviation (AAD) for the RSM model. In contrast, the ANN 
model demonstrates a high proportion of R2, RMSE, and AAD.

Kanake and Ahuja [37] explore the prediction of working EW during 
the micro-EDM process of stainless steel. The authors use ANN, 
Regression-Based Model (RBS), and Time-Series Moving Average 
(TSMA) model to predict working EW. MSE, RMSE, R2, and Mean Ab
solute Percentage Error (MAPE) define the performance indicators to 

compare the efficiency of the methods. The results show that ANN 
provides better results in comparison with time-series and regression- 
based models with the highest coefficient of R2 value.

Table 1 summarizes the reviewed literature for a better compre
hension, it describes the main characteristics and parameters together 
with their methodologies and materials.

EDM is known as a chaotic process where nonlinear behavior and 
difficult-to-control nature based on the condition of material to be 
machined, dialectic and the main kinematic of the process. This is why 
majority of physics-based model or finite element simulations focused 
only on modeling of single discharge and spread it to a bigger scale to 
predict the main machining indicators. The problem will be more crucial 
when instead of liquid dielectric, gaseous medium is used where it 
causes expansion of plasma channel and changes the nature of the 
process. In this case developing a closed form model to predict the main 
process characteristics lacks to provide accurate results. This is why, in 
the present work, to address the issue, machine learning-based models 
have been developed based on the data derived from experiments to 
guarantee a precise prediction and forecasting the change of the main 
quality characteristics process under different processing condition. To 
achieve the best predictive models in term of accuracy, different ma
chine learning approaches examined namely Linear Regression (LR), 
Random Forest (RF), Support Vector Regression (SVR), and artificial 
neural network (ANN) have been utilized to identify which of them 
meets the accuracy required for prediction of the external cooling 
assisted dry EDM’s quality characteristics. Then performance of each 
approach was checked through different error criteria namely RMSE, 
MSE, R2 and MAPE. Then, the model which has the best prediction 

Table 1 
Main characteristics of related works in the literature.

Model Machine type Parameters Metrics Material Dielectric type Working 
electrode

No. of 
trials

Ref.

Input* Output

ANN − Pc, Ton, Toff, servo-vo Ra MSE,R2 Titanium − Graphite 20 [27]
ANN CNC EDM Pc, Ton, vo, gaseous 

dielectric pressure
MRR,TWR,Ra MSE Inconel 718 Air Cooper 27 [28]

ANN − Dielectric type, Cu 
powder in the fluid

MRR, SR, Energy 
Consumption

R2, RMSE Inconel 600 Sunflower, amla, 
olive, mustard, and 
coconut oils

Aluminium 15 [29]

ANN, 
PSO

Sarix SX-200 
μEDM

Pc, vo, frequency, 
electrode diameter, 
wpm, elm

MRR,TWR, dimensional 
deviation

RMSE Tungsten 
carbide, 
304 steel, 
316 steel

− Brass 12 [30]

ANN − Pc, Ton, vo MRR RE,SSE Eglin steel kerosene Tungsten 9 [31]
ANN V3545 GRACE die 

sinking
Pc, Ton, Toff, tool lift MRR,EW − 17–4 PH 

Stainless Steel
Oil medium Copper, 

Tungsten
25 [32]

ANN CONCORD 
DK7720C CNC 
WED

Pc, Ton, Toff, bed 
speed

Ra,MRR, dimensional 
accuracy

MSE Aluminium 
7075

WEDM Molybdenum 27 [33]

ANN OSCARMAX 
S 645 EDM

Pc, Ton, Toff, dielectric 
type, tool material, 
wpm

Material hardness MSE,R2 Ti-5Al-2.5 
Sn alloy 
Ti-6Al-4 V

Ferrolac 3 M EDM 
oil, Cryogenic 
treatment

Cooper, 
Chrome, 
tungsten

54 [34]

ANN − Pt, Discharge current, 
gap vo

MRR,SR R2 304 stainless 
steel

− − 27 [35]

ANN, 
RSM

CNC EDM Grace 
V5030

Ton, discharge 
current, dielectric 
pressure, size of the 
tool

MRR AAD,RMS,
ER2

EN 8 steel EDM oil Cooper 29 [36]

ANN, 
RBM, 
TSMA 

DT-110i Hybrid 
Micro EDM

vo, capacitance, tool 
rotation speed

EW MSE,
RMSE,R2

304 stainless 
steel

− Brass 18 [37]

ANN King ZNC K3200 Pc, Pd, electrodes’ 
cryogenic process 
conditions

EW,MRR R2,MSE,
RMSE,
MAPE

AISI P20 tool 
steel

Petrofer 
dielectricum 
358

Cooper, CuCrZr 176 [38]

LR, 
RF, 
SVR, 
ANN

Electro-discharge 
generator 
MATRIX MPS

Ton, velocity, current 
intensity, gas 
pressure, wpm

MRR,EW,Rz,Rsk,

working electrode 
velocity (U)

R2,MSE,
RMSE

Inconel 625, 
Titanium 
Grade 2

Carbon dioxide 
with deionised 
water

Cooper 50 Ours

* The abbreviations for input parameters are pulse current (Pc), pulse time (Pt), pulse duration (Pd), pulse-on time (Ton), pulse-off time (Toff), workpiece material 
(wpm), electrode material (elm), and voltage (vo).
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accuracy was utilized to navigate design space and find the impact of the 
process factors on main quality characteristics.

2. Materials and methods

2.1. Test stand and sample

Dry EDM with external workpiece cooling with deionized water in 
milling kinematics was performed on the dedicated research test stand 
equipped with an electro-discharge generator MATRIX MPS – 7163 160 
V/3A [39], as shown in Fig. 1. A gaseous supply system expands the test 
stand to enable machining in a gaseous dielectric, where a thin-walled 
tubular electrode supplies carbon dioxide (gaseous dielectric) under 
pressure to the machining gap. Deionized water covering the workpiece 
ensures proper hearing dissipation from the machining area. The reason 
of selecting carbon dioxide as a dielectric medium was based on the 
satisfactory results of material removal rate, comparing to air-assisted 
machining, which was established during preliminary tests. It was 
found that while usage of carbon dioxide the formation of carbon layer 
improves the surface hardness, which has a positive influence on the 
material properties (increases the hardness of the white layer). The 
polarity of the electrodes was also established at the preliminary test 
stage (Fig. 2).

A single milling trial removed ten layers of material in two directions 
of the milling (in and out). The preliminary tests established the 

collection of ten layers of material while lowering the cutting electrode 
in each pass by 25 µm. They demonstrated that the machining conditions 
were stable when the number of material layers was reduced to ten.

The machined elements are two samples of Inconel (In) 625 and 
Titanium (Ti) Grade 2 with dimensions of 40.6 × 15.0 × 12.1 mm. Both 
materials are classified as hard-to-machine alloys with conventional 
machining methods. Table 2 shows the chemical composition of the 
materials based on a certificate provided by the manufacturer, and 
Table 3 describes the physical properties of both materials.

Fig. 1. Experimental test stand (a) main EDM machine modified for dry EDM (b) gas supplier and piping to the machine (c) dry EDM process (d) formation of spark 
in dry EDM in milling kinematics which machine grooves on the cubic workpiece.

Fig. 2. Scheme of near-dry EDM milling in CO2 with external workpiece 
cooling with deionized water [40].

J.M. Cortés-Mendoza et al.                                                                                                                                                                                                                   Measurement 255 (2025) 117966 

4 



2.2. Experimental plan

Tests followed the central composition research plan based on the 
response surface methodology. The total of 25 experiments considers the 
four-factor test plan according to pulse on time (t), voltage (U), current 
intensity (I), and gas pressure (p). The test in the center of the research 
plan, with the configuration t = 300 μs, U = 100V, I = 2.7A, and p =

6bar, was repeated three times. Table 4 presents the ranges of variation 
in the input parameters.

The value ranges for parameters were defined based on their effi
ciency, stability, and limits of hardware: 

• t values below 100 µs would be ineffective, and above 500 µs could 
result in a potential loss of machining stability,

• U variations are limited by the generator used during the tests,
• 3 I Values lower than 0.9 A would be inadequate for machining hard- 

to-machine materials, and higher 4.5 A could result in excessive 
energy being generated during discharge

• p variations are related to the limits of the CO2 reducer used.

Tables 5 and 6 show the variable input parameters of the experi
mental plan and the constant machining parameters.

Additionally, the Palatnik criterion is employed to ascertain the EDM 
machinability level of a given material. It posits that thermal phenom
ena exert the most significant influence on material removal during EDM 
machining. More accurately, the Palatnik constant corresponds to 

machinability of material while being processed by thermal erosion 
based process like EDM or laser machining. Based on this coefficient, the 
material with higher Ψ is more difficult-to-cut that means further time 
and energy are required to remove material from the relevant papers. 
There also other literatures which use this physical quantity to identify 
and justify machinability of thermal-based material removal process. To 
quantify this effect, it is defined by using the following relationship 
[41–43]: 

Ψ = c*ρ*λ*(θm)
2 

where:
c[J/(kg⋅K)]- specific heat,
ρ
[
kg/m3]- density,

λ[W/(m⋅K]- thermal conductivity coefficient,

Table 2 
Certified chemical composition of Inconel 625 and Titanium Grade 2.

Material Chemical composition

Inconel 625 Element C Si Mn P S Cr
Content (%) 0.013 < 0.05 < 0.02 < 0.005 < 0.0003 21.61
Element Mo Ni Co Ti Al Nb
Content (%) 8.20 63.58 < 0.050 < 0.02 0.17 3.34

Titanium Grade 2 Element Ti Fe C N O H
Content (%) 99.50 ≤ 0.17 ≤ 0.03 ≤ 0.028 ≤ 0.17 ≤ 0.10

Table 3 
Physical properties of Inconel 625 and Titanium Grade 2.

Symbol Property Measurement 
unit

Inconel 
625

Titanium 
Grade 2

ρ Density kg/m3 8,442 4,510
θm Melting point K 1,621 1,933
c Specific heat J/kg⋅K 410 520
λ Thermal conductivity 

coefficient
W/m⋅K 9.8 20.8

Ψ Palatnik’ index − 8.91 ×
1013

18.2 × 1014

Table 4 
Input parameters during dry-EDM with coolant.

Trial number t[µs] U[V] I[A] p[bar] Trial number t[µs] U[V] I[A] p[bar]

1 200 80 1.8 4 14 400 120 1.8 8
2 200 80 1.8 8 15 400 120 3.6 4
3 200 80 3.6 4 16 400 120 3.6 8
4 200 80 3.6 8 17 100 100 2.7 6
5 200 120 1.8 4 18 500 100 2.7 6
6 200 120 1.8 8 19 300 100 0.9 6
7 200 120 3.6 4 20 300 100 4.5 6
8 200 120 3.6 8 21 300 100 2.7 2
9 400 80 1.8 4 22 300 100 2.7 10
10 400 80 1.8 8 23* 300 100 2.7 6
11 400 80 3.6 4 24* 300 100 2.7 6
12 400 80 3.6 8 25* 300 100 2.7 6
13 400 120 1.8 4 ​ ​ ​ ​ ​

* Three repetitions in the center of the research plan.

Table 5 
Variable input parameters of the experimental plan.

Symbol Parameter Values

t Pulse on time 100–500 µs
U Voltage 80–120 V
I Current intensity 0.9–4.5 A
p Gas pressure 2–10 bar
Ψ Palatnik’s index 8.91 × 1013 (Inconel 625) 

18.2 × 1013 (Titanium Grade 2)

Table 6 
Constant machining conditions during tests.

Parameter Values

Working Electrode (WE) Thin-walled Cooper pipe
WE outer diameter ∅1 mm
WE inner diameter ∅418 µm
Gas medium Carbon dioxide
Pulse duty factor (η) 0.5
External workpiece cooling medium-type Deionized water
Electrical conductivity (G) 0.01 µS
Removed material layers per trial 10
Kinematics of WE movement Milling

J.M. Cortés-Mendoza et al.                                                                                                                                                                                                                   Measurement 255 (2025) 117966 

5 



θm[K]- melting point.
Palatnik index indicates the EDM machinability property of the 

material, a higher value describes a more challenging material for 
machining. A high conductivity of the workpiece material indicates a 
rapid dissipation of the heat generated by the electrical discharge, 
resulting in a reduced volume of removed material. An increase in 
thermal conductivity results in a reduction in the electro-erosion 
machinability of the material. According to Palatnik’s criterion, the 
EDM machinability of a material is inversely proportional to the square 
of its melting temperature. Therefore, the melting point is a primary 
factor influencing the material’s machinability. Certainly, the afore
mentioned criterion does not consider properties that can affect the EDM 
machinability of materials, such as the latent heat of fusion or the latent 
heat of vaporization. Latent heat describes the amount of energy 
released or absorbed by a material during a change of state or phase 
transition. Materials with a high latent heat require a greater amount of 
heat to be melted or vaporized, which can manifest as a reduction in the 
EDM machinability of the material [41].

According to the aforementioned discussion, it can be stated that the 
Palatnik index provides an important characteristic to the prediction 
models based on ML. To justify the significant differences between the 
two materials in terms of parameter significance, the interaction of 
process factors with materials on main EDM machinability indicator i.e. 
MRR that is extremely important in the case of dry EDM process has 
been studied and shown in Fig. 3. According to this figure, it is seen that 
the change of material following the Palatnik index significantly impacts 
the variation of MRR. In all the provided graphs, it is evident that the 
MRR of the Inconel 625 irrespective to the process factors are higher 
than Ti Grade 2. This can be justified that the Inconel has the lower value 
of Palatnik index i.e. 8.91E13, compared to titanium grade 2 that its 
Palatnik index is 18.2E13.

Moreover, according to the Fig. 3a, it is seen that irrespective to the 

type of material being machined, the MRR decreases by increasing the 
pulse time, that can be attributed to expansion of plasma channel during 
discharges that significantly reduces the energy density and causes MRR 
to be reduced. Also, from the Fig. 3b, it is seen that for both of Inconel 
and Ti Grade 2, the MRR increases by voltage that is due to increasing 
the discharge energy which causes melting and evaporation of more 
material and subsequently higher MRR. Similar scenario is observed in 
Fig. 3c in variation of MRR by current intensity that can be also attrib
uted to further energy input and more removed material.

Effect of gas pressure on variation of MRR for different material has 
been shown in Fig. 3d. Accordingly, it is observed that for Inconel ma
terial, the MRR adopts higher values while gas pressure increases. It can 
be attributed to the fact that the cooling efficiency of the Inconel im
proves at further gas intake pressure which prohibits the Inconel to be 
resistant against material removal action [44]. But the scenario is 
different in the case of Ti Grade 2, by increasing the pressure of the 
coolant, the MRR decreases. It can be stated that the EDM is a thermal 
based erosion process; hence, when the cooling pressure goes beyond a 
critical values and becomes excessive, the thermal efficiency of process 
is deteriorated and results is reduction of heat input; accordingly, the 
MRR decreases. In this case, the high interaction between the material 
and the process factor is dramatically significant.

3.1. Measurement of outputs

The main performance measure of the process, along with method
ologies adopted for the measurement and quantification of these out
puts, can be found as follows: 

• Material Removal Rate (MRR),
• Relative percentage wear of the working electrode (EW),
• Working electrode velocity (v),

Fig. 3. The impact of process factors on MRR for different type of material (a) Pulse on time (b) Voltage (c) Current intensity (d) Gas inlet pressure.
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• SR parameters: Rz and Rsk.

The EDM milling efficiency was determined by calculating the vol
ume of material removed and the total milling time in each trial, with 
ten layers of material collected at each time point. A cross-section is 
trapezoidal in shape as a consequence of the wear observed on the side 
surface of the working electrode, Fig. 3 illustrates the cross-section of a 
single groove. Given that the milling was conducted in two directions, it 
was deemed appropriate to measure the groove height (c) and width (b) 
on three occasions at the entrance and exit of the electrode, respectively, 
and to measure the groove width (a) on three occasions. The results were 
subsequently averaged.

The volume of material removed (Vm) in a single sample was 
determined by the formula: 

Vm =
(b + a)

2
• c • l 

where l is the sample length.
The idea of measuring the width and height of the grooves is illus

trated in Fig. 4. The measurements were obtained using an Olympus 
optical microscope with Olympus Stream software.

The MRR value is calculated according to the formula: 

MRR =
Vm
t
,

where t is the total machining time per trial.
The relative percentage wear of the working electrode is calculated 

as follows: 

EW =
Ve
Vm

⋅100%,

where Ve is the volume of working electrode material removed per trial.
The average working electrode velocity during milling was deter

mined according to the formula: 

v =
L
T
,

where milling length L is the length of the sample section to be processed 
multiplied by the number of material layers to be collected and T rep
resents the total milling time of ten layers of material during one test, 
this was determined in specific tests.

The roughness measurements of selected roughness parameters (Rz 
and Rsk) were obtained using a Taylor Hobson profilometer with a 
measuring section length of 13 mm. For each surface, the roughness 
value is the average of three roughness measurements taken at distinct 
locations. The reasons for choose of Rsk together with Rz is that the EDM 
is a chaotic process which generates the surface randomly based on the 
numbers of discharge craters which are formed during machining. The 
roughness indices Rsk greatly shows this random generation of rough
ness that is main goal of our work which seeks for how the process pa
rameters in dry EDM impacts the asymmetrical formation of surface 
topography.

The combined results for Material Removal Rate (MRR), Relative 

percentage wear of the working electrode (EW), Working electrode ve
locity (v), SR parameters: Rz and Rsk for both Inconel 625 and titanium 
Grade 2 are presented in the Table 7.

3.2. Statistical analysis

The experimental results underwent statistical analysis to investigate 
potential correlations between input and output factors. Tables 8 and 9
summarize the Pearson correlation coefficients (r) between the analyzed 
input and output variables for Inconel 625 and Titanium Grade 2, 
respectively. The analysis does not consider interactions between input 
variables, which will be considered when assigning responses.

Analysis of significance of parameters based on the Pearson method 
talking about coefficient of determination i.e. R2 [45] categorizes the 
correlation to “uncorrelated”, “weak-correlated”, “average-correlated”, 
“strong-correlated” and “very strong correlated” where the absolute 
values of correlation coefficient are in ranges of “0–0.2”, “0.2–0.4”, 
“0.4–0.7”, “0.7–0.9” and “0.9–1”, respectively. On the basis of this 
definition, it can be stated that the prediction accuracy of the models 
which falls between the range of 0.7 to 1 are satisfactory that can 
navigate the design space. It needs to be noted that addition of the data 
might increase the R2 values, however, it doesn’t guarantee prediction 
accuracy. This is why in the presented work, different metrics were used 
to analyze the accuracy of ML algorithms in prediction of dry EDM 
characteristics.

According to the Tables 8 and 9, it is seen that the most significant 
parameter for MRR and Rz is current intensity, and for the EW, corre
lation coefficients are either uncorrelated or weakly correlated except 
the gas pressure in case of machining of Titanium alloy that is known as 
average-correlated parameter. Also, similar scenario exists for Rsk where 
factors found uncorrelated or weakly correlated for both materials.

It is interesting that nevertheless the current intensity is found as 
significant parameter on Rz, it is a weak corelated parameter for Rsk. This 
can be referred to definition of Rsk and Rz while processing by EDM. As 
the nature of EDM process is chaotic and it doesn’t follow defined dis
tribution of roughness, formation of symmetrical pattern that is repeated 
with a given frequency in line with cut-off length rarely happens. 
Therefore, it can be said that Rsk doesn’t significantly vary by EDM 
process parameters. However, Rz is the average of five distances be
tween the peaks and valleys that can be adjusted by formation of 
discharge craters in EDM process.

4. Machine learning modeling

Machine Learning (ML), a subfield of Artificial Intelligence, focuses 
on developing and studying statistical algorithms that can learn from 
data and generalize the knowledge to unseen data. Recently, several ML 
algorithms have surpassed many previous approaches in performance. 
For this reason, ML algorithms have been incorporated in different 
fields, including transportation, image processing, education, agricul
ture, business, medicine, and industry [46] (see Section 2).

Supervised ML (SML) is one of the four main categories of ML al
gorithms that uses labeled datasets to train the algorithms. If the main 
goal of the prediction task is a discrete target variable, then the algo
rithm affronts a classification problem. The problem is considered a 
regression problem under a target continue variable. In the present 
work, number offour ML algorithm namely Linear regression (LR), 
artificial neural network (ANN), Random Forest (RF) and Support Vec
tor Regression (SVR) have been used to correlate a mapping relationship 
between the input and output of dry EDM process in presence of water- 
cooling. The description of each network and the implementation of 
corresponding algorithm have been presented as follows:

4.1. Linear Regression

Linear Regression (LR), an SML algorithm, computes the linear Fig. 4. Cross-section of a single groove with measured values.
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relationship between the dependent variable and independent features 
by fitting a linear equation to the observed data. The goal of LR is to find 
an equation that minimizes the error between the predicted and actual 
values with respect to the training dataset of N instances with d features. 
The multiple linear regression model takes the form [46]: 

Y = f(X) +∊ = β̂0 + β̂1x1 +⋯+ β̂dxd +∊ 

where ∊ describes the disturbance term or error variable,x1, x2,⋯, xd the 
features of an instance X, and β̂0, β̂1,⋯, β̂d the regression coefficients.

The Residual Sum of Squares (RSS) measures the level of variance in 
the error term, or residuals, of the model as [46]: 

RSS =
∑N

i=1
(Yi − f(Xi))

2 

where Yi defines the observed value, f(Xi) is the predicted value by the 
linear approximation, and Xi the explanatory variable for i = 1,⋯,N.

Fitting a linear model to a given dataset requires estimating the 

regression coefficients β̂0, β̂1,⋯, β̂d such that ∊ is minimized. The 
training phase of LR finds the line with the coefficients β̂0, β̂1,⋯, β̂d that 
minimize RSS.

Fig. 5 [46] shows an example of prediction with a simple LR where 
blue dots are the instances of the dataset used to create the (red) linear 
model, also known as the training dataset. The error ∊ is the difference 
between the observed value Y (orange dot) of the input of X and the 
predicted value f(X) = β̂0 +β̂1x1 (black dot).

According to the definition, the linear regression models for the 
correlating the process inputs to outputs have been defined as follows: 

MRR = − 0.13441143x1 − 0.062055x2 +0.077938x3 +0.105832x4

+0.617859x5 +0.179875x6 

Ew = − 0.08057508x1 − 0.706865x2 +0.109636x3 +0.133243x4

− 0.075969x5 − 0.078176x6 

v = − 0.02199991x1 − 0.647117x2 +0.104774x3 +0.154047x4

+0.548398x5 +0.162842x6 

Rz = 0.05469054x1 − 0.399168x2 − 0.091395x3 +0.135280x4

+0.501958x5 +0.058769x6 

Table 7 
Experimental results of MRR, EW, v, Rz and Rsk from Titanium Grade 2 and Inconel 625.

Trial 
no.

Titanium Grade 2 Inconel 625

MRR[mm3/s] EW [%] V [mm/s] Rz [µm] Rsk [µm] MRR [mm3/s] EW [%] V [mm/s] Rz [µm] Rsk [µm]

1 0.000106 2.160 0.010 15.22 − 0.38 0.000217 3.461 0.029 20.10 0.24
2 0.000227 0.106 0.012 11.48 0.78 0.000367 3.892 0.047 24.73 0.24
3 0.000528 0.322 0.031 23.00 − 0.06 0.000725 3.364 0.083 20.67 0.06
4 0.000872 0.090 0.052 17.21 0.06 0.000804 2.902 0.104 27.67 0.02
5 0.000169 0.897 0.010 16.22 − 0.31 0.000446 4.706 0.054 16.97 0.25
6 0.000312 0.751 0.017 21.60 0.07 0.000559 3.820 0.077 18.97 0.19
7 0.000857 0.934 0.042 26.58 0.15 0.001262 4.100 0.139 23.60 0.37
8 0.001276 0.307 0.060 26.29 0.60 0.001691 5.202 0.167 23.17 0.10
9 0.000174 1.049 0.010 16.47 − 0.28 0.000315 3.769 0.046 20.00 0.38
10 0.000478 0.176 0.024 16.28 − 0.04 0.000382 3.680 0.104 12.53 0.15
11 0.000959 0.159 0.044 22.24 − 0.15 0.000699 4.112 0.118 29.23 0.57
12 0.001491 0.046 0.068 13.96 0.36 0.001068 6.294 0.110 29.37 0.53
13 0.000368 3.001 0.027 14.30 0.75 0.000475 4.336 0.076 16.63 0.37
14 0.000323 1.185 0.023 19.71 0.23 0.000529 5.872 0.104 16.30 0.11
15 0.001274 0.890 0.076 21.08 0.78 0.000758 4.934 0.116 26.50 0.06
16 0.001721 0.355 0.102 18.63 0.40 0.000910 6.741 0.116 25.70 − 0.13
17 0.000375 0.476 0.021 20.02 − 0.04 0.000597 5.234 0.083 20.53 0.72
18 0.000857 0.152 0.043 16.99 − 0.30 0.000829 5.164 0.110 19.23 − 0.06
19 0.000267 0.745 0.028 12.46 − 0.87 0.000091 12.016 0.020 11.43 0.48
20 0.002085 0.113 0.094 14.82 − 0.07 0.001433 6.646 0.192 29.20 − 0.04
21 0.000279 2.834 0.022 20.16 − 0.15 0.000459 5.257 0.067 21.57 0.10
22 0.000749 0.000 0.036 15.68 − 0.77 0.000729 6.251 0.143 29.30 0.20
23 0.000518 0.919 0.026 26.61 0.05 0.000689 4.321 0.149 19.80 − 0.15
24 0.000527 0.000 0.025 19.37 − 0.20 0.000694 6.398 0.119 36.03 0.23
25 0.000483 0.184 0.030 18.09 0.69 0.000650 3.129 0.145 16.13 0.14

Table 8 
Correlation coefficient values between the analyzed dependent and independent 
variables for Inconel 625.

Variable MRR[mm3/s] EW[%] Rz[µm] Rsk[µm]

t[µs] − 0.053 0.182 − 0.015 − 0.180
U[V] 0.284 0.226 − 0.139 − 0.196
I[A] 0.827 − 0.148 0.658 − 0.252
p[bar] 0.221 0.170 0.140 − 0.161

Table 9 
Correlation coefficient values between the analyzed dependent and independent 
variables for Titanium Grade 2.

Variable MRR[mm3/s] EW[%] Rz[µm] Rsk[µm]

t[µs] 0.271 0.032 − 0.208 0.060
U[V] 0.143 0.259 0.346 0.272
I[A] 0.831 − 0.375 0.421 0.272
p[bar] 0.254 ¡0.605 − 0.190 0.067

Fig. 5. Example of a simple LR.
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Rsk = 0.09476015x1 +0.040164x2 +0.093982x3 +0.057728x4

− 0.117807x5 +0.106405x6 

4.2. Random Forest

An alternative nonlinear approach consists of dividing or partition
ing the space into smaller regions where the interactions are more 
manageable. Recursive partitions of the space generate chunks so tame 
for creating simple models for them. A prediction tree uses a tree to 
represent the recursive partition; the tree’s structure defines the parti
tions. A Decision Tree (DT), an SML algorithm, creates a model that 
predicts the value of a target variable by learning simple decision rules 
inferred from the data features. A DT represents a function f that takes a 
vector of feature values as input and returns a decision value, where the 
nodes in the DT represent the features of the dataset. The leaves char
acterize the values to estimate the regression value [46].

Fig. 6 shows an example of a DT with two features (x1 and x2) and its 
partitioning of the space, the three thresholds (x1 ≤ 3, x2 ≤ 2, and 
x1 ≤ 5) generate four terminal nodes or regions in the space (R1, R2, R3, 
and R4). The value in each region is the mean of the response for the 
observations that fall there. The prediction of X is equal to the value of 
R3 which consists of the average value of all the points within 3 < x1 ≤ 5 
[47].

The goal of the training phase of DT is to find the thresholds or cuts 
that create the regions that minimize the Mean Squared Error (MSE) 
[46]: 

MSE =
1
N

∑N

i=1
(Yi − f(Xi))

2 

The prediction function f is specified by: 

f(X) =
∑J

j=1
wj

⃦
⃦
⃦
⃦
⃦

(
X ∈ Rj

)

where J is the total of leaves in the DT, Rj defines the region of the j-th 
leaf node, the binary indicator function: 
⃦
⃦
⃦
⃦(e) =

{
1ifeistrue
0ifeisfalse 

and wj establishes the predicted output of the j-th leaf node by: 

wj =

∑N
i=1Yi

⃦
⃦
(
Xi ∈ Rj

)

∑N
i=1

⃦
⃦
(
Xi ∈ Rj

)

Random Forest (RF) is an ensemble learning algorithm that creates 
several DTs as a single model, and its output prediction is based on the 
mean of their trees to correct for the individual trees’ tendency to overfit 
the data. RF ensures low correlation among decision trees by generating 
a random subset of features. The RF algorithm randomly selects a sample 
of data in a training set with replacement (one instance of the dataset 
can be chosen more than once) and a subset of features to create an 

uncorrelated forest of DTs. Fig. 7 shows an example of an RF with three 
DTs and an averaging of the results. The prediction f(X) of Y for X is the 
average value of the outputs provided by the three DTs in the RF [46].

4.3. Support Vector Regression

Support Vector Regression (SVR), an SML algorithm, defines a region 
around the function that can be approximated with a certain tolerance. 
The tube region aims to find the best approximates of the continuous- 
valued function where the points inside the tube are considered cor
rect predictions, minimizing the prediction error. Kernel functions of 
SVR project original data into high-dimensional feature spaces where 
linear or more complex relationships may exist, helping to deal with 
nonlinear processes. Some advantages of SVR are good performance 
with multidimensional data, the advantage of high-dimension count 
datasets, and the fact that it is not a resource-hungry algorithm [46].

The ε-insensitive loss function in SVR assigns zero prediction error to 
the points that lie inside the ε-tube, where ε value defines the margin 
width where data points are correctly predicted. The objective of SVM is 
to find the optimal coefficients β̂0, β̂1,⋯, β̂k such that errors in the 
prediction are lower than ε. Slack variables ξ and ξ* create a soft margin 
that allows for the measurement of errors, making the optimization 
feasible. The SVM optimization problem has the form [46]: 

min
1
2
∑d

j=1
β̂ j

2
+C

∑N

i=1

(
ξi + ξ*

i
)
s.t.

⎧
⎪⎪⎨

⎪⎪⎩

Yi − f(Xi) ≤ ε + ξi

f(Xi) − Yi ≤ ε + ξ*
i

ξi + ξ*
i ≥ 0

, ∀i ∈ {1,2,⋯,N}

where the constant C > 0 defines a trade-off between the flatness of f 
and the toleration of deviations larger than ε.

Fig. 8 shows an example of univariable SVR with values of the 

Fig. 6. Example of DT graphical representation and the partitioning of the space according to the leaf nodes.

Fig. 7. Example of an RF with Three DTs and averaging.
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prediction function f are found using the training dataset, where the 
orange lines define the ε-tube, and the purple lines show the measure
ment of slack variables ξ and ξ*. Also, the difference between the pre
diction value f(X) and the current value Y of the instance X for the final 
model.

4.4. Artificial Neural Networks

Artificial Neural Networks (ANN), an SML algorithm, simulates the 
human brain’s functionality where interconnected neurons provide the 
structure to solve problems. The network organizes neurons on inde
pendent layers with an arbitrary number of them [48]. ANNs can create 
straightforward, highly accurate models for complex problems [49]. A 
mathematical model of a neuron consists of a linear combination of 
inputs and an activation function. Fig. 9 shows the basic structure of the 
artificial neuron, where x0 defines a bias value, x1, x2,⋯, xk are the 
features of an instance in the dataset, w0,w1,w2,⋯,wk corresponds to 
the weights of the inputs, and f is the activation function.

Neurons are connected by edges and organized into layers to create 
ANNs. Layers have different functionalities: The input layer receives the 
external signals, hidden layers are intermediate layers that process the 
information, and the output layer produces the output. Fig. 10 shows an 
example of ANN with three layers: an input layer with two neurons, a 
hidden layer with three neurons, and an output layer with two neurons 
[46].

The training process finds the best values of the weights for each 
neuron in the ANN, they minimize the error in the prediction of the 
output using MSE. Initially, the ANN assigns random weights to each 
edge. Then, the ANN estimates the output for the instances in the 
training dataset, and the error between the actual and expected outputs 
is computed. Finally, the backpropagation algorithm adjusts the weights 

of all edges to minimize the MSE. This process is repeated during several 
epochs to keep updating the weights until the network works properly. 
Some important limitations for the development of an ANN are the 
definition of the structure (the number of layers and neurons per layer 
and the internal structure, connections between layers) and the training 
process (number of epochs, activation function, learning rate, among 
others) [46].

4.5. Implementation of ML algorithms

This section presents the performance comparison of LR, RF, SVR, 
and ANN to predict MRR, EW, v, Rz, and Rsk. The implementation based 
on Python 3.12, and sklearn 1.4.1 library is performed on a computer 
with 64-bit Windows 11 Pro, Intel(R) Core (TM) i9-10980XE CPU at 
3.00 GHz, 64 GB of memory, and 2 TB SSD.

4.5.1. Prediction model
In the preliminary phase of the study two prediction models were 

developed for each of the ML approaches. The first prediction model was 
trained only with dataset for one machined material, and the second 
prediction model was trained using the information about both 
machined materials. The output of both prediction models was only one 
value of MRR, EW, v, Rz, and Rsk. It was found that better performance is 
achieved when training model with using the information about both 
machined materials. That is why only one prediction model was re
ported in the study. Fig. 11 shows the inputs and outputs of the proposed 
prediction model for the four ML approaches. The model receives Pal
atnik’s index (which characterizes the type of material) as an additional 
input.

4.5.2. Datasets
Evaluating the strategies with real data is fundamental to measuring 

their performance. Two datasets with a series of integer and continuous 
input variables and continuous output values were considered. Table 10
shows the characteristics of the input values for both datasets.

All the features’ values are standardized using a method of feature 
scaling. The standardization process centers data around a mean of zero 

Fig. 8. Example of univariable SVR.

Fig. 9. Mathematical model of a Neuron.

Fig. 10. An ANN with three layers and seven neurons (2-3-2).

Fig. 11. Input and output parameters of the proposed prediction models for the 
four ML approaches.
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and a standard deviation of one to avoid some features dominating 
others due to their magnitudes. Fig. 12 presents statistical information 
about the datasets after the standardization. Several outliers were 
identified and removed to avoid a reduction in the quality and accuracy 
of the ML models. Also, there is a lack of sufficient representation of 
subgroups within the data, so they were removed to avoid any bias in the 
models.

The Simple Split technique provides a methodology to compare the 
LR, RF, SVR, and ANN performance. The dataset was randomly divided 
into two subsets with a number of instances: training and testing. The 
training set was used to train the classification model, and the testing set 
was used to verify the training process. Table 11 shows the number of 
instances in each training dataset.

4.5.3. Metrics
Four standard metrics were considered to evaluate the efficiency of 

the predictive model. They are mean square error (MSE), root mean 
square error (RMSE), R2 and mean absolute percentage of error (MAPE). 
Their definition can be expressed as follows: 

MSE =
1
N

∑N

i=1
(yi − ŷi)

2
, (1) 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
, (2) 

R2 = 1 −

∑N
i=1

(
ŷi − yi

)2

∑N
i=1(yi − yi)

2 , (3) 

MAPE = 100
1
N

∑N

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒, (4) 

where yi defines the observed value, ŷi is the predicted value, and yi 
specifies the mean yi value for i = 1,⋯,N.

4.5.4. Configuration
Proper parameters (configuration) of the strategies are fundamental 

to optimize their performance. Hyperparameters are external configu
ration variables that control the learning process of the ML model during 
its training. Hyperparameter optimization finds values of the parameters 
that optimize the model by minimizing a predefined loss function on 
given test data. The models with the best performance according to MSE, 
RMSE, and R2 for predicting MRR, EW, U, Rz, and Rsk are used to mea

sure their efficiency on the testing dataset with unseen data. Those 
values are reported in the results section.

The hyperparameters for RF include the number of decision trees in 
the forest (n_estimators), the maximum depth of the tree (max_depth), 
the minimum number of samples required to split an internal node 
(min_samples_split), and whether bootstrap samples are used when 
building trees (bootstrap).

Table 12 presents the grid values to define the best hyperparameters 
of the RF with 5-fold Cross-Validation (5CV) using the training dataset. 
These values were set to avoid overfitting due to the limited number of 
instances in the dataset. Table A1 shows the configuration of the best 
strategies found during the simulation, see Appendix A.

The hyperparameters for SVR are the kernel type, the degree of the 
polynomial kernel function, the epsilon value, and the number of iter
ations. Table 13 presents the grid values to find the best hyper
parameters of the SVR with 5CV using the training dataset. Table A2 
shows the configuration of the best strategies found during the simula
tion, see Appendix A.

The ANN model capacity depends on the number of hidden layers 
and the neurons per layer. The neural architecture search process 
empirically looks for the best hyperparameters of the ANN. This pro
cedure is expensive in terms of time and computational resources 
because every combination of hyperparameters must be evaluated.

Table 14 shows the grid values to find the best hyperparameters of 
ANN with 5CV using the training dataset and fully connected layers. 
Table A3 shows the configuration of the best strategies found during the 
simulation, see Appendix A.

5. Results and discussion

In the present work to correlate the relationship between input and 
output using different ML models, two approaches were utilized, in the 
first approach, the number of 20 data sets were taken into account for 
each material and the metrics were calculated. The second approach 
used the workpiece material as an input that is quantified by defining 
the Palatnik index described earlier. The obtained results showed that 

Table 10 
Input values of Inconel and Titanium datasets.

Input Values

Ψ {8.91, 18.2}
t {100, 200, 300, 400, 500}
U {80, 100, 120}
I {0.9, 1.8, 2.7, 3.6, 4.5}
p {2, 4, 6, 8, 10}

Fig. 12. Standardized a) inputs and b) outputs of the datasets.

Table 11 
Number of the instances in the training datasets after the preprocessing stage.

Inputs Material N MRR EW v Rz Rsk

Ψ, t,U, I,p In + Ti 50 32 34 35 35 33

Table 12 
Parameters of RF to find the best prediction model using 5CV.

Parameter Values

n_estimators {50, 100, 150, 200, 250, 300}
max_depth {2, 3, 4, 5, 6, 7}
min_samples_split {2, 3, 4, 5}
bootstrap {True, False}
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the prediction accuracy in second approach is much better due to 
contribution of more data in developing the ML models. However, as the 
difference was significant, here in order to avoid confusion by bringing 
the tables and figures, the results of first approach was left behind and 

only the second approach as the main modeling strategy is described.
The comparison of performance of different ML models i.e. LR, SVR, 

RF and ANN in prediction of MRR, EW, v, Rz and Rsk based on the 
different metrics i.e. MSE, RMSE, R2 and MAPE for the testing data have 
been presented in Fig. 13. According to the figure, it is seen that for all 
the metrics, the ANN outperforms other ML models in prediction of the 
data sets which were not included in the training in correlation of pro
cess factors to MRR, v, Rz and Rsk. However, it is seen that only in case pf 
prediction of EW, the RF is slightly better than ANN while still the ANN 
is by far outperforms LR and SVR. In other words, in prediction of MRR, 
v, Rsk and Rz, taking into accounts the metrics MSE, RMSE and MAPE, 
the ANN has the lowest value, and for the metric R2 it adopts the 
maximum value confirming the better accuracy of this ML model 
compared to others. On the other hand, in the case of EW, it is seen that 
the RF for the metrics MSE, RMSE, MAPE has the lowest value, while for 
R2 it has the highest amount. It is seen that the prediction errors for Rz 
and Rsk are rather higher than other outputs that can be referred to the 
chaotic nature of roughness distribution in EDM process that was re
ported in Sections 3.3 and Section 3.4.

Fig. 14a–e represent the comparison between actual and predicted 
values of testing data based on SVR, ANN, LR, and RF models trained 
with both datasets (Inconel 625 and Titanium Grade 2). In the figure, the 
first 5 data sets belong to machining of Inconel while the other 
remaining 4 data is dedicated to machining of Titanium. From the 
Fig. 14a, it is seen that the among the different types of ML models, the 
MRR values which were predicted by ANN are very close to actual values 
where it is in line with the results of different metrics reported in Fig. 13. 
On the other hand, it is observed from Fig. 14b that the RF has the best 
accuracy in the case of prediction of electrode wear where the RF pre
dicted values of EW are more compatible with the actual values 
compared to other networks. Furthermore, on the basis of the Fig. 14c, it 
is evidence that the ANN outperforms other models in prediction of 

Table 13 
Parameters of SVR to find the best prediction model using 5CV.

Parameter Values

Kernel { linear, polynomial, radial, sigmoid}
Degree {2, 3, 4, 5, 6, 7}
Epsilon {0.1, 0.2, 0.3, 0.4, 0.5}
Iterations {50, 100, 150, 200}

Table 14 
Parameters of ANN to find the best prediction model using 5CV.

Parameter Values Total

Epochs 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 
600

11

1 hidden layer 
(1HL)

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 12

2 hidden layers 
(1HL-2HL)

10-5, 20-10, 30-15, 40-20, 50-25, 60-30, 70-35, 80- 
40, 90-45, 100-50, 110-55, 120-60

12

3 hidden layers 
(1HL-2HL-3HL)

5-10-5, 10-20-10, 15-30-15, 20-40-20, 25-50-25, 30- 
60-30, 35-70-35, 40-80-40, 45-90-45, 50-100-50, 55- 
110-55, 60-120-60

12

4 hidden layers 
(1HL-2HL-3HL- 
4HL)

5-10-10-5, 10-20-20-10, 15-30-30-15, 20-40-40-20, 
25-50-50-25, 30-60-60-30, 35-70-70-35, 40-80-80- 
40, 45-90-90-45, 50-100-100-50, 55-110-110-55, 
60-120-120-60

12

Activation function Hyperbolic tangent (tanh), Logistic, Rectified Linear 
Unit (ReLU)

3

Learning rate 0.05, 0.01, 0.005, 0.001 4

Fig. 13. Comparison of the performance of different ML models in prediction of outputs taking into account different metrics (a) MSE (b) RMSE (c) R2 and (d) MAPE.
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Fig. 14. Comparison of actual and predicted values of outputs obtained from different ML models for testing data (a) MRR (b) EW (c) v (d) Rz (e) Rsk.
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working electrode velocity where the other networks don’t provide the 
acceptable prediction. In Fig. 14d, it is seen that the ANN offers best 
prediction accuracy in prediction of Rz followed by LR, RF and SVR. 
Finally, in the case of the prediction of Rsk, it is observed that the ANN 
has the better prediction performance compared to other networks, 
however, as described in the section 3.4, because of uncertainty of the 
measurement of Rsk in the EDM process, the mismatch between the 
measured and predicted values are higher than other outputs. The root 
mean square roughness Rz is the average value of the absolute values of 
the heights of the five highest-profile peaks and the depths of the five 
deepest alleys within the evaluation length [50]. The hybrid parameter 
skewness Rsk is sensitive to occasional high peaks or deep valleys. A Rsk 
value of 0 would be expected for a surface with symmetrical height 
distribution (as many peaks as valleys), where profiles filled valleys 
present Rsk below zero [51]. Considering the random nature of the 
discharge phenomenon during EDM, it is evident that precise control of 
the various processes occurring within the discharge gas is unfeasible. 
These processes include, but are not limited to, temperature fluctua
tions, dielectric breakdown, the removal of machining products, the 
deposition of workpiece material on the working electrode, and the 
melting of the working electrode and subsequent deposition on the 

surface of the workpiece. All of this has a great influence on the struc
ture, depth, and structure of valleys (craters), as well as solidifies flashes 
after the machining process.

Tables A4 and A5 show the best solutions for the LR and SVR pre
diction models and Figs. A1 to A5 present some examples of DTs from 
the RFs solutions, see Appendix A.

6. Conclusion

In the present study, data-driven modeling of a new modification of 
dry EDM process in presence of coolant has been performed. Here, 
different ML models, namely, Linear Regression, Support Vector 
Regression, Artificial Neural Network and Random Forest were utilized 
to correlate dry EDM outputs i.e. workpiece material, current density, 
voltage, pulse time and gas pressure, to main process’ outputs namely 
material removal rate, electrode wear, velocity, and surface roughness. 
The obtained results can be summarized as follows: 

• The prediction model with information from both materials im
proves on average the efficiency of the predictions over all the 
evaluated models,

Fig. 14. (continued).
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• While comparing different metrics for prediction accuracies, it was 
found that the ANN has the best performance in modeling of MRR, v, 
Rz and Rsk. While the RF is the best in case of EW.

• Compared to other process outputs, the prediction errors for Rsk and 
Rz in all the ML models are found higher that can be attributed to the 
physics of EDM process that generates the roughness in a very 
chaotic nature.

• On the basis of obtained results, it was found that the ANN in ma
jority of outputs i.e. MRR, v, Rz and Rsk gives the best prediction 
accuracy for the testing data which were not included in the training. 
Also, in the case of EW, nevertheless the performance of RF is the 
best, but it doesn’t have significant difference to ANN. Thus, it can be 
concluded that the ANN can be used as the best ML predictor to 
correlate the mapping relationship between the process’ inputs and 
outputs to navigate the design space.

In further study, it is needed to introduce the following 
improvements: 

• Development of rotary tool EDM process and analysing the impact of 
different types of gases on the output of EDM process.

• Use data augmentation and feature engineering strategies to enhance 
the prediction of output parameters in the machining process.
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Appendix 

Table A1 
LR, RF, SVR, and ANN prediction performance with Inconel 625 and Titanium datasets, 5CV, and 30 executions, the best values for the four approaches are bolded.

Output Phase LR SVR RF ANN

MSE RMSE R2 MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

MRR Training 0.1177 0.3419 0.8053 0.1407 0.3726 0.7672 0.0613 0.2452 0.8987 0.0224 0.1389 0.9636
Testing 0.1868 0.4170 0.6066 0.1945 0.4256 0.6376 0.2215 0.4506 0.5839 0.1671 0.3897 0.6735

EW Training 0.1213 0.3478 0.8352 0.1381 0.3709 0.8122 0.0473 0.2167 0.9356 0.0257 0.1576 0.9651
Testing 0.1626 0.3959 0.7180 0.1481 0.3712 0.7525 0.1143 0.3292 0.7955 0.1274 0.3499 0.7851

v Training 0.1683 0.4094 0.8329 0.1884 0.4330 0.8133 0.0754 0.2715 0.9256 0.1384 0.3704 0.8630
Testing 0.2139 0.4517 0.7059 0.2295 0.4653 0.6947 0.2924 0.5275 0.5812 0.1722 0.4006 0.7739

Rz Training 0.5250 0.7230 0.4706 0.3139 0.5573 0.6841 0.4879 0.6976 0.5072 0.2865 0.5336 0.7120
Testing 0.7897 0.8725 − 0.0102 0.8035 0.8777 0.0310 0.8240 0.8957 − 0.0503 0.7275 0.8375 0.1006

Rsk Training 0.6200 0.7856 0.0820 0.3298 0.5710 0.5130 0.5069 0.7097 0.2504 0.6830 0.8252 − 0.0132
Testing 0.9952 0.9810 − 0.5939 0.8293 0.8910 − 0.2685 0.9121 0.9361 − 0.4055 0.7489 0.8507 ¡0.1507

Table A2 
Configuration of the best strategies for RF and all the datasets.

Dataset Parameter Configuration

n_estimators max_depth min_samples_split Bootstrap

Inconel +
Titanium

MRR 150 6 2 True/False
EW 100 4 4 True/False
v 250 6 2 True/False
Rz 100 2 5 True/False
Rsk 200 2 5 True/False
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Table A3 
Configuration of the best strategies for SVR and all the datasets.

Dataset Parameter Configuration

iterations Epsilon Kernel Degree

Inconel +
Titanium

MRR 100 0.02 Linear 2
EW 200 0.02 Linear 2
v 200 0.02 Linear 2
Rz 50 0.02 Radial −

Rsk 50 0.02 Radial −

Table A4 
Configuration of the best strategies for ANN and all the datasets.

Dataset Prediction Configuration

Epochs Neurons per hidden layers Activation function Learning rate

Inconel +
Titanium

MRR 500 55–110-110–55 ReLU 0.05
EW 150 80–40 ReLU 0.05
v 550 30–15 Logistic 0.05
Rz 100 80 ReLU 0.05
Rsk 200 5–10-10–5 Logistic 0.05

Table A5 
Table of coefficients for the best model of LR with normalized values.

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5

MRR − 0.13441143 − 0.062055 0.077938 0.105832 0.617859 0.179875
EW − 0.08057508 − 0.706865 0.109636 0.133243 − 0.075969 − 0.078176
v − 0.02199991 − 0.647117 0.104774 0.154047 0.548398 0.162842
Rz 0.05469054 − 0.399168 − 0.091395 0.135280 0.501958 0.058769
Rsk 0.09476015 0.040164 0.093982 0.057728 − 0.117807 0.106405

Table A6 
Table of coefficients for the best model of SVR with normalized values (only for linear models)*.

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5

MRR − 0.18234569 − 0.02744863 0.05777316 0.13236128 0.59507204 0.11561341
EW − 0.11461549 − 0.73449764 0.07288629 0.12871271 − 0.07281424 − 0.02757991
v − 0.04829821 − 0.63512199 0.14443802 0.14994380 0.52027816 0.17861080

*The best models for Rz and Rsk use radial kernels that consist of matrices, so they are not defined in this table.

Fig. 2A. An example of a DT from the RF regressor for the prediction of with normalized values
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Fig. 3A. An example of a DT from the RF regressor for the prediction of with normalized values

Fig. 4A. An example of a DT from the RF regressor for the prediction of with normalized values

Fig. 5A. An example of a DT from the RF regressor for the prediction of with normalized values
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Data will be made available on request.
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