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1 Introduction 

1.1. Overview 

Cybersecurity enhancement is a continuous process due to increasing cyber-attacks of late. 
Traditional security mechanisms were based on certain heuristics that could detect intrusions 

based on their detection process. However, with the emergence of Artificial Intelligence (AI) 

methods such as machine learning (ML) approaches, learning based models are found 

efficient due to their ability to learn from labelled data continuously. It is found in the 

literature that ML models based on supervised learning show deteriorated intrusion detection 
performance when training samples are not with designed quantity and quality. The system is 

evaluated using CICIDS2017 dataset. Intrusion detection system is implemented using 

binomial classification and also multi-class classification 

 

1.2 System Environment 

Hardware: 

Base Memory:4608 MB 

Processor: 4 

Storage: 25 GB of free disk space 

Network: Intel Pro/1000 MT Desktop (Nat Network, ‘NatNetwork’) 

 

Software Dependencies: 

Anaconda, python 

Software Dependencies: 
Below are the software dependencies required to run the code in this notebook: 

 NumPy: A fundamental package for scientific computing with Python. 

 Pandas: A powerful data analysis and manipulation library. 

 Matplotlib: A plotting library for creating static, interactive, and animated 

visualizations. 

 Seaborn: A statistical data visualization library based on Matplotlib. 

 Scikit-learn: A machine learning library that provides simple and efficient tools for 

data mining and data analysis. 

 XGBoost: An optimized gradient boosting library designed for speed and 

performance. 

 To Quickly train large datasets. 

 Decision Trees: Basic algorithm for classification and regression tasks 

 Random Forests: Ensemble of Decision trees using bagging 
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 Reduces overfitting compared to a single decision tree 

 Extra Trees: like random forests but with more randomness in splits. 

 To improve predictive accuracy and control overfitting 

 Faster to train and can be more robust. 

 

 

Windows 11 : 

Hardware: 

Base Memory:3658 MB 

Processor: 4 

Storage: 30 GB of free disk space 

Network: Intel Pro/1000 MT Desktop (Nat Network, ‘NatNetwork’) 

 

 

2 Installation 

1. Download the Anaconda installer. 

2. Go to your Downloads folder and double-click the installer to launch. To prevent 

permission errors, do not launch the installer from the Favorites folder. 

3. Review the license agreement and click I Agree option 
4. It is recommended that you install for Just Me, option which will install Anaconda 

Distribution for the current user account. Select the AllUsers option if you need to 

install for all users’ accounts on the computer (which requires Windows 

Administrator privileges). 

5. Choose a destination folder to install Anaconda and click Next. Install Anaconda to a 

directory path that does not contain spaces or Unicode characters. 
 

https://www.anaconda.com/download
https://docs.anaconda.com/free/working-with-conda/troubleshooting/#distro-troubleshooting-favorites-folder
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6. Choose whether to add Anaconda to your PATH environment variable or register 

Anaconda as your default Python. We don’t recommend adding Anaconda to your 

PATH environment variable, since this can interfere with other software. Unless you 

plan on installing and running multiple versions of Anaconda or multiple versions of 

Python, it is advisable to accept the default setting and leave this box checked 

 

7. Click Install. If you want to monitor the packages Anaconda is installing, you can 

click on Show Details. 

8. Once the installation is completed you will see the “Thanks for installing Anaconda” 

dialog box 
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3 Implementation 
 

 

On Windows, you can launch Jupyter via the shortcut added by the Anaconda to your start 

menu, which will open a new tab in your default web browser that should look something 

like the following screenshot 
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In this notebook, we'll explore a classification task using various machine learning 

algorithms. We'll utilize popular libraries such as NumPy, Pandas, Seaborn, Matplotlib, 
Scikit-learn, and XGBoost. 

In this section, I have downloaded and imported the essential libraries required for our 

classification task. 

Using Pip install. 
These libraries provide powerful tools for data analysis, visualization, preprocessing, 

modeling, and evaluation. We'll utilize them throughout the notebook to perform various 
tasks and analyze the results. 
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In this notebook, we'll explore the application of various machine learning models for a 

classification task. We'll utilize popular algorithms, including Random Forest, Extra Trees, 
Decision Tree, and XGBoost, each renowned for its unique characteristics and efficacy. 

1. Random Forest Classifier 

Random Forest is a powerful ensemble learning method that constructs multiple decision 

trees during training. It leverages the collective wisdom of these trees by outputting the mode 
of the classes for classification tasks or the mean prediction for regression tasks. Renowned 

for its robustness, scalability, and consistently high accuracy, Random Forest is a popular 

choice for a wide range of machine learning tasks. 

2. Extra Trees Classifier 

Extra Trees, also known as Extremely Randomized Trees, represents another ensemble 

learning approach. Similar to Random Forest, it builds a forest of uncorrelated decision trees. 

However, unlike Random Forest, Extra Trees selects feature thresholds randomly, making it 

faster at the expense of potentially lower accuracy. Extra Trees is particularly useful for 
reducing overfitting and variance in models. 

3. Decision Tree Classifier 

Decision Tree is a versatile and intuitive non-parametric supervised learning algorithm used 

for both classification and regression tasks. It partitions the feature space into regions and 

predicts the target variable based on the majority class or mean value of instances within each 

region. Despite its simplicity, Decision Tree can be highly effective, especially for capturing 

complex relationships in the data. 

4. XGBoost Classifier 

XGBoost, short for Extreme Gradient Boosting, stands out as a cutting-edge gradient 

boosting library designed for exceptional speed and performance. Operating within the 

gradient boosting framework, XGBoost sequentially builds an ensemble of weak learners, 

typically decision trees, and combines their predictions to enhance overall performance. 
Recognized for its high accuracy, efficiency, and adaptability, XGBoost is a favored choice 

in various machine learning competitions and real-world applications. 

Binomial class classification 
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Multi class classification 
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4. Conclusion 

This research is aimed at designing and implementing an intrusion detection system based on 

ML models. The system is implemented using four ML models with two optimizations such 

as feature selection and hyperparameter optimization. These research objectives are met as 

evident in the results of the research. The first objective is to investigate on the existing ML 

methods and related works used to realize intrusion detection systems. It is achieved and 

outcome is presented in related works. The second objective is to propose a ML based 

framework with its mechanisms and optimizations for efficient intrusion detection. Finally, 

conclusions are drawn as found in this section and also future work possibilities are provided. 

With regard to research questions, the first research question is “Can machine learning 

models be used for realizing an intrusion detection system?”. This research question is found 

affirmative answer as the ML models were found suitable for intrusion detection. The second 

research question is “Can optimizations like feature selection and hyperparameter 

optimization have impact on intrusion detection performance of ML models?”. This research 

question also found affirmative answer in this research and in literature also. However, in this 

research the improvement of accuracy when optimizations are made to ML models is 

relatively less. In other words, there is no significant improvement in the accuracy when 

optimizations are applied. 
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