

Android Malware Detection using Machine

Learning and Convolutional Neural

Network

MSc Research Project

Cyber Security

Sai Hari Parthiban
Student ID: 22169148

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Sai Hari Parthiban

Student ID: 22169148

Programme: MSc in Cyber Security Year: 2023

Module: MSc Research Project

Supervisor: Jawad Salahuddin

Submission Due

Date: 05/04/2024

Project Title: Android Malware Detection using Machine Learning and

Convolutional Neural Network

Word Count: 6661 Page Count: 25

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Sai Hari Parthiban

Date: 04/04/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Android Malware Detection using Machine

Learning and Convolutional Neural Network

Algorithm

Sai Hari Parthiban

22169148

Abstract

The fast evolution of Android mobile devices has opened new possibilities for convenience and

usefulness, but it has also given rise to Android malware, which poses a major danger to user security

such as data theft. To discriminate between benign and malicious apps, effective detection systems are

essential. Machine learning and Deep learning have emerged as a potent connect in this domain, capable

of swiftly assessing Android application packages (APK files) and properly classifying applications. In

this study, we examine the efficacy of various machine learning models and a deep learning model,

with the Random Forest, Extra Tree, XGBoost, Stacking Classifier and Convolutional Neural Network

(CNN), in detecting Android malware also Scikit Framework has been used for detecting malware in

this research. Between these models, CNN stands out as the best performer, with respect to its precision,

memory, and F1 scores to determine their correctness and dependability. This superior result

demonstrates its capacity to reliably detect and categorise Android apps, emphasizing its importance in

improving mobile security. This report offers critical insights into the state of Android malware

detection using machine learning, offering a path forward to enhance Android security and shield users

from potential security threats in the ever-evolving landscape of mobile technology.

Keywords: Android malware, Machine learning, CNN, APK files, Scikit Framework

1 Introduction

As of fast growth of mobile intelligent terminals, Android has developed the most widely used

computing platform on smartphones according to Meijin et al (2022). The widespread

utilization of Android-based mobile devices has heralded a new era of unprecedented ease and

connectedness, revolutionizing the way people live, work, and communicate. Android

malware, such as Trojans, viruses, ransomware, and spyware, poses a serious danger, attaining

detection and mitigation an urgent and vital problem. With its ability to process and analyze

enormous datasets, machine learning has emerged as a powerful tool in the field of Android

virus detection. Machine learning and deep learning models may categorize Android

application packages (APK files) as benign or malicious by managing features derived from

2

these packages. The accurate detection of harmful applications is critical for improving mobile

security and protecting users from possible dangers. Numerous research methodologies have

been presented to address the problems posed by Android malware. This research evaluates

machine learning models and a deep learning model in the context of Android malware

detection. It aims on classifiers such as Random Forest, Extra Tree, XGBoost, Stacking

Classifier and CNN Model, all of which have indicated promise in discriminating between safe

and dangerous applications. This paper sheds light on the current status of Android malware

detection and lays the groundwork for future breakthroughs in mobile security and the privacy

and data protection of Android users. The graph of android malware rise is shown as below1 :

Figure 1 Malware rise.

1.1 Research Questions

The research questions for this report are as follows:

1. Which machine learning models, including Random Forest, Extra Tree, XGBoost, and

Stacking Classifier demonstrate the highest accuracy and reliability in distinguishing

between benign and malicious Android applications?

2. Which model is more efficient when compared between machine learning and the deep

learning model used in the android malware detection?

The goal of this research is to design and test machine learning models and a deep learning

model for Android malware detection to develop security and safeguard users from potential

risks. The main purpose of this approach is to identify malware in Android applications also

1 https://www.mdpi.com/2073-8994/15/3/677

http://www.mdpi.com/2073-8994/15/3/677

3

the major goal is to reliably categorize Android applications as benign or malicious using a

wide variety of classifiers such as CNN, Random Forest, Extra Tree, XGBoost, and a Stacking

Classifier. The study intends to present an effective way of discriminating between safe and

possibly hazardous apps by obtaining high accuracy, recall, and F1 scores, therefore combining

to the overall security of Android users. The ultimate aim is to determine the effective model

for Android malware detection and to provide insights into future developments and research

paths in mobile security.

2 Related Work

2.1 Machine Learning in Different Security Domains

According to Shaukat et al (2020) emphasise the importance of machine learning in improving

cyber security measures and combating hackers' shifting techniques. While Vanjire and

Lakshmi (2021) concentrate on mobile security and use machine learning to discover malware

vulnerabilities, which aligns with the wider issue of advance digital security. Butt et al (2020)

investigate cloud computing security, proposing the use of machine learning techniques to

lower vulnerabilities and safeguard data. Cui et al (2018) highlight the revolutionary potential

of machine learning in IoT applications, to improve security, network management, and data

analytics. Kotenko et al (2018) presents a methodology for enhancing security monitoring in

the perspective of the mobile Internet of Things by combining Big Data processing with

machine learning. Regardless of their specific domains of application, these evaluations

highlight the critical role of machine learning in providing efficient and proactive solutions to

address security, data analytics, and intelligent decision-making, consequently contributing to

the total goal of improving digital security and performance.

Table 2.1: Comparative Analysis in Technology and Security Domains

Study Domain Proposed

Approach

Challenges

Addressed

Key

Results/Contributions

Shaukat et

al., 2020

Cyber

Security

Machine learning

for threat

detection and

response

Evasion of

conventional

security systems

Enhanced security

measures for cyber threats

4

Vanjire and

Lakshmi,

2021

Mobile

Security

Machine learning

for malware

vulnerability

detection

Mobile security

and malware

infections

Improved security for

Android mobile devices

Butt et al.,

2020

Cloud

Computing

Security

Machine learning

algorithms for

data protection

Security

vulnerabilities in

cloud computing

Enhanced cloud security

using ML

Cui et al.,

2018

Internet of

Things (IoT)

Machine learning

for IoT

applications and

analytics

Security, network

management, data

analytics

Intelligent IoT applications

and improved security

Kotenko et

al., 2018

Big Data

Processing

and Security

Big Data

processing and

machine learning

for security

Security

monitoring in

mobile IoT

Improved security

monitoring and Big Data

analytics

2.2 Models for Android Malware Detection

2.2.1 Random Forest Classifier Model

Rana et al (2018) investigated the use of machine learning classifiers for Android malware

detection, achieving an accuracy rate of more than 94 percent. Similarly, Agrawal and Trivedi

(2021) recognised the increasing sophistication of Android malware and executed machine

learning classifiers to develop detection accuracy, with Random Forest establishing to be the

most accurate classifier. Koli, (2018) proposed "RanDroid," a machine learning-based malware

detection solution with a remarkable accuracy of 97.7 percent, stressing the insertion of various

characteristics from Android apps into their model. Furthermore, Jung et al (2018) presented a

fresh strategy by concentrating on the selection of relevant Android APIs, with their Random

Forest classifier achieving an astounding accuracy of 99.98 percent when employing a refined

set of APIs. Finally, Zhu et al (2018) established the exponential rise in Android malware and

presented an ensemble machine learning system for Android malware detection, reaching an

accuracy rate of 89.91 percent by applying a random forest classifier. These studies, examined

together, highlight the necessity of machine learning in Android malware detection, as well as

the usefulness of other factors, such as API usage and permissions, in obtaining high detection

accuracy.

5

2.2.2 XGBoost Classifier Model

Giannakas et al (2022) conducted a careful investigation of machine learning models,

improving and examining 27 machine learning algorithms alongside a Deep Neural Network

(DNN) to determine the best accurate model. Chen et al (2018) adopted a additional visual

method, transforming Android malware's dex files into photos and classifying them using the

XGBoost algorithm. They obtained an astounding 99.14 percent accuracy. Darus et al (2019)

concentrated on producing grayscale pictures from Android APK files using the GIST

descriptor and XGBoost for classification, demonstrating the higher performance of their

technique. Palsa et al (2022) used XGBoost and very randomised trees algorithms to classify

Android malware with great accuracy and sensitivity. Finally, Ling et al (2019) used Ant

Colony Optimization (ACO) to tune XGBoost settings, improving detection accuracy while

reducing false positives.

2.2.3 Stacking Classifier Model

Multiple studies have identified the necessity for strong detection systems that not only classify

these threats properly but also categorize the precise type of attack for effective prevention. To

address this urgent issue, researchers have offered several novel techniques. Wang et al (2022)

developed the MFDroid framework to detect Android malware via stacking ensemble learning.

They learned an outstanding F1-score of 96.0 per cent by using seven characteristic selection

methods and logistic regression as a meta-classifier. Xie et al (2023) observed the issue of

dynamic obfuscation techniques used by Android malware. They presented the GA-

StackingMD system, which used the Genetic Algorithm and Stacking to advance detection

accuracy and attained outstanding results on two datasets. Furthermore, Shafin et al (2021)

introduced a two-layer Machine Learning detection model based on Ensemble Learning and

Stacked Generalization, reaching 99.49 percent accuracy in detecting Android smartphone

attack types, outperforming previous research on the same dataset.

2.2.4 Convolutional Neural Network Model

Yadav et al (2022) employed stacked recurrent neural networks (RNNs) and convolutional

neural networks (CNNs) to recognize and classify Android malware using image-based

versions. Lee et al (2019) concentrated on the covering of Android applications as well. Their

method used stacked RNNs and CNNs to discover correlations between obscured text patterns

in package names and certificate owner names, developing the obfuscation resistance of their

feature extraction system.

6

Study Domain Proposed

Approach

Challenges

Addressed

Key Results/Contributions

Rana et al.,

2018

Android

Malware

Detection

Machine learning

classifiers for

Android malware

detection

Addressing

Android malware

threats, detection

accuracy

Achieved an accuracy rate

exceeding 94%,

demonstrating the

effectiveness of machine

learning classifiers. Random

Forest classifier used.

Agrawal

and

Trivedi,

2021

Android

Malware

Detection

Machine learning-

based malware

detection

methodology

Overcoming

malware

detection

limitations,
accuracy

Identified Random Forest as

the most accurate classifier.

Koli, 2018 Android

Malware

Detection

RanDroid:

Machine learning-

based malware

detection system

Comprehensive

feature extraction,

high classification

accuracy

Achieved an accuracy of

97.7%, a significant

contribution to Android

malware detection.

Jung et al.,

2018

Android

Malware

Detection

Machine learning

methodology

focusing on

Android APIs

Improved API-

based detection,

high accuracy

Achieved an accuracy of

99.98%, emphasizing the

relevance of specific APIs.

Random Forest classifier

used.

Zhu et al.,

2018

Android

Malware

Detection

Ensemble machine

learning system for

Android malware

detection

Android malware

proliferation,

cost-effective

alternatives

Achieved an accuracy of

89.91%, providing a cost-

effective approach for

detection. Random Forest

classifier used.

Giannakas

et al.

(2022)

Android

Malware

Detection

Experimented with

27 machine

learning

algorithms and a

DNN, optimized

with Optuna.

Android malware

detection, model

selection.

Identified DNN with four

layers as the best model,

achieving 86% prediction

accuracy. Feature analysis

using SHAP.

Chen et al.

(2018)

Android

Malware

Detection

Converted Android

malware's dex files

into images and

used XGBoost for

classification.

Efficient Android

malware

detection.

Achieved a remarkable

99.14% accuracy,

demonstrating the

effectiveness of their visual

approach.

7

Darus et al.

(2019)

Android

Malware

Detection

Utilized grayscale

images from

Android APK files,

GIST descriptor,

and XGBoost for

classification.

Enhanced

Android malware

classification.

Demonstrated the efficiency

of their approach, especially

when compared to other

algorithms.

Palsa et al.

(2022)

Android

Malware

Detection

Employed

XGBoost and

extremely

randomized trees

for malware

detection.

Improved

malware

detection

efficiency.

Achieved high accuracy and

sensitivity, with successful

integration into the MLMD

program for automation.

Ling et al.

(2019)

Android

Malware

Detection

Introduced Ant

Colony

Optimization

(ACO) to optimize

XGBoost

parameters for
malware detection.

Parameter

optimization in

Android malware

detection.

Improved detection accuracy

while reducing false

positives, enhancing

cybersecurity measures for

Android devices.

Wang et al.

(2022)

Android

Malware

Detection

Stacking Ensemble

Learning with

Feature Selection

Detection

accuracy,

traditional feature
limits

F1-score of 96.0% and

improved detection

Yadav et

al. (2022)

Android

Malware

Detection

Deep Learning

with RNNs and

CNNs for Image

Analysis

Handling

obfuscation,

improving

accuracy

Outperformed existing

models and classifiers

Xie et al.

(2023)

Android

Malware

Detection

GA-StackingMD

with Genetic

Algorithm and
Stacking

Dynamic

obfuscation,

hyperparameter
optimization

Strong performance on two

datasets

Lee et al.

(2019)

Android

Malware

Detection

Stacked RNNs and

CNNs for String

Pattern
Correlations

Addressing

obfuscation

challenges

Robust feature extraction and

obfuscation resilience

Shafin et

al. (2021)

Android

Malware

Detection

Ensemble

Learning with

Stacked
Generalization

Accurate

prediction and

classification

Exceptional accuracy in

classifying attack types

2.3 Scikit Framework

The Scikit-learn framework was used in this finding to present a solid foundation for assessing

and classifying Android applications, distinguishing between benign and malicious apps.

Scikit-learn includes a comprehensive set of machine learning approaches for evaluating and

8

evaluating models such as Random Forest, Extra Tree, XGBoost, plus Stacking Classifier. The

flexibility and convenience of the use of Scikit-learn permitted the trial and judgment of many

models, which substantially contributed to understanding the efficiency of machine learning in

Android malware detection. Furthermore, its user-friendly interface advanced in the discovery

of dataset constraints, underlining the need for additional diverse data to improve model

resilience. As the research delves into future avenues of investigation, such as deep learning

techniques, feature optimization, and real-time threat intelligence integration, Scikit-versatility

lays the groundwork for further advancements in enhancing Android security and safeguarding

users in the volatile world of mobile technology.

3 Research Methodology

3.1 Methodology

The workflow of the proposed methodology involves the following stages:

1. Imported Libraries: Shutil for file operations, os and zip file for file management,

pandas for data manipulation, seaborn and numpy for data visualisation and numerical

processing, scikit-learn for machine learning, pickle for object serialisation, and Plotly

for interactive data visualisation were all imported. In addition, the stat module was

loaded for file attribute manipulation. These collections collaborate to make data

collection, preparation, analysis, and visualisation easier, as well as machine learning

model development and report graphical user interface (GUI) production possible.

2. Data Collection: The information was gathered by doubling the dataset and then

unzipping the resulting files. The dataset was then translated into a binary classification

format, with 0 representing benign target class values and 1 demonstrating malicious

target class values. This was a critical stage in practicing the data for analysis and

machine learning. It supported the study to recognize between benign and malicious

data, setting the framework for subsequent feature extraction as well as model training.

3. Feature Extraction: For feature extraction, the Androguard library was utilised, with

a aim on obtaining application permission features from APK files. Androguard class

'androguard.core.bytecodes.apk.APK' was used to explain the APKs. The app's

permissions were of particular relevance, and they were collected using the Androguard

library's 'get permissions ()' method. These extracted permission attributes were critical

in describing the behaviour of Android apps and operated as the foundation for later

categorization. A total of 388 features were retrieved, which were then processed and

9

translated into a numerical representation for use in machine learning algorithms for

classification tasks.

4. Data Preprocessing: The data preparation process includes many critical phases that

were employed throughout the dataset generation. Initially, images of each sign were

captured, and background subtraction techniques were used to remove the signs from

their backgrounds, ensuring that only critical information was kept. For preprocessing

the data this study has used androguard for first generating features using this and then

converting the categorical value to the numerical values.

5. Data Splitting (Training and Testing the Model): The dataset was divided into two

subsets during the Data Splitting phase: a training set and a testing set, with an 80 per

cent to 20% ratio. The training set was used to train the machine learning models to

learn patterns from data, while the investigating set was used to evaluate the models'

performance and generalisation capabilities. We guaranteed that the models were not

overfitting to the training data and could make reasonable predictions on unknown data

by separating the data in this way.

6. Model Training: Numerous machine learning systems were used during the Model

Training phase, with Random Forest Classifier, Extra Tree Classifier, XGBoost

Classifier, and a Stacking Classifier built of an ensemble of XGBoost and Random

Forest, with an Extra Trees Classifier acting as the meta-classifier. To realize patterns

from the retrieved characteristics and app permissions, several algorithms were applied

to the training dataset. The models improved their ability to discriminate between

benign and malicious Android applications through recurrent training. This training

step paved the way for the future categorization of unknown applications in the testing

phase, allowing the models to make correct predictions and accurately identify possible

security issues.

7. Model Evaluation: The Model Evaluation step examined the performance and efficacy

of the taught machine learning models. The accuracy score offered an overall

assessment of how successfully the models classified Android apps. The classification

report included specific metrics for each class (benign and malicious) such as accuracy,

recall, F1-score, and support, providing insights into the models' performance on actual

classes. The confusion matrix graphically represented true positives, true negatives,

false positives, and false negatives, assisting in the evaluation of model behaviour and

implying possible areas for development.

10

3.2 Data Visualization

Figure 3.1: Bar Graph - Class Distribution of Benign and Malign Android Applications

Figure 3.1 is a bar graph or count plot that depicts the distribution of the target classes in a

dataset where the two classes are imbalanced. The target classes in this example are tagged

"benign" and "malign," which are often associated with Android applications (APK files). The

classes are represented on the graph's x-axis, with "benign" and "malign" being the two

categories under examination. The y-axis, on the extra hand, displays the number of instances

in each class, ranges from 0 to 450. The goal of this graph is to prove how many examples or

samples exist in each class. In a setting with unbalanced classes, you would generally anticipate

the majority class (in this example, presumably "benign") to have a substantially greater count

than the minority class ("malign"). This graph may help you understand the class distribution

and analyze the level of class imbalance, which can have an impact on model training and

performance.

Figure 3.2: Bar Graph

The distribution of the Android permission "android.permission.SYSTEM ALERT

WINDOW," which is normally binary in form, is seen in Figure 3.2. (0 for absence, 1 for

11

presence). This permission is important for understanding Android application behavior,

specifically their ability to display overlay windows on the device's screen, and its distribution

is depicted in the bar graph.

Figure 3.3: Comparison of Benign and Malign Android Applications

Figure 3.3 is a line graph that shows a visual comparison of two classes in a dataset, "benign"

and "malign." The graph employs various colours to differentiate between the classes, with

"benign" representing blue and "malign" representing red. The graph's x-axis usually shows a

range of numbers, which can be counts, features, or any other important variable. It varies from

0 to 300 in this example. The major goal of this line graph is to show how the "benign" and

"malign" classes vary or connect to the variable along the x-axis clearly and comparably.

Figure 3.4: SMOTE Balancing Effect

Figure 3.4 depicts the use of the Synthetic Minority Over-sampling Technique (SMOTE) for

data balancing, with an emphasis on class distribution in a count plot. The plot's x-axis displays

the classes, with "0" being the dominant class and "1" representing the minority class. The

counts of instances or samples are displayed on the y-axis, which ranges from 0 to 400. SMOTE

12

is a strategy for dealing with class imbalance in datasets, notably in machine learning. It creates

a more balanced distribution by producing synthetic samples for the minority class.

3.3 Dataset Description

Here, “CIC-InvestndMal2019” dataset from the University of New Brunswick, involves of

gathered samples of Android applications (APK files) classified as benign or malicious (or

"malign"). The malign class exhibits four sub-categories to produce a binary classification

problem: Adware, Ransomware, Scareware, SMS Malware, and PremiumSMS. This dataset's

major focus is on app permissions, with a particular emphasis on analyzing the permissions

sought by Android applications. These permissions are crucial for understanding the apps'

behavior and any security concerns. The dataset may be used for a variety of machine learning

and security activities, such as recognizing Android applications as benign or dangerous,

extracting features from APKs, and investigating the links between permissions and app

behavior. 0 is for benign and 1 is for malign.

3.4 List of Models

List of Models given below:

1. Random Forest Classifier: A powerful collaborative realizing approach that combines

several decision trees to improve classification accuracy. It has been found to be

successful in malware identification and it is good for dealing with a sort of features.

2. Extra Tree Classifier: The Extra Tree Classifier, like Random Forest, is an ensemble

technique that grants additional variability in its base models by randomising the

decision tree construction process. This can result in advanced generalisation and

resistance for overfitting.

3. XGBoost Classifier: XGBoost is a gradient boosting system well-recognised for its

remarkable implementation and efficiency when dealing with enormous datasets. It is

often used in malware detection due to its ability to detect complex patterns and

irregularities in data.

4. Stacking Classifier: The Stacking Classifier is a meta-model that combines predictions

from many base models to get a concluding result. By combining the capabilities of

many algorithms, it can increase classification accuracy in the perspective of Android

malware detection. To construct a robust ensemble, it combines XGBoost and Random

Forest as foundation models, with Extra Trees as the meta-classifier.

5. Convolutional Neural Network (CNN): Emerging a Convolutional Neural Network

(CNN) model for Android malware detection includes input layers for app features,

13

convolutional layers for feature extraction, pooling layers for dimensionality reduction,

and completely connected layers for sorting. For training, use a labelled dataset of both

malicious and benign applications. Use strategies like as dropout to improve

generalisation. For effective parameter updates, use an Adam optimizer and an

appropriate loss function, such as cross-entropy, to optimise the model. After the model

has been trained, put it to use on Android smartphones by incorporating it with security

apps to find and stop any attacks. This will strengthen the foundation for mobile

cybersecurity.

3.5 Model Selection and Performance Evaluation: A Comparative

Approach

In the study of Smmarwar et al (2022), utilized the CIC-InvesAndMal2019 dataset, employing

decision tree, random forest, and support vector machine (SVM) models for Android malware

detection, achieving accuracies of 91.80%, 91.32%, and 82.33%, correspondingly. Building

upon this, our study employs the same dataset, exploring a diverse set of machines learning

models and one Deep learning model. Remarkably, our CNN model surpasses previous

accuracies, achieving an impressive 95.34%. We performed and achieved better accuracy than

prior work.

4 Design Specification

The Design Specification serves as a comprehensive manual detailing the essential aspects,

requirements, and specifications of the Android malware detection system project. It

outlines the software, hardware, and user interface components essential for the project's

design and implementation. Software specifications include the selection and integration

of libraries and tools for data collection, preprocessing, feature extraction, model training,

and evaluation, such as Androguard, Pandas, Scikit-learn, and Plotly. Various machine

learning methods and a deep learning, including Random Forest, Extra Tree, XGBoost,

Stacking Classifier, and CNN, along with their respective components, are detailed. The

data-gathering procedure involves copying, unzipping, and transforming the dataset into a

binary classification issue, focusing on APK file permissions and extracting 388 features.

Techniques like SMOTE oversampling and label encoding are employed to handle null

values, extraneous columns, and class imbalance. Hardware requirements emphasize

sufficient CPU capabilities for efficient dataset processing and machine learning tasks.

Additionally, GUI creation using the Tkinter toolkit is highlighted, enabling functionalities

14

such as APK file uploading, classification result display, feature information presentation,

and model performance metric visualization.

5 Implementation

The Implementation provides a comprehensive overview of the Android malware detection

system's construction and execution, following the methodology outlined in the preceding

chapter. The dataset is achieved, pre-processed, and investigated using specialized software

libraries and tools such as Androguard, pandas, scikit-learn, and Plotly. Data collection

involves downloading and unzipping the dataset from a specified URL and converting it into a

binary classification format to distinguish between benign and malicious applications. Feature

extraction involves extracting 388 features from APK files, with a focus on app permission

features. Data preparation tasks include handling null values, removing extraneous columns,

and addressing class imbalance using the Synthetic Minority Over-sampling Technique

(SMOTE). Categorical variables are encoded numerically for efficient machine learning model

functioning. Hardware infrastructure requirements are specified to ensure proper management

of dataset processing and model operations. The Tkinter library is utilized to develop a user-

friendly graphical user interface (GUI), allowing users to upload APK files for classification,

view results, access feature information, and analyze model performance metrics. This chapter

effectively demonstrates the transition from project design to real-world implementation,

facilitating the creation of an Android malware detection system incorporating powerful

machine learning algorithms and an intuitive interface.

5.1 GUI (Tkinter) Output Screens

Figure 5.1: Android Malware Detection Web Application Interface

In Figure 5.1, the Android malware detection web application interface is displayed, featuring

a user-friendly design. Notably, it includes an "Upload File" button, allowing users to submit

15

Android application packages (APK files), and a "Predict" option. This streamlined interface

enhances user interaction and facilitates the seamless prediction of malware within uploaded

files.

Figure 5.2: Malign Detection Result Display

In Figure 5.2, the web application decisively identifies the uploaded file as malicious,

displaying a prominent "malware" label beneath. Accompanying this classification is a visual

representation, featuring an illustrative malware image, effectively conveying the detected

threat.

6 Evaluation

6.1 Random Forest Classifier Model

The Random Forest Classifier is a general and often used algorithm recognized for

constructing accurate and resilient results in Raczko and Zagajewski (2017). It works by

assembling a set of decision trees, each of which distinctly analyses distinctive features

retrieved from Android applications (APK files). The Random Forest Classifier uses diversity

and mitigates overfitting by aggregating predictions from numerous decision trees, boosting

generalization to latest, unseen data. This algorithm excels in detecting subtle patterns and

abnormalities in the dataset, making it particularly useful in Android malware detection,

where distinguishing between benign and malicious apps is based on the study of different

factors such as permissions, behaviors, and characteristics.

16

Figure 6.1.1: Random Forest Classifier Architecture by Le et al (2020)

The Random Forest Classifier's accuracy score of 81.97 per cent suggests that this machine

learning model is qualified of accurately categorizing Android products as benign or malicious

with an accuracy rate of nearly 88 per cent. This suggests that the model can successfully

classify the characteristics of these applications in the situation of Android malware detection,

distinguishing between those that are safe (benign) and those that may cause security problems

(malicious).

Figure 6.1.2: Confusion Matrix

6.2 Extra Tree Classifier Model

The Extra Tree Classifier is a powerful algorithm recognized for producing reliable and

accurate results. The Extra Tree Classifier, like the Random Forest, is an ensemble approach

that constructs numerous decision trees to assess information taken from Android applications

(APK files). What distinguishes it, is the addition of randomization to the tree-creation process.

Because the decision trees it produces are purposely designed more varied, the classifier is less

prone to overfitting because of the increased unpredictability in feature selection and node

splitting as described in Chen et al (2011).

17

Figure 6.2.1: Extra Tree Classifier Architecture by Zaher et al (2023)

The Extra Tree Classifier's accuracy score of 89.53 per cent reveals that this machine-learning

model is capable of reliably categorizing Android applications as benign or malicious with a

high degree of precision, reaching an accuracy rate of nearly 89 per cent. This refers to the

model's ability to discriminate between safe (benign) and possibly hazardous (malicious)

applications in the context of Android malware detection. A greater accuracy score implies a

better ability to forecast correctly.

Figure 6.2.2: Confusion Matrix

6.3 XGBoost Classifier Model

The XGBoost (Extreme Gradient Boosting) classifier is regarded as a significant and strong

algorithm. It is particularly valued for its remarkable performance in processing complex

datasets and its ability to detect subtle patterns and abnormalities in the context of Android

applications (APK files). XGBoost employs a gradient-boosting framework, in which an

18

ensemble of decision trees is iteratively produced, with each tree meant to correct the faults of

the prior ones as mentioned in Trizoglou et al (2021). This iterative technique allows for the

progressive increase of forecast accuracy as well as the capture of detailed linkages within the

data.

Figure 6.3.1: XGBoost Classifier Architecture by Wang et al (2019)

The XGBoost Classifier's accuracy score of 92.02 percent suggests that this machine learning

model excels at properly categorizing Android applications as benign or malicious, with an

accuracy rate of nearly 92 percent. This means that the model is particularly effective at

discriminating between safe (benign) and possibly hazardous (malicious) applications in the

context of Android malware detection. A high accuracy score indicates that the XGBoost

Classifier is an excellent choice for this task, exceeding the previously described Random

Forest and Extra Tree Classifiers.

Figure 6.3.2: Confusion Matrix

6.4 Stacking Classifier Model

The Stacking Classifier, combines two prevailing machine learning models, the XGBoost

(Extreme Gradient Boosting) Classifier and the Random Forest Classifier, with an Extra Trees

Classifier portion as the meta-classifier, representing a sophisticated ensemble approach. This

stacking methodology is meant to leverage the strengths of multiple models and improve

19

classification accuracy. The individual classifiers, XGBoost and Random Forest, each excel in

obtaining complex patterns and subtleties within the Android application dataset, especially

when believing features like permissions and behaviors. By combining these two models, the

Stacking Classifier effectively harnesses their complementary capabilities.

Figure 6.4.1: Stacking Classifier Architecture by Yadav et al (2021)

The Stacking Classifier, combines the XGBoost Classifier and Random Forest Classifier as

basis models and leverages the Extra Trees Classifier as the meta-classifier, has an oddly high

accuracy score of 93.76 per cent in categorizing Android apps as benign or malignant. This

classifier is the combination of other 2-3 models but still, it does not give the highest accuracy

at all.

6.5 CNN Model

Figure 6.4.2: Confusion Matrix

Convolutional layers capture spatial patterns after input layers analyze app characteristics in a

Convolutional Neural Network (CNN) architecture for Android malware detection. Pooling

layers improve computing performance by lowering dimensionality. After that, fully linked

layers analyze high-level information for categorization, separating safe apps from dangerous

ones. ReLU activation functions can be used to add non-linearity. Use strategies such as

20

dropout to improve model generalization. Utilizing an Adam optimizer and a cross-entropy

loss function, train the CNN on a labelled dataset. After the model has been trained, install it

on Android devices to enable accurate and efficient malware detection by analyzing the

features of the apps. This is one of the best model having highest accuracy upto 95 per cent.

Figure 6.5.1: CNN Architecture

Figure 6.5.2: Confusion Matrix

Figure 6.5.3 depicts the training and validation accuracy curves for a Convolutional Neural

Network (CNN). The blue line represents the training accuracy, showcasing the model's

performance on the training data over epochs. The red line represents the validation accuracy,

indicating how well the model generalizes to unseen data. A consistent increase in both curves

suggests effective learning. Divergence or plateauing of validation accuracy may signify

overfitting.

21

Figure 6.5.3: Accuracy Graph

In Figure 6.5.4, the plot illustrates the training and validation loss curves for a Convolutional

Neural Network (CNN). The training loss, which shows how well the model fits the training

data over epochs, is represented by the blue line. The validation loss, which shows how well

the model performs on omitted data, is represented by the red line. A decreasing training loss

indicates effective learning, while a widening gap between training and validation losses

suggests potential overfitting.

Figure 6.5.4: Loss Graph

6.6 Classification Performance of Models

In the area of Android malware detection, the classification performance of the four machine

learning models, such as the Random Forest, Extra Tree, XGBoost, and Stacking Classifier, is

noteworthy and one deep learning which is CNN. These classifiers regularly display high

accuracy, recall, and F1-score values in both the "malign" (malicious) and "benign" (safe)

classes. The "malign" class has good accuracy, recall, and F1 scores, indicating that the models

can effectively detect malicious apps, with the Stacking Classifier scoring especially well.

Similarly, the "benign" class has high accuracy and recall, demonstrating that the models can

properly categorize benign applications.

22

Table 6.1: Comparison Table for "Malign" Class

Classifier Precision Recall F1-Score Support

Random Forest 92.2% 69.4% 79.2% 85%

Extra Tree 92.4% 85.9% 89% 85%

XGBoost 95.1% 90.6% 92.8% 85%

Stacking Classifier 95.2% 94.1% 94.7% 85%

CNN 96% 94% 95% 85%

Table 6.2: Comparison Table for "Benign" Class

Classifier Precision Recall F1-Score Support

Random Forest 75.9% 94.3% 84.1% 87%

Extra Tree 87.1% 93.1% 90% 87%

XGBoost 91.2% 95.4% 93.3% 87%

Stacking Classifier 94.3% 95.4% 94.9% 87%

CNN 94% 97% 95% 87%

Table 6.3: Accuracy Table of all ML and DL Models

Models Accuracy

Random Forest 81.97%

Extra Tree 89.53%

XGBoost 92.02%

Stacking Classifier 93.76%

CNN 95.34%

7 Conclusion and Future Works

Conclusion

To efficiently detect benign and malicious Android applications, this study employed a range

of machine learning classifiers, including Random Forest, Extra Tree, XGBoost, and the

23

Stacking Classifier and also deep learning model which is CNN. Extensive testing of these

models yielded convincing results. With the highest accuracy score of 95.34 per cent, CNN

stands out as the best performer, displaying its exceptional ability to correctly categorize

Android applications. The models' strong classification performance, as indicated by high

accuracy, recall, and F1 scores, proves their effectiveness in boosting security by recognizing

potential threats and harmful programs constantly.

Limitations

While the models demonstrated impressive accuracy, several limits must be acknowledged.

The dataset itself may be biased or may not reflect the entire range of Android malware, which

might influence generalization. Furthermore, the features used and the size of the dataset may

influence model performance. To improve model robustness, more improvements may be

achieved by examining a broader variety of characteristics and using larger datasets.

Future Works

The Android malware detection system will benefit from continued study and improvement in

the future. Recurrent neural networks (RNNs) may enhance feature extraction and modelling.

Furthermore, regular updates to the dataset and the incorporation of real-time threat

information can guarantee that the system stays current with new malware patterns. Efforts can

also be put toward improving the processing and classification speeds, making it ideal for real-

time mobile security applications. By resolving these issues, the Android malware detection

system can improve its accuracy and dependability in protecting users from possible security

threats.

References

1. Kim, T., Kang, B., Rho, M., Sezer, S. and Im, E.G., 2018. A multimodal deep learning method for

android malware detection using various features. IEEE Transactions on Information Forensics and

Security, 14(3), pp.773-788.

2. Meijin, L., Zhiyang, F., Junfeng, W., Luyu, C., Qi, Z., Tao, Y., Yinwei, W. and Jiaxuan, G., 2022. A

systematic overview of android malware detection. Applied Artificial Intelligence, 36(1), p.2007327.

3. Shaukat, K., Luo, S., Varadharajan, V., Hameed, I.A. and Xu, M., 2020. A survey on machine learning

techniques for cyber security in the last decade. IEEE access, 8, pp.222310-222354.

4. Butt, U.A., Mehmood, M., Shah, S.B.H., Amin, R., Shaukat, M.W., Raza, S.M., Suh, D.Y. and Piran,

M.J., 2020. A review of machine learning algorithms for cloud computing security. Electronics, 9(9),

p.1379.

24

5. Vanjire, S. and Lakshmi, M., 2021, September. Behavior-based malware detection system approach for

mobile security using machine learning. In 2021 International Conference on Artificial Intelligence and

Machine Vision (AIMV) (pp. 1-4). IEEE.

6. Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N. and Qin, J., 2018. A survey on application of machine

learning for Internet of Things. International Journal of Machine Learning and Cybernetics, 9, pp.1399-

1417.

7. Kotenko, I., Saenko, I. and Branitskiy, A., 2018. Framework for mobile Internet of Things security

monitoring based on big data processing and machine learning. IEEE Access, 6, pp.72714-72723.

8. Rana, M.S., Gudla, C. and Sung, A.H., 2018, December. Evaluating machine learning models for

Android malware detection: A comparison study. In Proceedings of the 2018 VII International

Conference on Network, Communication and Computing (pp. 17-21).

9. Agrawal, P. and Trivedi, B., 2021. Machine learning classifiers for Android malware detection. In Data

Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1 (pp. 311-322).

Springer Singapore.

10. Koli, J.D., 2018, March. RanDroid: Android malware detection using random machine learning

classifiers. In 2018 Technologies for Smart-City Energy Security and Power (ICSESP) (pp. 1-6). IEEE.

11. Jung, J., Kim, H., Shin, D., Lee, M., Lee, H., Cho, S.J. and Suh, K., 2018, September. Android malware

detection based on useful API calls and machine learning. In 2018 IEEE First International Conference

on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 175-178). IEEE.

12. Zhu, H.J., Jiang, T.H., Ma, B., You, Z.H., Shi, W.L. and Cheng, L., 2018. HEMD: a highly efficient

random forest-based malware detection framework for Android. Neural Computing and

Applications, 30, pp.3353-3361.

13. Darus, F.M., Ahmad, N.A. and Ariffin, A.F.M., 2019, November. Android malware classification using

XGBoost on data image pattern. In 2019 IEEE International Conference on Internet of Things and

Intelligence System (IoTaIS) (pp. 118-122). IEEE.

14. Chen, H., Du, R., Liu, Z. and Xu, H., 2018, December. Android malware classification using XGBoost

based on images patterns. In 2018 IEEE 4th Information Technology and Mechatronics Engineering

Conference (ITOEC) (pp. 1358-1362). IEEE.

15. Palša, J., Ádám, N., Hurtuk, J., Chovancová, E., Madoš, B., Chovanec, M. and Kocan, S., 2022. Mlmd—

a malware-detecting antivirus tool based on the xgboost machine learning algorithm. Applied

Sciences, 12(13), p.6672.

16. Ling, J., Wang, X. and Sun, Y., 2019, April. Research of android malware detection based on aco

optimized xgboost parameters approach. In 3rd International Conference on Mechatronics Engineering

and Information Technology (ICMEIT 2019) (pp. 364-371). Atlantis Press.

17. Giannakas, F., Kouliaridis, V. and Kambourakis, G., 2022. A Closer Look at Machine Learning

Effectiveness in Android Malware Detection. Information, 14(1), p.2.

18. Wang, X., Zhang, L., Zhao, K., Ding, X. and Yu, M., 2022. MFDroid: A stacking ensemble learning

framework for Android malware detection. Sensors, 22(7), p.2597.

25

19. Yadav, P., Menon, N., Ravi, V., Vishvanathan, S. and Pham, T.D., 2022. A two‐stage deep learning

framework for image‐based android malware detection and variant classification. Computational

Intelligence, 38(5), pp.1748-1771.

20. Xie, N., Qin, Z. and Di, X., 2023. GA-StackingMD: Android Malware Detection Method Based on

Genetic Algorithm Optimized Stacking. Applied Sciences, 13(4), p.2629.

21. Lee, W.Y., Saxe, J. and Harang, R., 2019. SeqDroid: Obfuscated Android malware detection using

stacked convolutional and recurrent neural networks. Deep learning applications for cyber security,

pp.197-210.

22. Shafin, S.S., Ahmed, M.M., Pranto, M.A. and Chowdhury, A., 2021, December. Detection of android

malware using tree-based ensemble stacking model. In 2021 IEEE Asia-Pacific Conference on Computer

Science and Data Engineering (CSDE) (pp. 1-6). IEEE.

23. Raczko, E. and Zagajewski, B., 2017. Comparison of support vector machine, random forest and neural

network classifiers for tree species classification on airborne hyperspectral APEX images. European

Journal of Remote Sensing, 50(1), pp.144-154.

24. Le, T.M., Vo, T.M., Pham, T.N. and Dao, S.V.T., 2020. A novel wrapper–based feature selection for

early diabetes prediction enhanced with a metaheuristic. IEEE Access, 9, pp.7869-7884.

25. Chen, X., Wang, M. and Zhang, H., 2011. The use of classification trees for bioinformatics. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), pp.55-63.

26. Zaher, M., Ghoneem, A., Abdelhamid, L. and Ezzat, A., 2023. Comparative Study Between Machine

learning algorithms and feature ranking techniques on UI-PRMD dataset.

27. Trizoglou, P., Liu, X. and Lin, Z., 2021. Fault detection by an ensemble framework of Extreme Gradient

Boosting (XGBoost) in the operation of offshore wind turbines. Renewable Energy, 179, pp.945-962.

28. Wang, Y., Pan, Z., Zheng, J., Qian, L. and Li, M., 2019. A hybrid ensemble method for pulsar candidate

classification. Astrophysics and Space Science, 364, pp.1-13.

29. Yadav, P., Menon, N., Ravi, V. and Vishvanathan, S., 2021. Lung-GANs: unsupervised representation

learning for lung disease classification using chest CT and X-ray images. IEEE Transactions on

Engineering Management.

30. Smmarwar, S.K., Gupta, G.P. and Kumar, S., 2022. A hybrid feature selection approach-based Android

malware detection framework using machine learning techniques. In Cyber Security, Privacy and

Networking: Proceedings of ICSPN 2021 (pp. 347-356). Singapore: Springer Nature Singapore.

