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Android Malware Detection using Machine 

Learning and Convolutional Neural Network 

Algorithm 

Sai Hari Parthiban 

22169148 

 
Abstract 

The fast evolution of Android mobile devices has opened new possibilities for convenience and 

usefulness, but it has also given rise to Android malware, which poses a major danger to user security 

such as data theft. To discriminate between benign and malicious apps, effective detection systems are 

essential. Machine learning and Deep learning have emerged as a potent connect in this domain, capable 

of swiftly assessing Android application packages (APK files) and properly classifying applications. In 

this study, we examine the efficacy of various machine learning models and a deep learning model, 

with the Random Forest, Extra Tree, XGBoost, Stacking Classifier and Convolutional Neural Network 

(CNN), in detecting Android malware also Scikit Framework has been used for detecting malware in 

this research. Between these models, CNN stands out as the best performer, with respect to its precision, 

memory, and F1 scores to determine their correctness and dependability. This superior result 

demonstrates its capacity to reliably detect and categorise Android apps, emphasizing its importance in 

improving mobile security. This report offers critical insights into the state of Android malware 

detection using machine learning, offering a path forward to enhance Android security and shield users 

from potential security threats in the ever-evolving landscape of mobile technology. 

Keywords: Android malware, Machine learning, CNN, APK files, Scikit Framework 

 

1 Introduction 

As of fast growth of mobile intelligent terminals, Android has developed the most widely used 

computing platform on smartphones according to Meijin et al (2022). The widespread 

utilization of Android-based mobile devices has heralded a new era of unprecedented ease and 

connectedness, revolutionizing the way people live, work, and communicate. Android 

malware, such as Trojans, viruses, ransomware, and spyware, poses a serious danger, attaining 

detection and mitigation an urgent and vital problem. With its ability to process and analyze 

enormous datasets, machine learning has emerged as a powerful tool in the field of Android 

virus detection. Machine learning and deep learning models may categorize Android 

application packages (APK files) as benign or malicious by managing features derived from 
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these packages. The accurate detection of harmful applications is critical for improving mobile 

security and protecting users from possible dangers. Numerous research methodologies have 

been presented to address the problems posed by Android malware. This research evaluates 

machine learning models and a deep learning model in the context of Android malware 

detection. It aims on classifiers such as Random Forest, Extra Tree, XGBoost, Stacking 

Classifier and CNN Model, all of which have indicated promise in discriminating between safe 

and dangerous applications. This paper sheds light on the current status of Android malware 

detection and lays the groundwork for future breakthroughs in mobile security and the privacy 

and data protection of Android users. The graph of android malware rise is shown as below1 : 

 

Figure 1 Malware rise. 

 

 

1.1 Research Questions 

The research questions for this report are as follows: 

1. Which machine learning models, including Random Forest, Extra Tree, XGBoost, and 

Stacking Classifier demonstrate the highest accuracy and reliability in distinguishing 

between benign and malicious Android applications? 

2. Which model is more efficient when compared between machine learning and the deep 

learning model used in the android malware detection? 

 

The goal of this research is to design and test machine learning models and a deep learning 

model for Android malware detection to develop security and safeguard users from potential 

risks. The main purpose of this approach is to identify malware in Android applications also 

 

 
1 https://www.mdpi.com/2073-8994/15/3/677 

http://www.mdpi.com/2073-8994/15/3/677
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the major goal is to reliably categorize Android applications as benign or malicious using a 

wide variety of classifiers such as CNN, Random Forest, Extra Tree, XGBoost, and a Stacking 

Classifier. The study intends to present an effective way of discriminating between safe and 

possibly hazardous apps by obtaining high accuracy, recall, and F1 scores, therefore combining 

to the overall security of Android users. The ultimate aim is to determine the effective model 

for Android malware detection and to provide insights into future developments and research 

paths in mobile security. 

2 Related Work 

2.1 Machine Learning in Different Security Domains 

According to Shaukat et al (2020) emphasise the importance of machine learning in improving 

cyber security measures and combating hackers' shifting techniques. While Vanjire and 

Lakshmi (2021) concentrate on mobile security and use machine learning to discover malware 

vulnerabilities, which aligns with the wider issue of advance digital security. Butt et al (2020) 

investigate cloud computing security, proposing the use of machine learning techniques to 

lower vulnerabilities and safeguard data. Cui et al (2018) highlight the revolutionary potential 

of machine learning in IoT applications, to improve security, network management, and data 

analytics. Kotenko et al (2018) presents a methodology for enhancing security monitoring in 

the perspective of the mobile Internet of Things by combining Big Data processing with 

machine learning. Regardless of their specific domains of application, these evaluations 

highlight the critical role of machine learning in providing efficient and proactive solutions to 

address security, data analytics, and intelligent decision-making, consequently contributing to 

the total goal of improving digital security and performance. 

 

Table 2.1: Comparative Analysis in Technology and Security Domains 
 

Study Domain Proposed 

Approach 

Challenges 

Addressed 

Key 

Results/Contributions 

Shaukat et 

al., 2020 

Cyber 

Security 

Machine learning 

for threat 

detection and 

response 

Evasion of 

conventional 

security systems 

Enhanced security 

measures for cyber threats 
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Vanjire and 

Lakshmi, 

2021 

Mobile 

Security 

Machine learning 

for malware 

vulnerability 

detection 

Mobile security 

and malware 

infections 

Improved security for 

Android mobile devices 

Butt et al., 

2020 

Cloud 

Computing 

Security 

Machine learning 

algorithms for 

data protection 

Security 

vulnerabilities in 

cloud computing 

Enhanced cloud security 

using ML 

Cui et al., 

2018 

Internet of 

Things (IoT) 

Machine learning 

for IoT 

applications and 

analytics 

Security, network 

management, data 

analytics 

Intelligent IoT applications 

and improved security 

Kotenko et 

al., 2018 

Big Data 

Processing 

and Security 

Big Data 

processing and 

machine learning 

for security 

Security 

monitoring in 

mobile IoT 

Improved security 

monitoring and Big Data 

analytics 

 

2.2 Models for Android Malware Detection 

2.2.1 Random Forest Classifier Model 

Rana et al (2018) investigated the use of machine learning classifiers for Android malware 

detection, achieving an accuracy rate of more than 94 percent. Similarly, Agrawal and Trivedi 

(2021) recognised the increasing sophistication of Android malware and executed machine 

learning classifiers to develop detection accuracy, with Random Forest establishing to be the 

most accurate classifier. Koli, (2018) proposed "RanDroid," a machine learning-based malware 

detection solution with a remarkable accuracy of 97.7 percent, stressing the insertion of various 

characteristics from Android apps into their model. Furthermore, Jung et al (2018) presented a 

fresh strategy by concentrating on the selection of relevant Android APIs, with their Random 

Forest classifier achieving an astounding accuracy of 99.98 percent when employing a refined 

set of APIs. Finally, Zhu et al (2018) established the exponential rise in Android malware and 

presented an ensemble machine learning system for Android malware detection, reaching an 

accuracy rate of 89.91 percent by applying a random forest classifier. These studies, examined 

together, highlight the necessity of machine learning in Android malware detection, as well as 

the usefulness of other factors, such as API usage and permissions, in obtaining high detection 

accuracy. 
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2.2.2 XGBoost Classifier Model 

Giannakas et al (2022) conducted a careful investigation of machine learning models, 

improving and examining 27 machine learning algorithms alongside a Deep Neural Network 

(DNN) to determine the best accurate model. Chen et al (2018) adopted a additional visual 

method, transforming Android malware's dex files into photos and classifying them using the 

XGBoost algorithm. They obtained an astounding 99.14 percent accuracy. Darus et al (2019) 

concentrated on producing grayscale pictures from Android APK files using the GIST 

descriptor and XGBoost for classification, demonstrating the higher performance of their 

technique. Palsa et al (2022) used XGBoost and very randomised trees algorithms to classify 

Android malware with great accuracy and sensitivity. Finally, Ling et al (2019) used Ant 

Colony Optimization (ACO) to tune XGBoost settings, improving detection accuracy while 

reducing false positives. 

2.2.3 Stacking Classifier Model 

Multiple studies have identified the necessity for strong detection systems that not only classify 

these threats properly but also categorize the precise type of attack for effective prevention. To 

address this urgent issue, researchers have offered several novel techniques. Wang et al (2022) 

developed the MFDroid framework to detect Android malware via stacking ensemble learning. 

They learned an outstanding F1-score of 96.0 per cent by using seven characteristic selection 

methods and logistic regression as a meta-classifier. Xie et al (2023) observed the issue of 

dynamic obfuscation techniques used by Android malware. They presented the GA- 

StackingMD system, which used the Genetic Algorithm and Stacking to advance detection 

accuracy and attained outstanding results on two datasets. Furthermore, Shafin et al (2021) 

introduced a two-layer Machine Learning detection model based on Ensemble Learning and 

Stacked Generalization, reaching 99.49 percent accuracy in detecting Android smartphone 

attack types, outperforming previous research on the same dataset. 

2.2.4 Convolutional Neural Network Model 

Yadav et al (2022) employed stacked recurrent neural networks (RNNs) and convolutional 

neural networks (CNNs) to recognize and classify Android malware using image-based 

versions. Lee et al (2019) concentrated on the covering of Android applications as well. Their 

method used stacked RNNs and CNNs to discover correlations between obscured text patterns 

in package names and certificate owner names, developing the obfuscation resistance of their 

feature extraction system. 
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Study Domain Proposed 

Approach 

Challenges 

Addressed 

Key Results/Contributions 

Rana et al., 

2018 

Android 

Malware 

Detection 

Machine learning 

classifiers for 

Android malware 

detection 

Addressing 

Android malware 

threats, detection 

accuracy 

Achieved an accuracy rate 

exceeding 94%, 

demonstrating  the 

effectiveness of machine 

learning classifiers. Random 

Forest classifier used. 

Agrawal 

and 

Trivedi, 

2021 

Android 

Malware 

Detection 

Machine learning- 

based malware 

detection 

methodology 

Overcoming 

malware 

detection 

limitations, 
accuracy 

Identified Random Forest as 

the most accurate classifier. 

Koli, 2018 Android 

Malware 

Detection 

RanDroid: 

Machine learning- 

based malware 

detection system 

Comprehensive 

feature extraction, 

high classification 

accuracy 

Achieved an accuracy of 

97.7%, a significant 

contribution to Android 

malware detection. 

Jung et al., 

2018 

Android 

Malware 

Detection 

Machine learning 

methodology 

focusing  on 

Android APIs 

Improved API- 

based detection, 

high accuracy 

Achieved an accuracy of 

99.98%, emphasizing the 

relevance of specific APIs. 

Random Forest classifier 

used. 

Zhu et al., 

2018 

Android 

Malware 

Detection 

Ensemble machine 

learning system for 

Android malware 

detection 

Android malware 

proliferation, 

cost-effective 

alternatives 

Achieved an accuracy of 

89.91%, providing a cost- 

effective approach for 

detection. Random Forest 

classifier used. 

Giannakas 

et al. 

(2022) 

Android 

Malware 

Detection 

Experimented with 

27  machine 

learning 

algorithms and a 

DNN, optimized 

with Optuna. 

Android malware 

detection, model 

selection. 

Identified DNN with four 

layers as the best model, 

achieving 86% prediction 

accuracy. Feature analysis 

using SHAP. 

Chen et al. 

(2018) 

Android 

Malware 

Detection 

Converted Android 

malware's dex files 

into images and 

used XGBoost for 

classification. 

Efficient Android 

malware 

detection. 

Achieved a remarkable 

99.14% accuracy, 

demonstrating  the 

effectiveness of their visual 

approach. 
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Darus et al. 

(2019) 

Android 

Malware 

Detection 

Utilized grayscale 

images from 

Android APK files, 

GIST descriptor, 

and XGBoost for 

classification. 

Enhanced 

Android malware 

classification. 

Demonstrated the efficiency 

of their approach, especially 

when compared to other 

algorithms. 

Palsa et al. 

(2022) 

Android 

Malware 

Detection 

Employed 

XGBoost   and 

extremely 

randomized trees 

for malware 

detection. 

Improved 

malware 

detection 

efficiency. 

Achieved high accuracy and 

sensitivity, with successful 

integration into the MLMD 

program for automation. 

Ling et al. 

(2019) 

Android 

Malware 

Detection 

Introduced Ant 

Colony 

Optimization 

(ACO) to optimize 

XGBoost 

parameters  for 
malware detection. 

Parameter 

optimization in 

Android malware 

detection. 

Improved detection accuracy 

while reducing false 

positives, enhancing 

cybersecurity measures for 

Android devices. 

Wang et al. 

(2022) 

Android 

Malware 

Detection 

Stacking Ensemble 

Learning with 

Feature Selection 

Detection 

accuracy, 

traditional feature 
limits 

F1-score of 96.0% and 

improved detection 

Yadav et 

al. (2022) 

Android 

Malware 

Detection 

Deep  Learning 

with RNNs and 

CNNs for Image 

Analysis 

Handling 

obfuscation, 

improving 

accuracy 

Outperformed existing 

models and classifiers 

Xie et al. 

(2023) 

Android 

Malware 

Detection 

GA-StackingMD 

with Genetic 

Algorithm and 
Stacking 

Dynamic 

obfuscation, 

hyperparameter 
optimization 

Strong performance on two 

datasets 

Lee et al. 

(2019) 

Android 

Malware 

Detection 

Stacked RNNs and 

CNNs for String 

Pattern 
Correlations 

Addressing 

obfuscation 

challenges 

Robust feature extraction and 

obfuscation resilience 

Shafin et 

al. (2021) 

Android 

Malware 

Detection 

Ensemble 

Learning with 

Stacked 
Generalization 

Accurate 

prediction and 

classification 

Exceptional accuracy in 

classifying attack types 

 

2.3 Scikit Framework 

The Scikit-learn framework was used in this finding to present a solid foundation for assessing 

and classifying Android applications, distinguishing between benign and malicious apps. 

Scikit-learn includes a comprehensive set of machine learning approaches for evaluating and 
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evaluating models such as Random Forest, Extra Tree, XGBoost, plus Stacking Classifier. The 

flexibility and convenience of the use of Scikit-learn permitted the trial and judgment of many 

models, which substantially contributed to understanding the efficiency of machine learning in 

Android malware detection. Furthermore, its user-friendly interface advanced in the discovery 

of dataset constraints, underlining the need for additional diverse data to improve model 

resilience. As the research delves into future avenues of investigation, such as deep learning 

techniques, feature optimization, and real-time threat intelligence integration, Scikit-versatility 

lays the groundwork for further advancements in enhancing Android security and safeguarding 

users in the volatile world of mobile technology. 

3 Research Methodology 

3.1 Methodology 

The workflow of the proposed methodology involves the following stages: 

1. Imported Libraries: Shutil for file operations, os and zip file for file management, 

pandas for data manipulation, seaborn and numpy for data visualisation and numerical 

processing, scikit-learn for machine learning, pickle for object serialisation, and Plotly 

for interactive data visualisation were all imported. In addition, the stat module was 

loaded for file attribute manipulation. These collections collaborate to make data 

collection, preparation, analysis, and visualisation easier, as well as machine learning 

model development and report graphical user interface (GUI) production possible. 

2. Data Collection: The information was gathered by doubling the dataset and then 

unzipping the resulting files. The dataset was then translated into a binary classification 

format, with 0 representing benign target class values and 1 demonstrating malicious 

target class values. This was a critical stage in practicing the data for analysis and 

machine learning. It supported the study to recognize between benign and malicious 

data, setting the framework for subsequent feature extraction as well as model training. 

3. Feature Extraction: For feature extraction, the Androguard library was utilised, with 

a aim on obtaining application permission features from APK files. Androguard class 

'androguard.core.bytecodes.apk.APK' was used to explain the APKs. The app's 

permissions were of particular relevance, and they were collected using the Androguard 

library's 'get permissions ()' method. These extracted permission attributes were critical 

in describing the behaviour of Android apps and operated as the foundation for later 

categorization. A total of 388 features were retrieved, which were then processed and 
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translated into a numerical representation for use in machine learning algorithms for 

classification tasks. 

4. Data Preprocessing: The data preparation process includes many critical phases that 

were employed throughout the dataset generation. Initially, images of each sign were 

captured, and background subtraction techniques were used to remove the signs from 

their backgrounds, ensuring that only critical information was kept. For preprocessing 

the data this study has used androguard for first generating features using this and then 

converting the categorical value to the numerical values. 

5. Data Splitting (Training and Testing the Model): The dataset was divided into two 

subsets during the Data Splitting phase: a training set and a testing set, with an 80 per 

cent to 20% ratio. The training set was used to train the machine learning models to 

learn patterns from data, while the investigating set was used to evaluate the models' 

performance and generalisation capabilities. We guaranteed that the models were not 

overfitting to the training data and could make reasonable predictions on unknown data 

by separating the data in this way. 

6. Model Training: Numerous machine learning systems were used during the Model 

Training phase, with Random Forest Classifier, Extra Tree Classifier, XGBoost 

Classifier, and a Stacking Classifier built of an ensemble of XGBoost and Random 

Forest, with an Extra Trees Classifier acting as the meta-classifier. To realize patterns 

from the retrieved characteristics and app permissions, several algorithms were applied 

to the training dataset. The models improved their ability to discriminate between 

benign and malicious Android applications through recurrent training. This training 

step paved the way for the future categorization of unknown applications in the testing 

phase, allowing the models to make correct predictions and accurately identify possible 

security issues. 

7. Model Evaluation: The Model Evaluation step examined the performance and efficacy 

of the taught machine learning models. The accuracy score offered an overall 

assessment of how successfully the models classified Android apps. The classification 

report included specific metrics for each class (benign and malicious) such as accuracy, 

recall, F1-score, and support, providing insights into the models' performance on actual 

classes. The confusion matrix graphically represented true positives, true negatives, 

false positives, and false negatives, assisting in the evaluation of model behaviour and 

implying possible areas for development. 
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3.2 Data Visualization 

 

 
Figure 3.1: Bar Graph - Class Distribution of Benign and Malign Android Applications 

Figure 3.1 is a bar graph or count plot that depicts the distribution of the target classes in a 

dataset where the two classes are imbalanced. The target classes in this example are tagged 

"benign" and "malign," which are often associated with Android applications (APK files). The 

classes are represented on the graph's x-axis, with "benign" and "malign" being the two 

categories under examination. The y-axis, on the extra hand, displays the number of instances 

in each class, ranges from 0 to 450. The goal of this graph is to prove how many examples or 

samples exist in each class. In a setting with unbalanced classes, you would generally anticipate 

the majority class (in this example, presumably "benign") to have a substantially greater count 

than the minority class ("malign"). This graph may help you understand the class distribution 

and analyze the level of class imbalance, which can have an impact on model training and 

performance. 

 

 
Figure 3.2: Bar Graph 

The distribution of the Android permission "android.permission.SYSTEM ALERT 

WINDOW," which is normally binary in form, is seen in Figure 3.2. (0 for absence, 1 for 
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presence). This permission is important for understanding Android application behavior, 

specifically their ability to display overlay windows on the device's screen, and its distribution 

is depicted in the bar graph. 

 

 
Figure 3.3: Comparison of Benign and Malign Android Applications 

Figure 3.3 is a line graph that shows a visual comparison of two classes in a dataset, "benign" 

and "malign." The graph employs various colours to differentiate between the classes, with 

"benign" representing blue and "malign" representing red. The graph's x-axis usually shows a 

range of numbers, which can be counts, features, or any other important variable. It varies from 

0 to 300 in this example. The major goal of this line graph is to show how the "benign" and 

"malign" classes vary or connect to the variable along the x-axis clearly and comparably. 

 

 
Figure 3.4: SMOTE Balancing Effect 

Figure 3.4 depicts the use of the Synthetic Minority Over-sampling Technique (SMOTE) for 

data balancing, with an emphasis on class distribution in a count plot. The plot's x-axis displays 

the classes, with "0" being the dominant class and "1" representing the minority class. The 

counts of instances or samples are displayed on the y-axis, which ranges from 0 to 400. SMOTE 
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is a strategy for dealing with class imbalance in datasets, notably in machine learning. It creates 

a more balanced distribution by producing synthetic samples for the minority class. 

3.3 Dataset Description 

Here, “CIC-InvestndMal2019” dataset from the University of New Brunswick, involves of 

gathered samples of Android applications (APK files) classified as benign or malicious (or 

"malign"). The malign class exhibits four sub-categories to produce a binary classification 

problem: Adware, Ransomware, Scareware, SMS Malware, and PremiumSMS. This dataset's 

major focus is on app permissions, with a particular emphasis on analyzing the permissions 

sought by Android applications. These permissions are crucial for understanding the apps' 

behavior and any security concerns. The dataset may be used for a variety of machine learning 

and security activities, such as recognizing Android applications as benign or dangerous, 

extracting features from APKs, and investigating the links between permissions and app 

behavior. 0 is for benign and 1 is for malign. 

3.4 List of Models 

List of Models given below: 

1. Random Forest Classifier: A powerful collaborative realizing approach that combines 

several decision trees to improve classification accuracy. It has been found to be 

successful in malware identification and it is good for dealing with a sort of features. 

2. Extra Tree Classifier: The Extra Tree Classifier, like Random Forest, is an ensemble 

technique that grants additional variability in its base models by randomising the 

decision tree construction process. This can result in advanced generalisation and 

resistance for overfitting. 

3. XGBoost Classifier: XGBoost is a gradient boosting system well-recognised for its 

remarkable implementation and efficiency when dealing with enormous datasets. It is 

often used in malware detection due to its ability to detect complex patterns and 

irregularities in data. 

4. Stacking Classifier: The Stacking Classifier is a meta-model that combines predictions 

from many base models to get a concluding result. By combining the capabilities of 

many algorithms, it can increase classification accuracy in the perspective of Android 

malware detection. To construct a robust ensemble, it combines XGBoost and Random 

Forest as foundation models, with Extra Trees as the meta-classifier. 

5. Convolutional Neural Network (CNN): Emerging a Convolutional Neural Network 

(CNN) model for Android malware detection includes input layers for app features, 
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convolutional layers for feature extraction, pooling layers for dimensionality reduction, 

and completely connected layers for sorting. For training, use a labelled dataset of both 

malicious and benign applications. Use strategies like as dropout to improve 

generalisation. For effective parameter updates, use an Adam optimizer and an 

appropriate loss function, such as cross-entropy, to optimise the model. After the model 

has been trained, put it to use on Android smartphones by incorporating it with security 

apps to find and stop any attacks. This will strengthen the foundation for mobile 

cybersecurity. 

3.5 Model Selection and Performance Evaluation: A Comparative 

Approach 

In the study of Smmarwar et al (2022), utilized the CIC-InvesAndMal2019 dataset, employing 

decision tree, random forest, and support vector machine (SVM) models for Android malware 

detection, achieving accuracies of 91.80%, 91.32%, and 82.33%, correspondingly. Building 

upon this, our study employs the same dataset, exploring a diverse set of machines learning 

models and one Deep learning model. Remarkably, our CNN model surpasses previous 

accuracies, achieving an impressive 95.34%. We performed and achieved better accuracy than 

prior work. 

4 Design Specification 

The Design Specification serves as a comprehensive manual detailing the essential aspects, 

requirements, and specifications of the Android malware detection system project. It 

outlines the software, hardware, and user interface components essential for the project's 

design and implementation. Software specifications include the selection and integration 

of libraries and tools for data collection, preprocessing, feature extraction, model training, 

and evaluation, such as Androguard, Pandas, Scikit-learn, and Plotly. Various machine 

learning methods and a deep learning, including Random Forest, Extra Tree, XGBoost, 

Stacking Classifier, and CNN, along with their respective components, are detailed. The 

data-gathering procedure involves copying, unzipping, and transforming the dataset into a 

binary classification issue, focusing on APK file permissions and extracting 388 features. 

Techniques like SMOTE oversampling and label encoding are employed to handle null 

values, extraneous columns, and class imbalance. Hardware requirements emphasize 

sufficient CPU capabilities for efficient dataset processing and machine learning tasks. 

Additionally, GUI creation using the Tkinter toolkit is highlighted, enabling functionalities 
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such as APK file uploading, classification result display, feature information presentation, 

and model performance metric visualization. 

5 Implementation 

The Implementation provides a comprehensive overview of the Android malware detection 

system's construction and execution, following the methodology outlined in the preceding 

chapter. The dataset is achieved, pre-processed, and investigated using specialized software 

libraries and tools such as Androguard, pandas, scikit-learn, and Plotly. Data collection 

involves downloading and unzipping the dataset from a specified URL and converting it into a 

binary classification format to distinguish between benign and malicious applications. Feature 

extraction involves extracting 388 features from APK files, with a focus on app permission 

features. Data preparation tasks include handling null values, removing extraneous columns, 

and addressing class imbalance using the Synthetic Minority Over-sampling Technique 

(SMOTE). Categorical variables are encoded numerically for efficient machine learning model 

functioning. Hardware infrastructure requirements are specified to ensure proper management 

of dataset processing and model operations. The Tkinter library is utilized to develop a user- 

friendly graphical user interface (GUI), allowing users to upload APK files for classification, 

view results, access feature information, and analyze model performance metrics. This chapter 

effectively demonstrates the transition from project design to real-world implementation, 

facilitating the creation of an Android malware detection system incorporating powerful 

machine learning algorithms and an intuitive interface. 

5.1 GUI (Tkinter) Output Screens 
 

Figure 5.1: Android Malware Detection Web Application Interface 

In Figure 5.1, the Android malware detection web application interface is displayed, featuring 

a user-friendly design. Notably, it includes an "Upload File" button, allowing users to submit 
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Android application packages (APK files), and a "Predict" option. This streamlined interface 

enhances user interaction and facilitates the seamless prediction of malware within uploaded 

files. 

 

Figure 5.2: Malign Detection Result Display 

In Figure 5.2, the web application decisively identifies the uploaded file as malicious, 

displaying a prominent "malware" label beneath. Accompanying this classification is a visual 

representation, featuring an illustrative malware image, effectively conveying the detected 

threat. 

6 Evaluation 

6.1 Random Forest Classifier Model 

The Random Forest Classifier is a general and often used algorithm recognized for 

constructing accurate and resilient results in Raczko and Zagajewski (2017). It works by 

assembling a set of decision trees, each of which distinctly analyses distinctive features 

retrieved from Android applications (APK files). The Random Forest Classifier uses diversity 

and mitigates overfitting by aggregating predictions from numerous decision trees, boosting 

generalization to latest, unseen data. This algorithm excels in detecting subtle patterns and 

abnormalities in the dataset, making it particularly useful in Android malware detection, 

where distinguishing between benign and malicious apps is based on the study of different 

factors such as permissions, behaviors, and characteristics. 
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Figure 6.1.1: Random Forest Classifier Architecture by Le et al (2020) 

The Random Forest Classifier's accuracy score of 81.97 per cent suggests that this machine 

learning model is qualified of accurately categorizing Android products as benign or malicious 

with an accuracy rate of nearly 88 per cent. This suggests that the model can successfully 

classify the characteristics of these applications in the situation of Android malware detection, 

distinguishing between those that are safe (benign) and those that may cause security problems 

(malicious). 

 
Figure 6.1.2: Confusion Matrix 

6.2 Extra Tree Classifier Model 

The Extra Tree Classifier is a powerful algorithm recognized for producing reliable and 

accurate results. The Extra Tree Classifier, like the Random Forest, is an ensemble approach 

that constructs numerous decision trees to assess information taken from Android applications 

(APK files). What distinguishes it, is the addition of randomization to the tree-creation process. 

Because the decision trees it produces are purposely designed more varied, the classifier is less 

prone to overfitting because of the increased unpredictability in feature selection and node 

splitting as described in Chen et al (2011). 



17  

 

Figure 6.2.1: Extra Tree Classifier Architecture by Zaher et al (2023) 

The Extra Tree Classifier's accuracy score of 89.53 per cent reveals that this machine-learning 

model is capable of reliably categorizing Android applications as benign or malicious with a 

high degree of precision, reaching an accuracy rate of nearly 89 per cent. This refers to the 

model's ability to discriminate between safe (benign) and possibly hazardous (malicious) 

applications in the context of Android malware detection. A greater accuracy score implies a 

better ability to forecast correctly. 
 

 
Figure 6.2.2: Confusion Matrix 

 

 

6.3 XGBoost Classifier Model 

The XGBoost (Extreme Gradient Boosting) classifier is regarded as a significant and strong 

algorithm. It is particularly valued for its remarkable performance in processing complex 

datasets and its ability to detect subtle patterns and abnormalities in the context of Android 

applications (APK files). XGBoost employs a gradient-boosting framework, in which an 
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ensemble of decision trees is iteratively produced, with each tree meant to correct the faults of 

the prior ones as mentioned in Trizoglou et al (2021). This iterative technique allows for the 

progressive increase of forecast accuracy as well as the capture of detailed linkages within the 

data. 

Figure 6.3.1: XGBoost Classifier Architecture by Wang et al (2019) 

The XGBoost Classifier's accuracy score of 92.02 percent suggests that this machine learning 

model excels at properly categorizing Android applications as benign or malicious, with an 

accuracy rate of nearly 92 percent. This means that the model is particularly effective at 

discriminating between safe (benign) and possibly hazardous (malicious) applications in the 

context of Android malware detection. A high accuracy score indicates that the XGBoost 

Classifier is an excellent choice for this task, exceeding the previously described Random 

Forest and Extra Tree Classifiers. 
 

 
Figure 6.3.2: Confusion Matrix 

6.4 Stacking Classifier Model 

The Stacking Classifier, combines two prevailing machine learning models, the XGBoost 

(Extreme Gradient Boosting) Classifier and the Random Forest Classifier, with an Extra Trees 

Classifier portion as the meta-classifier, representing a sophisticated ensemble approach. This 

stacking methodology is meant to leverage the strengths of multiple models and improve 
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classification accuracy. The individual classifiers, XGBoost and Random Forest, each excel in 

obtaining complex patterns and subtleties within the Android application dataset, especially 

when believing features like permissions and behaviors. By combining these two models, the 

Stacking Classifier effectively harnesses their complementary capabilities. 

 

 

 
Figure 6.4.1: Stacking Classifier Architecture by Yadav et al (2021) 

The Stacking Classifier, combines the XGBoost Classifier and Random Forest Classifier as 

basis models and leverages the Extra Trees Classifier as the meta-classifier, has an oddly high 

accuracy score of 93.76 per cent in categorizing Android apps as benign or malignant. This 

classifier is the combination of other 2-3 models but still, it does not give the highest accuracy 

at all. 

 

 

 

6.5 CNN Model 

Figure 6.4.2: Confusion Matrix 

Convolutional layers capture spatial patterns after input layers analyze app characteristics in a 

Convolutional Neural Network (CNN) architecture for Android malware detection. Pooling 

layers improve computing performance by lowering dimensionality. After that, fully linked 

layers analyze high-level information for categorization, separating safe apps from dangerous 

ones. ReLU activation functions can be used to add non-linearity. Use strategies such as 



20  

dropout to improve model generalization. Utilizing an Adam optimizer and a cross-entropy 

loss function, train the CNN on a labelled dataset. After the model has been trained, install it 

on Android devices to enable accurate and efficient malware detection by analyzing the 

features of the apps. This is one of the best model having highest accuracy upto 95 per cent. 

 

 

Figure 6.5.1: CNN Architecture 
 

 

 

 

 

Figure 6.5.2: Confusion Matrix 

Figure 6.5.3 depicts the training and validation accuracy curves for a Convolutional Neural 

Network (CNN). The blue line represents the training accuracy, showcasing the model's 

performance on the training data over epochs. The red line represents the validation accuracy, 

indicating how well the model generalizes to unseen data. A consistent increase in both curves 

suggests effective learning. Divergence or plateauing of validation accuracy may signify 

overfitting. 
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Figure 6.5.3: Accuracy Graph 

In Figure 6.5.4, the plot illustrates the training and validation loss curves for a Convolutional 

Neural Network (CNN). The training loss, which shows how well the model fits the training 

data over epochs, is represented by the blue line. The validation loss, which shows how well 

the model performs on omitted data, is represented by the red line. A decreasing training loss 

indicates effective learning, while a widening gap between training and validation losses 

suggests potential overfitting. 

 
Figure 6.5.4: Loss Graph 

6.6 Classification Performance of Models 

In the area of Android malware detection, the classification performance of the four machine 

learning models, such as the Random Forest, Extra Tree, XGBoost, and Stacking Classifier, is 

noteworthy and one deep learning which is CNN. These classifiers regularly display high 

accuracy, recall, and F1-score values in both the "malign" (malicious) and "benign" (safe) 

classes. The "malign" class has good accuracy, recall, and F1 scores, indicating that the models 

can effectively detect malicious apps, with the Stacking Classifier scoring especially well. 

Similarly, the "benign" class has high accuracy and recall, demonstrating that the models can 

properly categorize benign applications. 
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Table 6.1: Comparison Table for "Malign" Class 
 

Classifier Precision Recall F1-Score Support 

Random Forest 92.2% 69.4% 79.2% 85% 

Extra Tree 92.4% 85.9% 89% 85% 

XGBoost 95.1% 90.6% 92.8% 85% 

Stacking Classifier 95.2% 94.1% 94.7% 85% 

CNN 96% 94% 95% 85% 

 

Table 6.2: Comparison Table for "Benign" Class 
 

Classifier Precision Recall F1-Score Support 

Random Forest 75.9% 94.3% 84.1% 87% 

Extra Tree 87.1% 93.1% 90% 87% 

XGBoost 91.2% 95.4% 93.3% 87% 

Stacking Classifier 94.3% 95.4% 94.9% 87% 

CNN 94% 97% 95% 87% 

 

Table 6.3: Accuracy Table of all ML and DL Models 
 

Models Accuracy 

Random Forest 81.97% 

Extra Tree 89.53% 

XGBoost 92.02% 

Stacking Classifier 93.76% 

CNN 95.34% 

 

 

7 Conclusion and Future Works 

Conclusion 

To efficiently detect benign and malicious Android applications, this study employed a range 

of machine learning classifiers, including Random Forest, Extra Tree, XGBoost, and the 
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Stacking Classifier and also deep learning model which is CNN. Extensive testing of these 

models yielded convincing results. With the highest accuracy score of 95.34 per cent, CNN 

stands out as the best performer, displaying its exceptional ability to correctly categorize 

Android applications. The models' strong classification performance, as indicated by high 

accuracy, recall, and F1 scores, proves their effectiveness in boosting security by recognizing 

potential threats and harmful programs constantly. 

Limitations 

While the models demonstrated impressive accuracy, several limits must be acknowledged. 

The dataset itself may be biased or may not reflect the entire range of Android malware, which 

might influence generalization. Furthermore, the features used and the size of the dataset may 

influence model performance. To improve model robustness, more improvements may be 

achieved by examining a broader variety of characteristics and using larger datasets. 

Future Works 

The Android malware detection system will benefit from continued study and improvement in 

the future. Recurrent neural networks (RNNs) may enhance feature extraction and modelling. 

Furthermore, regular updates to the dataset and the incorporation of real-time threat 

information can guarantee that the system stays current with new malware patterns. Efforts can 

also be put toward improving the processing and classification speeds, making it ideal for real- 

time mobile security applications. By resolving these issues, the Android malware detection 

system can improve its accuracy and dependability in protecting users from possible security 

threats. 
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