

Evaluating Smart Contract Vulnerabilities through

the Comparative Analysis of CNN, EfficientNet B2,

and Xception Algorithms

MSc Research Project

Mohammed Shahimshah

Student ID: x21227012

School of Computing

National College of Ireland

Supervisor: Diego Lugones

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Mohammed Shahimshah

Student ID: x21227012

Programme:

Msc in Cybersecurity

Year:

2023 - 2024

Module:

Msc Research Project

Supervisor:

Diego Lugones

Submission
Due Date:

31/01/2024

Project
Title:

Evaluating Smart Contract Vulnerabilities through the Comparative Analysis of

CNN, EfficientNet B2, and Xception Algorithms

Word Count: …………1026…………… Page Count………………8…………….……..

I hereby certify that the information contained in this (my submission) is information pertaining

to research I conducted for this project. All information other than my own contribution will be

fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to

use the Referencing Standard specified in the report template. To use other author's written or

electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Mohammed Shahimshah

Date: 31 January, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including
multiple copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project is lost
or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.
Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Configuration Manual

Introduction

This handbook outlines the setup for the Vulnerability Detection Web App using Deep Learning, aimed at improving

data privacy and security. It guides you through the essential software and hardware requirements, offering detailed

instructions for a successful project setup. This resource is key for efficiently navigating the project’s development

stages and achieving our goal.

Hardware Requirements

Operating System: Windows 10/11

RAM: 20.0 GB

Processor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz

Storage: 256GB SSD

System Type: 64-bit operating system, x64-based processor

Software Requirements
This section details the software prerequisites for the development of our Vulnerability Detection Web Application

using Deep Learning. The following list includes specific versions of libraries and frameworks essential for the

project:

● py-solc-x (2.0.2): This is a vital Python library for compiling Solidity contracts, crucial for blockchain-related

functionalities in our project.

● wheel: A key package for building, distributing, and installing Python distributions - essential for package

management.

● pandas (2.1.4): Used for data manipulation and analysis, pandas are critical for handling large datasets

efficiently.

● numpy (1.25.2): A fundamental package for scientific computing, numpy supports large, multi-dimensional

arrays and matrices.

● pillow (10.2.0): This Python Imaging Library adds image processing capabilities, essential for handling visual

data.

● hexbytes (1.0.0): This library is used for encoding and decoding hexadecimal strings, an essential part of data

handling.

● pyevmasm (0.2.3): A Python module for assembling and disassembling EVM code, supporting blockchain

development.

● efficientnet (1.1.1): This library is used for implementing EfficientNet models, enhancing our deep learning

capabilities.

● keras (2.15.0) & tensorflow (2.15.0): These are core deep learning libraries, with Keras providing a high-level

neural networks API and TensorFlow serving as the backend.

● Flask (3.0.0): Flask is employed to develop API services for the project, handling user requests and hosting the

application locally.

● opencv-contrib-python (4.9.0.80) & opencv-python (4.9.0.80): These libraries provide OpenCV's

functionality, which is crucial for image processing tasks.

● scikit-learn (1.3.2): An essential tool for machine learning for data mining and analysis.

Installing Dependencies
Installing the Python dependencies using the following command

pip install -r requirements.txt

Figure 1: requirements.txt

The requirements.txt file is located in the path Flask/requirements.txt.

File Structure Overview
The artifacts for the Vulnerability Detection Web Application are organized in a structured manner for ease of

navigation and use. Below is an overview of the key components:

Figure 2 : Project Directory

● Flask/Models/EfficientnetB2.h5: The trained deep learning model, crucial for the application's predictive

analysis.

● Flask/templates: Contains HTML templates for the web application's interface.

● Flask/uploadedfiles: Stores .sol files uploaded via the web application, serving as a data repository.

● Flask/app.py: The main file of the Flask Web Application, integrating all modules and functionalities.

● Flask/label_transform.pkl: A pickle file for label transformations, essential for data processing in the

application.

● Flask/requirements.txt: Lists all Python dependencies required for the project, ensuring a consistent setup.

● Flask/bytecode_extract.py: Extracts bytecode from .sol files and saves it in final_dataset.csv, a critical step

for dataset preparation.

● Flask/bytecode_to_image.py: Converts bytecode from final_dataset.csv into images, aiding in visual data

analysis.

● Flask/generated_image_data: Stores image datasets generated by bytecode_to_image.py, used for model

training and analysis.

● Flask/final_3model.ipynb: A Jupyter notebook for Deep Learning model analysis, containing code and

insights for model evaluation.

Building the Dataset

https://github.com/Messi-Q/Smart-Contract-Dataset

Dataset Description

This dataset contains over 12K Ethereum smart contracts (where inherited contracts are also included) and concerns

eight types of vulnerabilities.

Download this resource at Dataset.

ReadMe File of the Dataset

Ethereum smart contract dataset

We obtain our dataset by crawling Etherscan verified contracts, which are real-world smart contracts deployed on

Ethereum Mainnet.

Our final dataset contains a total 12,515 smart contacts that have source code and concentrates on eight types of

vulnerabilities, namely:

1. Timestamp dependency

2. Block number dependency

3. Dangerous delegatecall

4. Unchecked external call

5. Reentrancy

6. Integer overflow/underflow

7. Dangerous Ether strict equality

The ground truth labels (in the file `ground truth label`) of smart contracts in the dataset are confirmed based on

defined vulnerability-specific patterns and further manual inspection.

Template for the web application
https://templatemo.com/tm-578-first-portfolio

Running the program
Open the terminal in the project folder.

https://github.com/Messi-Q/Smart-Contract-Dataset
https://templatemo.com/tm-578-first-portfolio

Run the flask app ‘python3 app.py’. Note that the working directory should be ‘smart contract/Flask’.

Figure 3: Execution of python file app.py

Note the Local Server IP on which the app is running. Here it is ‘127.0.0.1/5000’.

Figure 4: Home page for the smart contract vulnerability detection page

