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Forecasting the Future: Enhancing Cloud Efficiency
through Dynamic CPU Utilization Allocation

Prathamesh Warekar
x21230196

Abstract

CPU utilization in the cloud describes the percentage of time that a central
processing unit (CPU) is actively executing instructions, reflecting the workload
demand placed on the CPU. The abstract of this report is the exploration for fore-
casting CPU utilization in the cloud for dynamic allocation in the cloud. Various
traditional methods have been used for forecasting CPU utilization which lack in
their RMSE, MSE and failed. However, this study is using few time-series and
forecasting algorithms to develop better results and adaptive predictive models.
The dataset is of Microsoft Azure which is a publicly accessible dataset for ac-
curately forecasting future CPU utilization patterns and all so that it can enable
some sort of cloud service providers and optimize resource allocation as well. For
preprocessing the data, this research uses scaling and window rolling techniques,
and training multiple machine learning models such as Support Vector Regressor,
Extra Trees Regressor, AdaBoost Regressor, and Stacking Regressor, the study
aims to identify the most effective approach for CPU utilization forecasting. The
stacking regressor has been considered and found the best model for forecasting
CPU utilization in the cloud which combined multiple base estimators, including
Support Vector Regressor (SVR) and AdaBoost Regressor, with a final estimator,
Extra Trees Regressor, to improve prediction accuracy which means evaluation
metrics. This has also enhanced cloud efficiency through dynamic CPU utilization
allocation.

1 Introduction

In an era of digital transformation, the cloud has emerged as a key component of modern
computing infrastructure. Its scalability and flexibility provide organizations with unpar-
alleled opportunities to optimize resources and enhance operational efficiency. Despite
this abundance of computing power, resource management remains a challenge to ensure
both cost-effectiveness and optimal performancePrasad et al. (2023). The dynamic al-
location of CPU utilization is a crucial component of this management and the key to
realizing the full potential of cloud environments. Resource allocation is a challenging
task because of the dynamic nature of workloads and the limitations of conventional re-
source allocation strategies. The inability of the current procedures to adapt swiftly to
shifting workloads could lead to inefficiencies and wasteful resource usage. It is necessary
to study and integrate machine learning techniques—specifically, the Adaboost regressor,
support vector regressor and stacking regressor—into cloud computing infrastructures to
allocate resources dynamicallyKhan et al. (2022).
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1.1 Aim of the study

This report aims to evaluate various forecasting algorithms that this study has used and
also to develop them for CPU utilization forecasting in the cloud. Various forecasting and
time series models have been developed and used with the help of the Microsoft Azure
datasetAzure (n.d.) which is accessible publicly. The main goal is to increase performance
scalability and operational efficiency by dynamically allocating computer resources in
response to workload needs that are anticipated. The study seeks to determine the
most efficient forecasting algorithms for CPU utilization predictions, including Support
Vector Regressor, Extra Trees Regressor, AdaBoost Regressor, and Stacking Regressor,
through thorough data preparation, model training, and evaluation. Furthermore, the
study attempts to evaluate how prediction accuracy and model performance are affected
by preprocessing methods such as Window Rolling and Min-Max Normalization. The
ultimate goal of this study’s conclusions is to offer useful advice and insights for applying
predictive modelling methods in cloud environments to maximize resource usage, improve
system efficiency, and reduce operating expenses.

1.2 Research Objectives

There are various research objectives in this study which are as follows:
1. This study is forecasting CPU utilization on cloud data for dynamic allocation and

for that need to collect the Microsoft Azure dataset which will preprocess historical data
of the cloud.

2. To investigate different preprocessing methods to improve the dataset quality, such
as Window Rolling and Min-Max Normalization.

3. To train and evaluate multiple forecasting algorithms, including Support Vector
Regressor, Extra Trees Regressor, AdaBoost Regressor, and Stacking Regressor, for CPU
utilization forecasting.

4. To identify the most effective forecasting model or combination of models for CPU
utilization forecasting in the cloud environments.

1.3 Research Questions

What are the different forecasting algorithms and How CPU utilization forecasting be
helpful for the dynamic resource utilization allocation on the cloud?

1.4 Research Gaps

There are a few research gaps as well which have been addressed in this study:
1. Limited Exploration of Advanced Algorithms: While various forecasting algorithms

have been applied to predict CPU utilization in cloud environments, there may be a gap
in the exploration of more advanced algorithms like LSTM, Gradient boosting and all.
Investigating these advanced algorithms could potentially lead to improved prediction
accuracy and robustness.

2. Lack of Consideration for External Factors: Many of the research that are cur-
rently available only consider internal elements that affect CPU utilization, ignoring the
influence of external factors such user behavior, software upgrades, and network circum-
stances. Predictive models that incorporate external factors may yield a more thorough
understanding of the dynamics of CPU consumption and improve prediction accuracy.
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2 Related Work

2.1 Traditional Resource Allocation Techniques

There are several types of traditional resource allocation techniques in cloud comput-
ing which include Static Provisioning, Manual Scaling, Threshold-based Scaling, Load
balancing etc. Husaini et al. (2023) Introducing a new paradigm for cloud resource man-
agement, the main goal is to meet Quality of Service (QoS) requirements and maximize
utilization by allocating resources effectively at the application level. The system uses
auto-scaling methods to automatically reallocate virtual resources according to workload,
to maximize efficiency and lower expenses.

Similarly, Oladoja et al. (2021) discusses fixed and adaptive threshold-based auto-
scaling as it dives into auto-scaling approaches, which are essential for attaining 100%
availability and scalability in cloud environments. In the meantime, Khan et al. (2024)
addresses computational offloading to effectively manage work between mobile devices
and cloud servers as it investigates load-balancing methods in the context of mobile
cloud computing.

About 5G networks, Qin et al. (2022) presents a distributed threshold-based offloading
algorithm to maximize task and resource allocation. Moving on to Infrastructure as a
Service (IaaS) models, Rotter and Van Do (2021) addresses workload balancing difficulties
and suggests a queueing model to optimize User Plane Function (UPF) instances in 5G
networks.

Additionally, Mishra et al. (2020) offers an analysis of load-balancing algorithms in
cloud computing environments, including taxonomy and simulation-based assessments to
gauge their effectiveness. Finally, Shafiq et al. (2021) focuses on load balancing in IaaS
cloud models, with a novel LB algorithm designed to maximize resource utilization and
improve performance. To elaborate, Rehman et al. (2020) provides an extensive analysis
of load-balancing strategies in static, dynamic, and cloud contexts inspired by nature,
highlighting the significance of preserving application performance while complying with
SLA and QoS metrics. The review investigates fault-tolerant frameworks to increase cloud
infrastructure dependability and notes research gaps through analytical evaluations and
graphical displays.

2.2 Comparison of Literature Reviews on Traditional Techniques
on Resource Allocation in Cloud
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Table 1: Literature review summary
Study Focus Approach Key Challenges

Addressed
Main Results

Husaini et al.
(2023)

Cloud resource
management
framework

Application-
level resource
allocation,
auto-scaling

Predicting
client-side
experience,
optimizing
resource utiliz-
ation

Improved per-
formance, cost
minimization

Oladoja et al.
(2021)

Auto-scaling
techniques in
cloud comput-
ing

Fixed and
adaptive
threshold-
based auto-
scaling

Achieving
100% avail-
ability and
scalability

Improved fault
tolerance,
availability,
cost manage-
ment

Khan et al.
(2024)

Load balancing
algorithms in
mobile cloud
computing

Computational
offloading,
distributed
threshold-
based offload-
ing

Efficient task
allocation
between mobile
devices and
cloud servers

Enhanced sys-
tem resource
utilization,
performance

Qin et al.
(2022)

Distributed
threshold-
based offload-
ing in 5G
networks

Offloading
algorithm for
UPF instances

Optimization
of task and
resource alloc-
ation

Convergence to
Nash Equilib-
rium, perform-
ance gap ana-
lysis

Rotter and
Van Do (2021)

Optimizing
UPF instances
in 5G networks

Queueing
model for UPF
instances

Load balancing
in 5G net-
works, resource
optimization

Improved
resource utiliz-
ation, perform-
ance

Mishra et al.
(2020)

Load balancing
algorithms in
cloud comput-
ing

Taxonomy,
simulation-
based evalu-
ations

Resource alloc-
ation, perform-
ance optimiza-
tion

Understanding
algorithm
performance,
resource utiliz-
ation

Shafiq et al.
(2021)

Load balancing
in IaaS cloud
models

Novel LB al-
gorithm for
IaaS

Workload
balancing,
resource utiliz-
ation optimiza-
tion

Improved
resource utiliz-
ation, perform-
ance

Rehman et al.
(2020)

Review of load
balancing tech-
niques in cloud
computing

A comprehens-
ive review of
LB techniques

Addressing
QoS metrics,
SLA require-
ments, fault
tolerance

Identifying
research gaps,
improving
infrastructure
reliability

2.3 Advanced techniques used for forecasting CPU utilization
in cloud:

The rapid expansion of large-scale cloud data centres has made it increasingly difficult to
forecast resource consumption in the future. Numerous studies have suggested creative
predictive models that make use of cutting-edge machine-learning techniques to address
this problem. Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks are integrated to anticipate CPU use in cloud servers over numerous
time steps, as Patel and Kushwaha (2022) highlight.

The pCNN-LSTM model, which combines the temporal correlations captured by
LSTM with the pattern extraction capabilities of CNN, shows notable gains in host
load prediction accuracy on a range of cloud workload datasets. Similar to this, Karim
et al. (2021) introduces BHyPreC, a hybrid Recurrent Neural Network (RNN) model,
to forecast multivariate workload components in cloud virtual machines (VMs), such as
CPU, memory, and network utilization.

Overtaking conventional statistical models such as Autoregressive Integrated Moving
Average (ARIMA), BHyPreC improves non-linear data analysis by combining Bidirec-
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tional LSTM (Bi-LSTM) with stacked LSTM and Gated Recurrent Unit (GRU) layers.
Moreover, Ouhame et al. (2021) addresses the problem of hardware resource allocation
delays during cloud-hosting initiation by putting forth a prediction model that forecasts
CPU, memory, and network utilization by fusing CNN and LSTM.

At last, Nashold and Krishnan (2020) have explored models for predicting CPU usage
over long and short-term time scales in large-scale cloud which includes LSTM and SAR-
IMA. While SARIMA outperforms LSTM for long-term predictions, LSTM demonstrates
greater robustness and adaptability, particularly for short-term forecasting tasks.

3 Research Methodology

3.1 Methodology

This chapter of Crisp DM will establish a structured type of approach for guiding machine
learning projects and for data mining as well. This study will also use machine learning
models. CRISP-DM stands for the Cross-Industry Standard Process for Data Mining.
This methodology has six phases which include Business Understanding, Data Under-
standing, Data Preparation, Modelling, Evaluation, and Deployment. This CRISP-DM
offers a systematic framework which enables organizations to work effectively and lever-
age data for gaining insights, that will make informed decisions and will do drive business
value across various industries and domains.

1. Business Understanding: In this phase of business understanding main focus is
on enhancing the efficiency of the cloud with the help of dynamic CPU utilization alloca-
tion and on defining its objectives as well. This phase also includes about the overarching
goals of this study like how they do align the cloud service providers on the basis of their
business priorities. Several key considerations have been included like to identifying spe-
cific opportunities and their challenges as well to do optimising the utilization of CPU and
for the proposed solution as well as the defining success criteria. Additionally, assessing
the current state of CPU utilization management and potential areas for improvement is
crucial in shaping the direction of the project.

2. Data Understanding: In the second phase of data understanding their aim
within cloud environments is to gain analysis of CPU utilization trends and of course pat-
terns. To do this, gather and analyze the Azure dataset, which is made up of time-series
CPU use statistics from Microsoft Azure traces. Investigating the dataset to comprehend
its quality, organization, and variable relationships is one of the main duties. Finding
any outliers, inconsistent data, or missing values in the data that could affect the study
is crucial. Furthermore, analyzing how CPU consumption varies over time and among
various virtual machine (VM) workloads can reveal important information about usage
trends and possible areas for optimization. Comprehending the features and constraints
of the dataset will help with the preprocessing and modelling of the data that comes
after, guaranteeing that the analysis appropriately captures the fundamental dynamics
of CPU consumption in cloud environments.

3. Data Preparation: For transforming, cleaning data and then selecting a relev-
ant amount of data for doing analysis from the dataset of Azure, data preparation comes
and does all this. This entails addressing any outliers, discrepancies, or missing numbers
that were found during the Data Understanding stage. For missing data, methods like
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imputation or removal can be used. To maintain consistency throughout the dataset, it
can also be necessary to scale numerical features and encode categorical variables. For
additional analysis, subsets of information and characteristics pertinent to the prediction
of CPU utilization will be chosen. To aid in modelling and visualization, time-related
characteristics like datetime conversion and the extraction of supplementary temporal
attributes like month and year may also be carried out. Effective data preparation en-
ables the modelling step that follows to use well-formatted, clean data to create precise
predictive models for CPU consumption in cloud environments.

4. Modelling: For doing training and evaluating with the help of Azure dataset
for predicting CPU utilization this phase does all that in the cloud environments. There
are various machine learning algorithms which this study is going to use Support Vector
Regressor, Extra Tree Regressor, AdaBoost Regressor, and Stacking Regressor, will be
implemented. It is possible to tune hyperparameters to maximize model performance.
We’ll investigate ensemble methods like stacking to see if we can increase prediction accur-
acy. We’ll use cross-validation techniques to evaluate the models’ resilience. Performance
measures including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-squared score (R2-score) will be computed as part of the model evaluation process.
Additionally, to assess model predictions and pinpoint areas for additional refinement,
visualizations like actual versus anticipated graphs will be created. Creating precise and
dependable models for forecasting CPU use in cloud systems based on past data is the
ultimate objective of the modelling phase.

5. Evaluation: This phase of the Crisp DM which is the evaluation phase is going
to check the first performance of the above-trained machine learning models for doing
prediction of CPU utilization in cloud. In order to assess the precision and dependability
of the models, this entails computing a number of assessment measures, including Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared score (R2-
score). To determine the optimal algorithm or ensemble approach, the models will also
be contrasted with one another. Visualizations, such as real versus anticipated graphs,
will be studied to discover how effectively the models reflect the underlying patterns in
the data.

3.2 Libraries Imported

This study uses quite a few libraries for predicting CPU utilisation in the cloud and
for that, it needs to facilitate from various stages of the ML pipeline. This study has
imported several essential analysis libraries and some data, manipulation libraries like
Pandas and NumPy. These types of libraries have been used for handling the dataset for
performing some sort of mathematical operations and for manipulating data structures as
well. Libraries like Matplotlib, Seaborn, and Plotly are imported for data visualization.
While Plotly makes it possible to create dynamic and interactive visuals that improve
data display and exploration, Matplotlib and Seaborn provide extensive plotting tools
for the construction of static visualizations. One essential library for applying machine
learning models is scikit-learn, sometimes known as sklearn. It offers a large selection of
tools and algorithms for preprocessing, model selection, training, assessment, and calcu-
lating performance indicators. With its versatility and scalability for intricate modelling
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Figure 1: CRISP-DM Methodology (n.d.)

problems, TensorFlow, a potent deep learning framework, is imported for possible use in
developing neural network models for CPU use prediction. In addition to that, there is a
warning library that has been used to ensure a cleaner type of output for the execution
of code.

3.3 Data Preprocessing

Data preprocessing is a very important phase of the project workflow which is used to
prepare the respective dataset for the analysis of the model and also for model training.
This phase also does the cleaning of the dataset and then it will select the relevant type
of features only for CPU utilization prediction. This will demonstrate the creation of
a cleaned type of DaatFrame naming ‘cleadDF’ for selecting the ’timestamp’ column as
the index and selecting specific columns (’min cpu’, ’max cpu’, ’avg cpu’) representing
minimum, maximum, and average CPU utilization, respectively. Temporal analysis is
made easier by making the data time-series oriented by assigning the timestamp as the
index. The DataFrame is then filtered such that it only contains the pertinent CPU use
information. This procedure makes sure that all superfluous columns have been elimin-
ated from the dataset and that it is properly organized for modelling. The preprocessed
dataset, known as the ’cleanDF’ DataFrame, is prepared for additional analysis, visual-
ization, and model training. These preprocessing procedures are crucial for enhancing
data quality, lowering noise, and guaranteeing that the dataset complies with the study’s
goals. Effective data preparation enables the modelling phase that follows to create pre-
cise predictive models for CPU use in cloud environments by utilizing relevant and clean
attributes.

3.4 Feature Extraction

This is accomplished using the ‘timestamp’ column, which is designed to house an ob-
ject datatype and is subsequently altered by a function entitled ’pd.todatetime’. Con-
sequently, the conversion in question turns the ’timestamp’ into a data type that is simpler
to manipulate and analyze when working with time-based information. Moreover, the
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functions help the researcher to extract two additional columns from the ‘timestamp’,
which include ‘year’ and ‘month’ via ’dt.year’ and ’dt.month’ accessor methods. As a
result, both ‘year’ and ‘month’ return their respective components of the designated
‘timestamp’ column, which then allows the following computation and visualization.
Lastly, a ‘day’ column is needed to identify the fourth time component and code for
the ‘day’ within it. Extracting the year, month, and day components enables a more de-
tailed exploration of temporal patterns and trends in CPU utilization data across multiple
time segments. I will use such features to plot seasonal patterns and I will also exploit
them so that it can detect high-level trends and can decide how time-related features
influence CPU utilization in a cloud environment.

3.5 Data Splitting (Training and Testing the Model)

This phase of data splitting evaluates the performance of the machine learning model
in an accurate manner. This report is going to explain how much data is for training
and how much is for testing the data. So the dataset has been divided into training and
testing up of the data. The ratio of training and testing is 80:20 respectively. This ratio
gives a significant type of portion which has been used to retain a separate subset for
evaluation. There are two variables in the code which are ‘training size’ and other one is
‘test size’ variables which is used to represent the total number of samples which has been
allocated to each type of subset having 80% of the data allocated for training purposes
and trest 20% data is allocated for testing the data. This splitting up of data will help so
that it can prevent it from overfitting during the testing up of unseen data for allowing
the model to generalise in a well-mannered way.

3.6 Dataset Description

The dataset used in this report has been provided by Microsoft Azure which comprises
public releases of Azure traces, intended for research and academic purposes. It includes
Azure Functions Traces and VM Traces, which are the two main categories of traces. The
VM Traces are made up of a special VM request trace intended for the study of packing
techniques, as well as sample datasets gathered in 2017 and 2019. These traces, which
record data at a granularity of every five minutes, provide insights into the workload of
virtual machines in the Azure environment. The Azure Functions Traces also comprise
traces of Azure Functions blob accesses that were gathered in November and December
of 2020, along with typical traces of Azure Functions invocations throughout two weeks
in 2019. Azure (n.d.)

4 Design Specification

This chapter will define and describe the respective approach and the methodology which
this study is going to use for forecasting dynamic CPU utilization allocation. This chapter
will guide and explain several different components so that we can achieve accurate and
reliable predictions, Initially, the system architecture has been designed for efficiently
handling large amounts of data. This entails putting in place scalable data processing and
storage systems, like distributed databases and parallel processing frameworks, to handle
the enormous volume of historical and current CPU utilization data that is gathered from
cloud settings. Strong data pretreatment methods should also be included in the system
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to clean up and convert the raw data into a format that can be analyzed. Managing
missing numbers, identifying outliers, and feature engineering are all part of this pro-
cess to draw out pertinent information from the data. Moreover, the system’s predictive
modelling component is to make use of sophisticated machine learning algorithms that
can grasp the intricate dynamics and linkages present in CPU use patterns. Models such
as Support Vector Regression (SVR), Extra Trees Regressor, and Stacking Regressor can
be explored for their ability to provide accurate predictions while accounting for non-
linearities and seasonality in the data.

To find the best algorithms for the task, careful testing and validation should be used
to inform the modelling technique selection. The system should also have warning and
monitoring features to track model performance over time and identify any deviations
from predicted behaviour. This entails putting in place real-time monitoring dashboards
that show trends in CPU consumption, evaluation data, and model forecasts. Automated
warning systems should advise stakeholders in the event of anomalies or declining model
performance. This will allow for prompt intervention and, if required, retraining of the
model.

To maximize resource efficiency and guarantee performance scalability, the system
should also provide dynamic resource allocation based on anticipated CPU utilization.
To do this, you must integrate with cloud management platforms so that auto-scaling
can begin in response to workload demands that are anticipated. To ensure effective
resource allocation and avoid overloads, load balancing techniques can also be used to
divide incoming requests among several servers or instances based on anticipated CPU
consumption. Figure 2 shows the flowchart of the proposed work.

Figure 2: Proposed Workflow

5 Implementation

To implement the machine learning models for this project, Google Colab was utilized as
the development environment due to its convenience and access to powerful computational
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resources. The Azure Public Dataset is available at https://github.com/Azure/AzurePublicDataset
was chosen as the dataset for training and testing the models.

The following machine-learning models were employed:
1. Support Vector Regressor (SVR)
2. AdaBoost Regressor
3. Extra Tree Regressor
4. Stacking Regressor

Each model was trained and evaluated using appropriate metrics to ensure its per-
formance and effectiveness in predicting the target variable.

The steps for implementation include:
Data Preparation: The Azure Public Dataset was downloaded and preprocessed to

extract relevant features and target variables.

Model Training: Each machine learning model (SVR, AdaBoost, Extra Tree, and
Stacking Regressor) was trained using the prepared dataset.

Model Evaluation: The trained models were evaluated using various evaluation
metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-squared score to assess their predictive performance.

Comparison: A comparative analysis of the models was conducted to identify the
best-performing model based on the evaluation metrics.

The implementation involved leveraging Google Colab for development, utilizing the
Azure Public Dataset for training, and employing SVR, AdaBoost, Extra Tree, and
Stacking Regressor models for prediction tasks.

5.1 Support Vector Regressor

The Support Vector Regressor (SVR) is a regression-based of algorithm which is also
called SVM in short and this type of framework is used for predicting continuous type of
outcomes. In this report, this support vector regressor is going to be used and it plays
a vital role in the underlying type of patterns and relationships between input features
(such as time, previous utilization values, etc.) and the target variable (CPU utilization).
Subject to a predetermined tolerance (epsilon), SVR finds the hyperplane that maximizes
the margin between the data points and the hyperplane while also fitting the data the
best. SVR focuses on selecting a subset of the training data termed support vectors, which
are the data points closest to the hyperplane and impact its position. This is in contrast
to classic regression algorithms, which seek to reduce prediction errors. The architecture
of SVR entails utilizing a kernel function, where the hyperplane is defined, to transform
the input characteristics into a higher-dimensional space. Next, to reduce the prediction
error within the given tolerance, the SVR algorithm optimizes the hyperplane’s position
and orientation.
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Figure 3: Support Vector Regressor architecture Thomas et al. (2017)

5.2 Extra Tree Regressor

The Extra Trees Regressor (ETR) is an ensemble learning technique that is used to predict
CPU utilization in the cloud based on decision tree regressors in this study of course.
Its role is to leverage several decision trees for achieving good evaluation metrics and
robustness if we compare them to the individual tree for aggregation of predictions. The
ETR algorithm in this project builds several decision trees using arbitrary subsets of the
features and training data. To lower the chance of overfitting and improve generalization
performance, each tree is trained separately and then its predictions are averaged over
all the trees’ predictions. By choosing feature subsets at each node split, ETR also adds
unpredictability, which improves the variety and resilience of the model. An ensemble of
decision trees is built as part of the ETR architecture, and each tree is trained using a
different subset of the training set’s characteristics and data. The final predictive model
is created by combining the trees and averaging the estimates from each one to produce
a more reliable and accurate estimate of CPU consumption.

Figure 4: Extra Tree Regressor architecture Araújo et al. (2023)

5.3 AdaBoost Regressor

For combining multiple types of weak learners which means individual regression models
for creating a good predictive model that should be accurate and model this study has
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employed an ensemble learning method for that which is called the AdaBoost Regressor
(ABR). AdaBoost Regressor is used in this research to fit a sequence of weak regression
models to the data one after the other. First, the dataset is used to train a weak learner,
and every data point is given the same weight. The system then gives data points that the
previous weak learner had predicted incorrectly a higher weight. This process of iteration
is continued, with each weak learner concentrating more on the incorrectly categorized
data points from earlier iterations. AdaBoost Regressor’s architecture consists of building
a sequence of weak regression models, usually decision trees so that each model can learn
from the mistakes of the others. All weak learners’ predictions are combined and weighted
according to their performance to create the final predictive model. This approach ensures
that the final model focuses on the most challenging instances in the data, leading to
improved predictive accuracy.

Figure 5: AdaBoost Regressor architecture Min and Luo (2016)

5.4 Stacking Regressor

The Stacking Regressor is an essential component of this project since it enhances the
overall accuracy of CPU utilization prediction in cloud environments by combining the
predictive powers of numerous base regressor models. Its main purpose is to balance
the deficiencies of several individual regressors while integrating their strengths. In this
research, the respective Stacking Regressor combines two types of base regressor mod-
els which are diverse and include the Support Vector Regressor (SVR) and AdaBoost
Regressor (ABR). Support Vector Regressor is known for its ability to capture complex
relationships in data, while AdaBoost Regressor excels in correcting the errors of its pre-
decessors through iterative training. By leveraging these complementary strengths, the
Stacking Regressor aims to create a more robust and accurate predictive model. The
training of several base regressor models, each with distinct qualities and abilities, is
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a key component of the Stacking Regressor architecture. Following that, a final meta-
estimator learns how to optimally integrate the predictions from these base models as
input characteristics to get the final prediction. By utilizing the variety of predictions
produced by the base models, the Extra Trees Regressor serves as the last meta-estimator
in this setup, thereby augmenting the ensemble’s predictive power.

Figure 6: Stacking Regressor architecture Jiang et al. (2019)

5.5 Data Visualization

Figure 7: January month CPU Utilization Pie chart

In Figure 7, the January month average CPU utilization is visualized, with a label
indicating 100% and a corresponding value of 1,215,661.103. The colour associated with
this data point is blue, denoted by colour code 2. This representation provides a clear
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visualization of the average CPU utilization across different months, highlighting the
specific value for the 100% label and indicating its significance with the blue colour.

Figure 8: Bar Graph

Figure 8 illustrates a bar graph representing the January 2017 month day-wise average
CPU utilization. Each bar in the graph corresponds to a specific day, ranging from 1 to
30. The colour of each bar varies to enhance visual distinction. Additionally, the graph
displays the numerical values of the average CPU utilization (v) atop each bar, providing
precise information about the CPU utilization level for each day. This visualization
effectively captures the daily fluctuations in CPU utilization, allowing for a comprehensive
understanding of the patterns and trends over the month.

6 Evaluation

This section lists a set of experiments to validate the proposed machine learning models.
The aim is to evaluate the forecasting of CPU utilization in the cloud. This research
uses machine learning models to forecast the usage of CPU in the cloud to reduce cost
and increase efficiency. The stacking regressor ML model merges the Support Vector
Regressor (SVR) and AdaBoost Regressor (ABR).

Figure 9: SVR - Actual vs Predicted Graph

Figures 9(Support vector regressor), figure 10(Extra tree regressor) and figure 11(Ada
boost regressor) show the comparison graph between the actual and the predicted CPU
utilization which varies their value over time. Each data point also represents a specific
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Figure 10: Extra Tree Regressor - Actual vs Predicted Graph

Figure 11: AdaBoost Regressor - Actual vs Predicted Graph

type of timestamp which shows the actual CPU utilization values, which means Real
alongside the corresponding predicted values, which are Predicted and generated by the
ML model.

Table 2 provides a comparison of the Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and R-squared (R2) score for each regression model

1. Mean Squared Error (MSE):MSE is a measure of the average squared difference
between the actual and predicted values in a regression problem.Pain (2023)

2. Root Mean Squared Error (RMSE): RMSE is the square root of the MSE,
providing a measure of the average magnitude of the residuals between predicted
and actual values. Pain (2023)

3. R-squared (R2): R2 is a statistical measure that represents the proportion of
variance explained by the independent variables in a regression model.Pain (2023)
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Table 2: Comparative Analysis of Regression Models for Predicting CPU Utilization in
Cloud Environments

Model Mean Squared Error
(MSE)

Root Mean Squared
Error (RMSE)

R-squared (R2) Score

Support Vector Re-
gressor (SVR)

0.0023503667430643947 0.04848058109247861 0.8644565966329448

Extra Trees Regressor 0.003611212476841574 0.060093364665673145 0.7917448284030331
AdaBoost Regressor 0.002473293106314581 0.04973221396956485 0.8573675507690889
Stacking Regressor 0.0010804266354079582 0.032869843860413424 0.9376928287112004

6.1 Discussion

Based on the evaluation metrics provided for each regressor model:
Support Vector Regressor (SVR): Achieves an MSE of 0.00235 and an RMSE of

0.0485, indicating relatively low prediction errors.
The R2 score of 0.8645 suggests that the SVR model explains approximately 86.45%

of the variance in the data, indicating a good fit.

Extra Tree Regressor: Exhibits a higher MSE of 0.00361 and a slightly higher
RMSE of 0.0601 compared to SVR. The R2 score of 0.7917 indicates that the Extra Tree
model explains approximately 79.17% of the variance, showing a slightly lower fit than
SVR.

AdaBoost Regressor: Shows an MSE of 0.00247 and an RMSE of 0.0497, similar to
the SVR model. With an R2 score of 0.8574, it explains around 85.74% of the variance,
indicating a good fit similar to SVR.

Stacking Regressor: Displays the lowest MSE of 0.00108 and the lowest RMSE of
0.0329 among all models, indicating superior predictive performance. The highest R2
score of 0.9377 suggests that the Stacking model explains approximately 93.77% of the
variance in the data, indicating the best fit among the evaluated models.

Figure 12: Stacking regressor R2 score

While all models perform reasonably well, the Stacking Regressor stands out with
the lowest errors and highest R2 score, indicating superior predictive performance for
forecasting CPU utilization.
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7 Conclusion and Future Work

7.1 Conclusions

In conclusion, forecasting the CPU utilization for the dynamic resource allocation in the
cloud. This study has collected the data from Microsoft Azure which has been analysed
and processed and has done some preprocessing steps which include scaling up of the data
using Min-Max Normalization and also Window Rolling With 6 Previous Values. These
techniques enhanced the quality of the data and facilitated more accurate predictions.
Various time series and forecasting algorithms have been used in this study, including
Support Vector Regressor, Extra Trees Regressor, AdaBoost Regressor, and Stacking
Regressor, were trained and evaluated using metrics such as Mean Squared Error, Root
Mean Squared Error, and R-squared Score. The evaluation’s findings demonstrated the
efficacy of the Stacking Regressor model, which demonstrated the best predictive per-
formance with the lowest MSE, RMSE, and greatest R-squared score. The study also
emphasized how important it is to allocate resources dynamically depending on anticip-
ated CPU consumption to maximize resource utilization and guarantee effective cloud
system functioning. The study also stressed the significance of ongoing assessment and
monitoring to guarantee the correctness and dependability of the prediction models used
in cloud environments.

7.2 Future Works

Several limitations have been identified that could be addressed to achieve better results
in future research. First off, the study’s inability to be applied to other cloud platforms
or environments with distinct architectures and workload characteristics may stem from
its reliance on historical data from Microsoft Azure. To ensure that predictive models are
strong and have a wider range of applications, future research might examine a variety
of datasets from other cloud providers. Second, there’s a chance that the preprocessing
methods used—like Min-Max Normalization and Window Rolling with Six Previous Val-
ues—may not be able to fully capture intricate patterns and relationships in the data.
Using more sophisticated feature engineering or preprocessing approaches could increase
the quality of the input data and the performance of the model.

Furthermore, although the study assessed several machine learning models, such as
the Support Vector Regressor, Extra Trees Regressor, AdaBoost Regressor, and Stacking
Regressor, it did not investigate any more sophisticated algorithms or ensemble tech-
niques that would have produced superior outcomes. Subsequent studies may look into
innovative techniques and algorithms to improve prediction robustness and evaluation
metrics even more. Various advanced algorithms can be used in future including Long
Short-Term Memory (LSTM) networks which is a type of type of recurrent neural network
(RNN) specifically designed to capture temporal dependencies in sequential data. Gradi-
ent Boosting, XGBoost and LightGBM can also be used to achieve superior performance
and better efficiency in forecasting CPU utilization on the cloud.
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