
Configuration Manual 

This document gives detailed guidance on utilizing various tools and software to 
successfully complete projects. It includes clear, step-by-step instructions for software 
installation and outlines a systematic approach to ensure project success. Additionally, it 
provides comprehensive hardware specifications necessary for running machine learning 
algorithms effectively, all thoroughly described within the study. 

1. Hardware Specifications 
 
Hardware Component Requirements 
Processor (CPU) MacBook Pro 
Memory (RAM) 16GB 
Network Connection Stable internet connection 
Operating System MacOS Sonoma 14.1.1 
System type 512 SSD 

2. Software Specifications 
 

Software Component Requirements 
Python Python 3.10.12 
Seaborn This is used for data visualization 
NumPy Numerical computing library 
pandas Data manipulation library 

matplotlib.pyplot 
This library is used for creating static, animated, and interactive 
visualizations in Python 

plotly It is a high-level interface which is used for creating interactive plots 
plotly.graph_objects It is a low-level interface used to construct Plotly plots. 
plotly.figure_factory used for creating complex Plotly figures. 

sklearn 
A machine learning library used for various tasks such as classification, 
regression, clustering etc 

imblearn.over_sampling 
This library is used for dealing with imbalanced datasets, particularly 
for oversampling techniques 

tensorflow.keras.models.Sequential 
This is a class to create a linear stack of layers in TensorFlow's high-
level neural network API, Keras 

An operating system Compatible with the required software 

tensorflow.keras.models.Model 
a class that enables the construction of an independent model with 
predetermined inputs and results. 



Software Component Requirements 

tensorflow.keras.optimizers 
For the purpose of training deep learning models, Keras provides 
optimization techniques. 

sklearn.preprocessing 
used for preprocessing of data before applying machine learning 
algorithms. 

sklearn.linear_model uses the linear model of logistic regression for binary categorization 
sklearn.tree uses decision tree classifiers to do regression and classification 
sklearn.metrics Features for assessing how well machine learning models perform 
tensorflow.keras.layers Keras-provided layers for neural network creation 

3. Python Packages and Imports 

Data Manipulation and Machine Learning Packages: 

• numpy and pandas: used to handle and manipulate data. 

• sklearn: For making predictions using the loaded model, Scikit-learn is a 
machine learning library utilized. 

• Tensorflow: Machine learning models are developed, trained, and 
implemented using TensorFlow in a variety of fields, including 
recommendation systems, computer vision, and natural language 
processing. 

2. Custom Modules: 

• Smote(Synthetic Minority Over-sampling Technique): In machine 
learning, this technique is used to rectify class imbalance in datasets. In 
order to balance the class distribution and enhance the performance of 
classification algorithms, it creates synthetic samples of the minority class. 
This works particularly well in scenarios where one class is noticeably 
underrepresented in comparison to other classes. 

• Autoencoder 
It is used for unsupervised learning problems, autoencoders are flexible neural network 
topologies. Their functions encompass dimensionality reduction, which involves 
condensing high-dimensional data into a lower-dimensional representation, feature 



learning, which involves identifying the key aspects of the input data, and data denoising, 
which entails training on noisy data and reconstructing clean versions. Since autoencoders 
can precisely reconstruct normal occurrences and identify departures from predefined 
patterns, they can also be used for anomaly identification. Variations such as Variational 
Autoencoders (VAEs) further facilitate generative modeling by producing new data 
samples that closely resemble the distribution 
 

3. Other General Imports: 
A variety of Python modules and functions for general code functionality, including data 
structure handling and string manipulation. 

4. Dataset Overview and Data Loading 
The UNSW-NB15 dataset, comprising real and synthetic network traffic, contains nine 
attack types captured using Tcpdump, totaling 2,540,044 records. Features are 
extracted using Argus and Bro-IDS, generating 49 features described in UNSW-
NB15_features.csv. Training and testing sets consist of 175,341 and 82,332 records, 
respectively. 
 
dataset link:- https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15 

 
Data Loading 
The provided code snippet demonstrates data loading using the Pandas library. It displays 
the first 5 rows of the loaded data using the head method. This operation allows for quick 
exploration and understanding of the dataset's structure and content. 
#data loading 
dataframe = 
pd.read_csv('/content/drive/MyDrive/network_intrusion_unsw/Data/UNSW_NB15_training-set.csv') 
dataframe.head() 
 

 

Figure 1 Output of the dataset loading 



 

Figure 2 output of dataset loading 

 

5. Data Cleaning and Preprocessing 
To prepare a dataset for analysis and modeling, data cleaning and preprocessing are 
necessary tasks. The task involves handling missing values, eliminating duplicates, 
transforming and encoding data, employing label encoding to convert categorical variables 
into numerical format, normalising numerical features using Minmax Scaler, binarizing 
labels, and separating the dataset for evaluation. Data quality and compatibility with 
machine learning and deep learning algorithms are ensured by the specific tasks that 
depend on the dataset's nature and objectives. This entails,. 

dataframe = dataframe.drop(['service','id'], axis='columns')  # 
#removing 'analysis' class from target column 
dataframe = dataframe[dataframe['attack_cat'] != 'Analysis'] 
dataframe.shape 
dataframe.describe() 
 
The provided code snippet removes the columns 'service' and 'id' from the DataFrame. 
Pandas drop () function is used to delete certain rows or columns from a DataFrame. In this 
case, axis='columns' indicates that we want to drop columns, whereas ['service', 'id'] gives 
the column names to be discarded. The DataFrame is then filtered using the values in the 
'attack_cat' column. It specifically removes records where the value in the 'attack_cat' 
column is 'Analysis'. As a result, records containing 'Analysis' in the 'attack_cat' column 
are excluded from the DataFrame. The dataframe.shape is frequently used to rapidly 
determine the size of a DataFrame following actions such as filtering or eliminating 
columns. The dataframe.describe() computes summary statistics for the DataFrame. The 
describe() function computes and delivers several statistics for the DataFrame's numeric 
columns, including count, mean, standard deviation, minimum, 25th percentile, median 
(50th percentile), 75th percentile, and maximum. These statistics provide a rapid summary 
of the DataFrame's numeric data distribution and primary patterns. 



 

Figure 4 Output of the statistical data 

 

Figure 4 Output of the statistical data 

 

dataframe.info() 

 

Figure 5 Data Summary 

This line outputs a brief summary of the DataFrame, containing information about the 
index and column dtypes, non-null values, and memory utilisation. The info() function in 



Pandas is useful for quickly understanding the structure and data types of a DataFrame, as 
well as checking for missing data. 

dataframe.isnull().sum() 
 

 

Figure 6 Output showing the amount of null values in each column after data cleaning 

This line computes the number of missing values in each column of the DataFrame. The 
function isnull() returns a DataFrame with the same shape as the original DataFrame. The 



sum() function is then applied to this DataFrame, which calculates the sum of True values 
in each column, essentially calculating the amount of missing entries. 

5. Dataset Visualization 

 

dataframe.columns 
#number of unique value in each columns 
for i in dataframe.columns: 
print(i,dataframe[i].unique().size) 

 

 
Figure 7 Output showing the unique values with the corresponding columns. 

 
This section of the code snippet retrieves the column names from the DataFrame dataframe. 
The columns attribute of a Pandas DataFrame returns an Index object containing the 
column labels. It then, iterates through each column in the DataFrame dataset. It uses the 
unique() method to calculate the number of unique values in column ‘i’. The unique() 
method returns an array of unique values for the specified column. The array's size attribute 



is then utilised to calculate the number of unique values. Finally, it prints the column name 
(i) and the number of unique values in that column. 
 

for c in integer_names: 
pd.to_numeric(dataframe[c]) 
for c in binary_names: 
pd.to_numeric(dataframe[c]) 
for c in float_names: 
pd.to_numeric(dataframe[c]) 

 
This code snippet creates loops that cycle over the integer, binary, and float feature names, 
attempting to convert the relevant columns in the dataset DataFrame (dataframe) to 
numeric data types via pd.to_numeric(). This ensures that numerical operations can be 
applied to these features if necessary. 
 

tempdf = dataframe['attack_cat'].value_counts().reset_index() 
fig = px.bar(tempdf, y='count', x='attack_cat', color='attack_cat',title="Value Count of Attack 
Category") 
fig.show() 
 

 

Figure 8 Value Count of Attack Category 

To visualise the distribution of attack categories in the dataset, the above provided code 
generates a bar plot using Plotly Express (px.bar()). The value_counts() method computes 
the frequency of each attack category, and the DataFrame (tempdf) is used to generate the 
bar plot. 

tempdf = dataframe[['state','attack_cat']].groupby(['state','attack_cat']).value_counts() 
tempdf = tempdf.reset_index() 
tempdf.columns = ['state','attack_cat','count'] 
fig = px.histogram(tempdf, x="state", y="count", 
color='attack_cat', barmode='group', title="Value Count of State by Attack Category") 
fig.show() 



 

 

Figure 9 Value Count of State by Attack Category 

The above provided code snippet groups the dataframe by the 'state' and 'attack_cat' 
columns and then counts the number of occurrences of each unique 'state' and 'attack_cat' 
value pair. The resultant Series contains the counts for each combination of 'state' and 
'attack_cat'. It then resets the index of the DataFrame ‘tempdf’, turning the hierarchical 
index (which includes 'state', 'attack_cat', and the count of occurrences) to regular integer 
index columns. The code then generates a histogram using Plotly Express (px.histogram()) 
with the DataFrame ‘tempdf’ as an input. The 'state' column serves as the x-axis, the 'count' 
column as the y-axis, and the 'attack_cat' column as the colour encoding for grouping. The 
barmode='group' argument specifies that bars representing various attack categories should 
be grouped together. 

6. Data Pre-processing 

 

#splitting data into X and y 
X = dataframe.drop(['attack_cat','label'], axis='columns') 
y = dataframe['attack_cat'] 
col = X.select_dtypes(exclude=['float64','int64']).columns.tolist() 
col 
#label encoding(converting categorical value to numeric) 
le = LabelEncoder() 
X[col] = X[col].apply(le.fit_transform) 
X.head() 
 
 
 
 



 

Figure 10 Output of Data Pre-processing 

 

Figure 11 Output of Data Pre-processing 

This section of the code divides the original DataFrame dataframe into two sections. 
Section X contains the features (independent variables) for model training, which were 
created by dropping the columns 'attack_cat' and 'label' along the columns axis with drop(). 
Section Y contains the target variable (dependent variable), which is the 'attack_cat' 
column. The code encodes labels for the previously identified classified columns. Label 
encoding translates category variables to numerical representations. It creates a 
LabelEncoder object ‘le’ and applies it to the category columns of X using the apply() 
function. The fit_transform() method of LabelEncoder applies the encoder to the data and 
converts categorical values into numeric labels. 

#correlation matrix 
correlation = X.corr().round(2) 
fig = px.imshow(correlation, text_auto=True, aspect="auto") 
fig.show() 
 

This code snippet generates the correlation matrix for the features in DataFrame X. The 
corr() method calculates the pairwise correlation of all columns in the DataFrame. The 
generated correlation matrix is associated with the variable correlation. The round(2) 
function is used to round correlation data to two decimal places for easier reading. The 
code then plots the correlation matrix using Plotly Express (px.imshow()). The correlation 
DataFrame is supplied into the px.imshow() function. The code then creates the correlation 
matrix plot by using Plotly Express. 



 

Figure 12 Correlation Matrix 

#data balancing 
orsamp = SMOTE() 
X, y = orsamp.fit_resample(X, y) 
tempdf = y.value_counts().reset_index() 
fig = px.bar(tempdf, y='count', x='attack_cat', color='attack_cat',title="Value Count of Attack Category 
After Apply Smote Over Sampling") 
fig.show() 
 

This section of the code loads the Synthetic Minority Oversampling Technique (SMOTE) 
from the specified library. SMOTE is a prominent strategy for addressing class imbalance 
by creating synthetic samples for the minority class in order to balance the distribution of 
classes. The code then performs SMOTE oversampling on the feature matrix X and target 
vector Y. The fit_resample() method of the SMOTE object ‘orsamp’ applies the SMOTE 
model to the data before generating synthetic samples to balance the classes. After 
SMOTE, the balanced feature matrix and target vector are returned to X and Y, 
respectively. The code computes the count of each class in the target vector Y after 
SMOTE. The value_counts() method counts the occurrences of each unique value in Y, 
whereas the reset_index() method resets the index of the resulting series and converts it to 
a DataFrame. The graph is then generated using Plotly Express (px.bar()). The DataFrame 
tempdf is utilised as the input data. The 'count' column is designated as the y-axis, the 
'attack_cat' column as the x-axis, and the 'attack_cat' column is also used for colour coding 
to differentiate between different attack categories. 

 

Figure 13 Value Count of Attack Category after applying SMOTE 



X.shape 
#split data in train and test with ratio of 90/10 
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1) 
X_train.shape 
 

This section of the code first outputs the form of the feature matrix X. The code then divides 
the feature matrix X and target vector Y into training and testing sets. Scikit-learn's 
train_test_split() function is utilised for this purpose. The test_size=0.1 parameter specifies 
that 10% of the data will be utilised for testing and the other 90% for training. Output of 
the form of the training feature matrix X_train is obtained at the end. 

7. Machine Learning Algorithms 

Logistic regression 

lrmodel = LogisticRegression() 
lrmodel.fit(X_train,y_train) 
y_pred = lrmodel.predict(X_test) 
 
This section of code generates an instance of scikit-learn's Logistic Regression model. The 
LogisticRegression() function sets up the logistic regression model with default 
hyperparameters. The code then uses training data to train the logistic regression model. 
The fit() method applies the model to the training data, with X_train representing the 
feature matrix holding the training samples and Y_train representing the corresponding 
target vector containing the labels. The learned logistic regression model is then applied to 
make predictions about the test data. The predict() method predicts the labels for the testing 
data, X_test being the feature matrix containing the testing samples. 
The anticipated labels are stored in the variable Y_pred. 
 
Output Accuracy Score: 0.62 
 

1. Confusion matrix 

#confusion Matrix 
matrix=confusion_matrix(y_test, y_pred) 
fig = px.imshow(matrix, text_auto=True, aspect="auto", title="Confusion Matrix", 
labels=dict(x="Predicted Label", y="Actual Label")) 
fig.show() 

The code creates a confusion matrix using the actual labels  and predicted labels. The confusion 
matrix is a table used to assess the performance of a classification model, with each row 
representing the true class and each column representing the predicted class. The code then 
generates a plot of the confusion matrix with Plotly Express (px.imshow()). The matrix variable 
containing the confusion matrix data is provided as input. The text_auto = True argument 
automatically annotates the plot with values from the confusion matrix. The aspect="auto" 
argument automatically changes the plot's aspect ratio according to the size of the confusion matrix. 



The labels option defines the labels for the plot's x and y axes, which are "Predicted Label" and 
"Actual Label" accordingly. The confusion matrix plot is then created by using Plotly Express. 

 

Figure 14 Confusion Matrix for Logistic Regression 

#Classification Report 
print("Classification Report : ") 
print(classification_report(y_test, y_pred)) 
 
 

 
 

Figure 15 Classification Report of Logistic Regression 
 
A classification report for the performance of a logistic regression model is generated by 
the code snippet. The model uses 'sklearn.metrics' to calculate precision, recall, and F1-
score for phishing and legitimate URLs, and it also uses 'yellowbrick.classifier' to produce 
a visual report that helps evaluate the model's ability to distinguish between the two classes 
in test data. 
 
Similarly the rest of the algorithms were trained and tested and the results were obtained. 
These results are discussed in the report. 

7. Visualization Techniques 
This model assessment concentrates on classification of reports and confusion matrices. 



uses Seaborn and Matplotlib to generate heatmaps. 

True positives, negatives, and error distribution are all thoroughly examined. 


