

Intrusion Detection in Cloud Environments
using Hybrid Deep Learning

MSc Research Project
MSc in Cloud Computing

Kunal Rana
Student ID: 22141138

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

………Kunal…Rana……………………………………………………………………………………

Student ID:

…22141138………………………………………………………………………………………………

Programme:

…MSc…in…Cloud…Computing…………………………

Year:

……2023…………..

Module:

…MSc…Research…Project………………………………………………………………………

Supervisor:

…Shaguna…Gupta……………………………………………………………………………………

Submission
Due Date:

…….………

Project Title:

… Intrusion Detection in Cloud Environments using Hybrid Deep
Learning ……………………………………………………………………………….………

Word Count:

………………………25……………… Page
Count……………10023……………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

………Kunal…Rana………………………………………………………………………………………………

Date:

……………25/04/2024………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Intrusion Detection in Cloud Environments using
Hybrid Deep Learning

Kunal Rana
22141138

Abstract

In todays mordern word ensuring strong security measures against network

intrusions is essential for cloud computing. This study investigates the use of deep
learning and machine learning approaches for intrusion detection to improve cloud
environment security. It looks at how well different models—such as Bidirectional
LSTM, Decision Trees, Long-Short Term Memory (LSTM), and Logistic Regression—
identify and categorize network intrusions. These models are assessed using accuracy,
recall, and F1 score metrics on the UNSW-NB15 dataset. The study also explores how to
pick features and how to employ autoencoders to improve model performance. The
outcomes provide important insights into the potential real-world applications of each
algorithm by highlighting its advantages and disadvantages.

1 Introduction

This thesis addresses the growing threat of intrusions and presents a novel solution by
integrating machine learning and data learning methods into cloud security. The socially
engineered techniques used in various intrusion types, such as DoS, backdoor, shellcode, etc.,
are frequently too strong for conventional defense measures to handle. The study uses the
extensive dataset known as (UNSW-NB15) to address this problem. It has Fuzzers, analysis,
backdoors, denial-of-service, exploits, generic, reconnaissance, shellcode, and worms are the
nine types of attacks included in this dataset. In order to create a total of 49 features with the
class label, twelve algorithms are constructed, and the Argus and Bro-IDS tools are utilized.
Cloud computing has completely changed the IT environment because it provides unmatched
scalability, accessibility, and efficiency. Effectively managing and transferring data across
large networks is a key component of this change. However, a variety of security threats are
rapidly posing a threat to the vital assets housed in cloud technologies (Moustafa, 2015).

With distributed content delivery networks (CDNs), cloud service providers like AWS,
Azure, and GCP have made it easier for data to be shared globally while offering quick
content delivery through localized edge points. Although these developments improve
performance and accessibility, they also expose data to increased hazards associated with
long-distance network traffic. As a result, network-based assaults that target cloud settings
are now a serious threat.

For network security defenses to be strengthened, it is essential to comprehend and
counteract routing-based threats. A wide range of advanced attacks, from traditional Denial
of Service (DoS) attacks to sneaky penetration methods like SQL injection and malware
distribution, are included in the spectrum of potential threats. The confidentiality, availability,
and integrity of cloud resources are by these vulnerabilities (Zekri, 2017).

2

Furthermore, to protect cloud infrastructures against newly discovered vulnerabilities,
ongoing research, and innovation are required due to the dynamic nature of cyber threats.
Even while cloud computing has the potential to revolutionize many industries, its broad
adoption depends on strong security protocols that can mitigate a variety of dangers. This
article includes relevant work Hybrid deep learning, a relatively new and creative method for
intrusion detection in cloud environments, is explained in Section 4 along with the deep
learning models used for machine learning. It has the ability to drastically lower different
threats by using algorithms and data analysis to identify and stop invasions. The use of
machine learning and deep learning methods for intrusion detection using cloud infrastructure
is the main focus of this research. In Section 3, the research technique is explained. The
design elements of the framework for machine learning algorithms are covered in Section 5.
Section 6 details how this study was carried out. The evaluation results are presented and
discussed in Section 7. The study is concluded in Section 8 with a discussion on future work.
has context menu.

2 Related Work

The literature review presented in this paper offers a comprehensive overview of recent
findings and methods related to intrusion detection systems (IDS) in cloud computing
environments. Efficient security solutions that are optimized for cloud environments are
essential due to the rapid use of cloud services and a growing number of cyber threats. A
variety of studies with different viewpoints on the creation, use, and evaluation of intrusion
detection systems are included in the review. By examining recent advancements in machine
learning, deep learning, and hybrid approaches, the literature review highlights the
importance of strong security frameworks in safeguarding cloud infrastructures and
demonstrates how intrusion detection is evolving. The review offers a foundation for the
methodology employed in this work as well. (Alqahtani, 2020)

2.1 Comparative Analysis of Deep Learning Techniques and Dataset
Evaluation in Network Intrusion Detection

An in-depth analysis of deep learning methods for intrusion detection is presented by Ali
Azawii, with a focus on widely used datasets (DARPA, KDD99, NSL-KDD), as well as deep
learning frameworks (TensorFlow, Theano, and Caffe). In-depth discussions of autoencoders,
sum-product networks, and recurrent neural networks among the deep learning architectures
are provided in this publication. Along with suggestions for further study, including the use
of hybrid approaches and the mixing of algorithms to improve performance, it emphasizes
the significance of feature extraction and selection in making improvements in accuracy
(Azawii, 2019). On the other hand, a research paper by Nour Moustafa and Jill Slay
compares the effectiveness of two popular datasets for network intrusion detection system
(NIDS) evaluation: KDD99 and UNSW-NB15. It suggests a thorough technique that is
divided into three layers: the network layer, the processing layer (using decision engines and
Association Rule Mining), and the assessment layer for NIDS effectiveness assessment. In
summary, the report indicates that UNSW-NB15 features outperform KDD99 in many
circumstances, but it also highlights the need for more research in this area by noting how
difficult it may be to discern between comparable record values in datasets. Both publications

3

provide significant contributions to the field of intrusion detection; Nour Moustafa and Jill
Slay focus on dataset comparison and NIDS assessment methodology, while Ali Azawii
concentrates on deep learning frameworks and methodologies (Moustafa, 2015).

2.2 Innovations in Cloud-Based Intrusion Detection Systems

Both M. Mayuranathan and RM Balajee, the authors of the two articles, offer creative
methods for intrusion detection in cloud systems. A hybrid approach that combines deep
learning algorithms, clustering, optimization, and dimensionality reduction is proposed by
RM Balajee to address the dimensionality and performance issues in attack detection.
Through the integration of both traditional and deep learning approaches, their approach
offers a comprehensive solution for faster and more accurate attack detection. AutoEncoder,
FCM, PCA, and SMO are integrated (Balajee, 2023). On the other hand, intrusion detection
is handled by the deep Kronecker neural network (DKNN) in the EOS-IDS model, which is
tailored for cloud computing environments. In order to enhance detection accuracy, this
model prioritizes feature selection, optimal pre-processing, and hybrid deep learning
methods. (M. Mayuranathan, 2022).

2.3 Hybrid Intrusion Detection Systems in Cloud Environments: A
Comparative Analysis

This article presents a hybrid intrusion detection system (IDS) by Ammar Aldallal and Faisal
Alisa that combines genetic algorithms (GA) for feature selection with support vector
machines (SVM) for classification. The GA is used to optimize feature selection by reducing
the dataset's dimensionality and raising the efficiency of SVM classification. Numerous SVM
kernel functions are examined; the most effective ones are discovered to be polynomial and
linear kernels, especially when the feature set is reduced to 20, or one-fourth of the original
features. The impressive results of 100% accuracy obtained with a minimal number of
features show how effective this strategy is; nonetheless, further investigation into various
machine learning (ML) techniques is recommended to confirm. In order to improve detection
accuracy, the system uses PCA for dimensionality reduction in conjunction with data
preparation techniques including traffic analysis and categorization. While SVM is utilized
for anomaly detection, K-means clustering is employed for data categorization. The system
exhibits scalability for integrating many virtual machines and increasing analysis to include
VM IDs, with an emphasis on contextual analysis and the relationship between network and
application logs. When compared to standalone IDSs, it also offers better accuracy and
quicker detection times. (Sarosh, 2021).

2.4 Contrasting Approaches to DDoS Attack Detection in Cloud
Environments

The important issue of identifying Distributed Denial of Service (DDoS) attacks in cloud
computing environments is addressed in both research studies, albeit with different methods
and strategies. In addition to several intrusion detection techniques, including Signature-
based Detection (SD), Anomaly-based Detection (AD), and Stateful Protocol Analysis, the
study by Marwane Zekri examines machine learning techniques including Naive Bayes,
Decision Trees (C4.5), and Neural Networks (SPA). The study addresses the importance of

4

DDoS detection systems for cloud platform security and offers suggestions for further
research on real-time attack traffic detection and mitigation (Zekri, 2017). However, the
research by Aanshi Bhardwaj presents a DDoS attack detection method that employs Deep
Neural Networks (DNN) optimized by the Ant Colony Method (ACO). In this 4-phase study,
the CICIDS2017 dataset is used for pre-processing, pre-training, training, and testing; the
results indicate good performance in detecting DDoS traffic in cloud environments. A
temporal complexity study of deep learning approaches for DDoS detection and more real-
world validation are two possible directions for future research that are highlighted in the
paper's conclusion. In conclusion, both studies provide important viewpoints and approaches
for addressing the security threats put on by DDoS attacks in cloud computing environments.
(Bhardwaj, 2021).

2.5 Comparative Analysis of Data-Driven and Deep Learning Approaches
for Intrusion Detection Systems

These research publications revolve around the development of machine learning-based
intrusion detection systems (IDS); deep learning may be emphasized in different ways.
Hamed Alqahtani uses the KDD'99 Cup dataset and other traditional machine-learning
techniques to model IDS. The research highlights the significance of comprehending the
nature of cyber-security data and extracting pertinent features through its comprehensive
approach to dataset preparation and examination. Classification issues are addressed by a
variety of machine learning techniques, including Decision Trees, Random Forests, Artificial
Neural Networks, Bayesian Networks, and Naive Bayes. The evaluation of the success of the
IDS model focuses mostly on performance indicators, such as accuracy, precision, recall, and
F-score. The study concludes that a data-driven strategy is essential for providing intelligent
cyber-security services (Alqahtani, 2020). However, Santhosh Parampottupadam is more
concerned in using deep learning models to detect network intrusions in real time. The work
starts with an awareness of the problem and an assessment of the literature, using the CRISP-
DM methodology and highlighting the need to investigate the possibilities of deep learning in
this field. Because the NSL-KDD dataset is of greater quality than KDDcup99, it was used.
In particular, binomial and multinomial deep learning models are being created to predict
intrusions and classify attacks, respectively. When comparing H2O deep learning models
with other machine learning techniques, evaluation metrics like accuracy and detection rates
show better results. (Moldovann, 2018).

2.6 Comparative Analysis of Cloud Security Frameworks: Traditional vs.
Machine Learning Approach

An comprehensive security framework for efficiently detecting network breaches is provided
in a research paper written by Rajendra Patil. Scalability, accuracy, and a low number of false
alarms are the main priorities of the method, which makes use of techniques including multi-
threaded models, Random Forest classifiers, signature-based detection, and feature selection
using an extended Bat Algorithm. Comprehensive recommendations for future work are
made, and quick processing times and good detection rates are demonstrated by experimental
validation (Rajendra Patil, 2019). On the other hand, a work written by Geetika Tiwari
presents an improved cloud security intrusion detection system based on machine learning
and deep learning. The process it describes involves gathering data, preparing it, selecting

5

features, and categorizing it in multiple ways. As evidenced by the experimental results, the
proposed model is effective in improving attack detection abilities and potentially reaching
up to 97% classification accuracy. Possible future research directions include improving
categorization efficiency and creating techniques for packet profiling. As a result, whereas
Rajendra Patil focuses on a comprehensive security architecture that emphasizes efficiency
and scalability, Geetika Tiwari's study offers a machine learning and deep learning-based
strategy with improved threat detection skills and the potential for high accuracy. These
papers provide useful advice on enhancing cloud security through the application of cutting-
edge intrusion detection methods. (Jain, 2022).

2.7 Comparative Analysis: Diverse Approaches to Intrusion Detection in
Cloud Security

This paper is by Muhammad Salman Saeed where the author discusses the nature and
mitigation of distributed denial-of-service (DDoS) attacks that are a significant threat to cloud
systems. The article stresses the lack of efficient intrusion detection systems and provides the
reader with a detailed overview of the several kinds of DDoS attacks and their causes. In
digging into the screening of intrusion detection, this work particularly pays attention to three
methods, namely: signature-based detection, anomaly-based detection, and stateful protocol
analysis. Moreover, the research also focuses on the effectiveness of machine learning
techniques namely as Random Forest, Naive Bayes, SVM, and decision trees for the
identification of intrusions. Based on experience, it is possible to conclude that the proposed
work contributes significantly to using the Random Forest classifier for improving the feature
selection and enhancing the accuracy of the intrusion detecting model up to 97,5% (M. S.
Saeed, 2022). On the other hand, K. Shanthi’s paper discusses basically the Anomaly based
IDS and focuses more on the use of machine learning techniques for accurate anomalies
detection. This technique entails applying SVM for this anomaly detection and for isolation
forest model. While classification is used by SVM to label anomalies the isolation forest
model on the other hand uses recursive partitioning to isolate the peculiarities of network
traffic data. Categorization is performed on input data after it has gone through feature
extraction methods such as auto-encoder structures. The proposed isolation forest model is
then compared with the SVM model on the NSL-KDD dataset and it is observed that the
SVM model performs slightly better than the isolation forest model. Consequently, the
anomaly-based machine learning models were seen to offer very fast and accurate outcomes
in terms of anomaly detection and especially when working with very big datasets that
consume very little memory. (Maruthi, 2023).

Index Research Papers Release

Date
Authors Results Limitations

1 Survey on Intrusion
Detection Systems
based on Deep
Learning

2019 Ali Azawii,
Sufyan T. Faraj
Al-Janabi, Belal
Al-Khateeb

High precision and detection
rate which reached
approximately 99%.

Limitations include dataset limitations, a
framework that focuses on TensorFlow, and
a lack of architecture reviews. Model
interpretability, complexity, and overfitting
are all ongoing challenges. Resolving these
enhances future research.

2 The Significant
Features of the
UNSW-NB15 and
the KDD99 Data
Sets for Network
Intrusion Detection
Systems

2015 Moustafa, Slay The UNSW-NB15 dataset
demonstrates that the suggested
feature selection ARM approach
yields feature that represent
both normal and attack records.
However, decision engine
algorithms struggle to discern
between normal and attack rows
due to their comparable values.

The reliance on a small set of 100 rules for
feature selection, potentially overlooking
crucial attributes. The strict requirement of
precisely 11 features may limit adaptability,
and the lack of extensive validation across
various datasets could compromise
generalizability.

3 Intrusion Detection
on AWS Cloud

2023 RM & MK PCM + FCM-SMO + AE
technique accuracy = 95.3%. on

The study analysed existing and new
strategies across four assault categories

6

through Hybrid
Deep Learning
Algorithm

CSE-CIC-IDS-2018 dataset. using various criteria, resulting in 480
statistics in total. However, potential biases,
dataset-specific overfitting, and limited
generalizability to real-world circumstances
are significant drawbacks, emphasising the
importance of careful interpretation of the
results.

4 An efficient
optimal security
system for intrusion
detection in cloud
computing
environment using
hybrid deep
learning technique

2022 M.Mayuranathan,
S.K. Saravanan,
B. Muthusenthil,
A. Samydurai

The proposed DKNN classifier
outperformed current state-of-
the-art LSTM-SGDM, LSTM-
ADAM, CNN, CNN-LSTM,
RC-NN, and DKNN classifiers
in terms of accuracy, TPR,
TNR, precision, recall, and F-
measure.

The study demonstrates the effectiveness of
the proposed EOS-IDS model using
DARPA-IDS and CSE-CIC-IDS2018
datasets. However, limitations include
potential dataset biases, reliance on specific
pre-processing methods and algorithms, and
the absence of real-world deployment
validation.

5 Effective Intrusion
Detection System
to Secure Data
 in Cloud Using
Machine Learning

2021 Ammar Aldallal,
Faisal Alisa

Outperformed benchmarks by
up to 5.74% using CICIDS2017
dataset. Achieved a maximum
detection rate of 100% with 20
optimal features. Improvement
ranged from 3.32% to 5.14%
compared to previous works
using different datasets.

The study showcased the efficacy of SVM
kernel functions and feature selection for
intrusion detection, albeit with potential
constraints related to dataset-specific
nuances and methodological choices.
Comparisons with prior works may be
influenced by varying experimental setups
and metrics, underscoring the need for
broader investigations with diverse datasets
and methods to validate the findings.

6 Machine Learning
Based Hybrid
Intrusion Detection
for Virtualized
Infrastructures In
Cloud Computing
Environments

2021 Ayesha Sarosh Better accuracy compared to
earlier approaches

The hybrid intrusion model of K-means and
SVM ensures accurate and quick detection,
however it may have scaling limitations.
Correlating application and network logs
improves detection but may increase
computational effort.

7 DDoS attack
detection using
machine learning
techniques in cloud
computing
environments

2017 M. Zekri, S. E.
Kafhali, N.
Aboutabit, Y.
Saadi

High detection accuracy (C4.5:
98.8%, Naïve Bayesian:
91.4%), Low false positives and
false negatives, Efficient
detection rate, Comparative
analysis showing superiority of
C4.5 algorithm for DDoS
detection.

The experiment detects DDoS attacks using
C4.5 classification with a promising
detection rate of over 98%. However,
limitations include the inability to simulate
large cloud networks and reliance on a
virtual environment instead. The use of
parameterized python-scripts for generating
normal network traffic may not fully
replicate real-world scenarios.

8 Hybrid Deep
Neural Architecture
for Detection of
 DDoS Attacks in
Cloud Computing

2021 Aanshi Bhardwaj,
Veenu Mangat,
Renu Vig

Achieved a detection rate of
95.74% and an accuracy of
98.25%.

The suggested technique detects DDoS with
high accuracy and speed; however it is
prone to dataset overfitting and lacks
generalizability outside the CICIDS2017
dataset. Further validation across several
datasets and real-world contexts is required.

9 Cyber Intrusion
Detection Using
Machine Learning
Classification
Techniques

2020 Hamed Alqahtani Random Forest classifier
consistently outperforms others
in terms of accuracy, precision,
recall, and F1-score, reflecting
cyber-attack patterns
effectively.

The study recommends Random Forest for
intrusion detection because of its higher
performance across metrics. However,
relying on a single dataset restricts
generalizability and may miss developing
dangers. Integrating recency-based or
contextual models may improve system
efficacy.

10 Cloud-based Real-
time Network
Intrusion Detection
Using Deep
Learning

2018 Santhosh
Parampottupada,
Arghir-Nicolae
Moldovann

H2O deep learning models
using cross-validation achieved
over 99.5% accuracy on the
training dataset and over 83%
accuracy on the test dataset for
both binomial and multinomial
classification.

The study compares binomial and
multinomial models for intrusion detection.
Binomial models excel in accuracy but lack
generalization, while multinomial models
perform decently but lack consistency
across attack classes.

11 Designing an
efficient security
framework for
detecting intrusions
in virtual network
of cloud computing

2019 Rajendra Patil,
Harsha Dudeja,
Chirag Modi

Detection of intrusions with
high accuracy (more than
 97% intrusive connections
detected in real-time
simulation), Low false positives
(<0.5% false positive rate),
Comparative analysis with
existing approaches showing
improved performance

The HLDNS framework shows promising
results in detecting intrusions in both real-
time simulation and offline validation.
However, limitations include potential
performance variations in dynamic network
environments, increased computational
costs with larger datasets, reliance on the
quality of training data, and the need for
further validation across diverse network
architectures.

12 Detecting and
Classifying
Incoming Traffic in
a Secure Cloud
Computing
Environment Using
Machine Learning
and Deep Learning

2022 Geetika Tiwari,
Ruchi Jain

Results showed enhanced attack
detection and
increased classification
accuracy up to 97%. Future
work aims to explore advanced
packet profiling and improve
categorization performance
through methods like data

Reliance on a single dataset, UNSW-NB15,
potentially limiting real-world applicability.
Evaluation metrics may oversimplify
performance assessment. Lack of validation
on diverse datasets or real cloud
environments hampers generalizability.
Additionally, practical deployment and
resource constraints are not fully explored.

7

System mining and clustering.
13 Machine Learning

Based Intrusion
Detection System
in Cloud
Environment

2022 Muhammad
SalmanSaeed,
Raman Saurabh,
Sarang
Balasaheb
Bhasme, Alexey
N.Nazarov

The study proposes a security
framework for cloud intrusion
detection, with a focus on
DDoS attacks. It suggests
machine learning, namely
Random Forest, which achieves
99.99% accuracy. It focuses on
real-time detection and the
exploration of various machine
learning algorithms to improve
cloud security.

The paper mainly concentrates on DDoS
attacks, neglecting other intrusion types.
The evaluation could be more
comprehensive with diverse datasets and
attack scenarios.

14 Machine Learning
Approach for
Anomaly-Based
 Intrusion Detection
Systems Using
Isolation Forest
Model and Support
Vector Machine

2023 K. Shanthi, R.
Maruthi

The research compared isolation
forest and SVM for
anomaly detection, with
isolation forest showing slightly
better performance. Anomaly-
based machine learning offers
fast, accurate detection,
depending on proper feature
selection.

It doesn't address the scalability of the
proposed approach for larger datasets. Does
not consider the impact of different anomaly
types on detection performance

15 Intrusion Detection
in Cloud
Environments
using Hybrid Deep
Learning

2024 Kunal Rana The experiments emphasised
the relevance of algorithm
selection and feature extraction
strategies, with autoencoders
demonstrating potential for
enhancing classification
accuracy with Bi-LSTM with
auto encoder performing the
best with 86% accuracy.

Limitations include dataset reliance,
algorithm focus, metric selection, and
interpretability issues. These concerns could
be addressed by diversifying datasets,
experimenting with different methods, and
improving interpretability.

3 Research Methodology

In my research, I have used supervised and unsupervised learning. Supervised learning
implies that the algorithm is privy to the expected outcome. In other words, through the input
data, the mathematical model is trained for making accurate predictions. This type of learning
is known as supervised learning and it utilizes data from a dataset, both the input and output.
For example, the application of supervised learning can be employed to justify whether an
email is genuine or not (0/1 situation).

The research design applied in this study aims at systematically achieving the major research
goals of this study, which is to build and test the efficiency of machine learning and deep
learning algorithms in intrusion detection on cloud computing systems. The basic preparation
involves the installation of essential libraries and the loading of datasets using the Pandas
library. The next step involves rigorous data cleaning procedures to handle the missing values
and ensure that the cleaned data is of good quality. Plots and visualizations are then
performed to explain the features of the dataset by applying tools from exploratory data
analysis. Following the data preparation process there are several pre-processing techniques
used for enhancing the usefulness of the data in the model, these include; label encoding,
Min-Max scaling for normalization, and label binarization. To handle the problem of class
imbalance, Synthetic Minority Over-Sampling Technique or SMOTE is applied. To
guarantee a robust model evaluation, the dataset is then divided into training and testing sets
at a ratio of 90:10. This account relies on the following sources: The process of feature
selection and enhancement involves employing AutoEncoder neural networks which reduce
the dimensionality a given dataset while preserving vital details. This step is necessary in
order to optimise the performance and efficiency of the above model. Some of these are
decision trees, logistic regression, and LSTMs and BiLSTMs which are different types of
architectures in Machine learning and Deep learning. Standard model performance evaluation
metrics such as confusion matrix and classification report are used. These metrics explain
how accurately the models predict the cybersecurity outcomes that needs to be fixed for

8

creating robust security system resistant to the constantly evolving threats. (M.
Mayuranathan, 2022).

My novelty in the research comprises using Long Short-Term Memory (LSTM) and
Bidirectional LSTM (Bi-LSTM) with autoencoders to identify intrusions in cloud settings.
This solution overcomes numerous issues inherent in standard intrusion detection systems by
using the capabilities of recurrent neural networks (RNNs) and autoencoders.

Recurrent Neural Networks are special artificial neural networks that are used to process
sequential data while keeping information from the previous steps. In contrast to feedforward
neural networks, which work on inputs separately, RNNs contain connections that form
directed loops, so they can incorporate temporal characteristics. The main characteristic of
RNNs is the presence of memory or state of the previous inputs so they can model sequential
data. This memory mechanism allows the RNNs to utilize information from previous time
steps to make a prediction or decision on the present data. Another major drawback of most
basic RNNs is the gradient vanish or explode problem which hinders the ability of the
network to develop long-term dependencies during the training phase. To overcome this
difficulty, other types of RNNs such as Long Short-Term Memory (LSTM) network have
been proposed.

Autoencoders work such that they are able to come up with a simplified and more
informative version of the input data. The technique utilized training of autoencoder models
to learn first and second-order statistics features of the unlabeled network traffic data of both
normal and anomalous traffic. These learnt properties, are feed into the LSTM and Bi-LSTM
models to enhance the performance of intrusion detection.

The study is concerned with intrusion detection in cloud environment taking into
consideration challenges typical for this environment. Specificity, constraints, and inherent
volatility of cloud environments are crucial aspects to bear in mind when it comes to
designing customized intrusion detection algorithms for the cloud.

Figure 1: Process flow of proposed model

Step 1: Dataset acquisition

9

In this stage, all the libraries needed for data manipulation, analysis, and machine learning
model implementation are imported and installed. NumPy, Seaborn, Matplotlib, NumPy, and
Scikit-learn are among the frequently used libraries. The dataset is brought into the
programming environment using the Pandas library. Pandas is well-suited for managing
structured data, such as CSV files, because it offers robust capabilities for data analysis and
modification.

Step 2: Data pre-processing and Visualization

This process removes null or missing values in the dataset hence is regarded as data cleaning
process. To achieve this, missing data may be drop down to rows or columns, or values can
be imputed employing techniques such as mean or median imputation. The process of
gaining knowledge about the set of variables and their distributions is called exploratory data
analysis or EDA. ‘Loans and deposits’ refers to money given and received by a company for
a fixed period of time usually for business operations. When preparing the data to be used for
training the model, certain pre-processing steps are taken. This involves performing label
encoding to transform a categorical feature into numerical, normalizing the numerical
features with the Minmax Scaler, and binarizing the labels if necessary.

Step 3: Data Splitting

In order to correct the imbalance in class, the Synthetic Minority Over-sampling Technique
(SMOTE) oversamples the minority class. To reduce class imbalance and increase model
correctness, this approach generates new samples. To assist in assessing the performance of
the model, the dataset was split into test and training sets. It is common practice to divide the
data into 90:10 training and test data sets in order to guarantee efficient training and
validation..

Step 4: Model Training & Evaluation

I used autoencoder neural networks for feature selection and augmentation. This method
improves the learning and efficiency of the model by reducing the dimensionality of the input
characteristics while maintaining crucial information. Common assessment tools like the
confusion matrix and classification report are used to evaluate the model's performance.
These metrics give information on the model's recall, accuracy, precision, and F1-score,
enabling a thorough evaluation of the model's performance.(Moldovann, 2018).

4 Algorithms

Algorithms are essential for creating and implementing intrusion detection systems (IDS) in
AWS cloud settings, which improve network security. These algorithms cover a wide
spectrum of methodologies, ranging from complex deep learning structures to conventional
machine learning classifiers. Researchers want to improve the capacity to identify and
successfully counteract cyber-attacks by utilising algorithms like Logistic Regression,
Decision Tree Classifier, Long Short-Term Memory (LSTM), Bidirectional Long Short-Term

10

Memory (BiLSTM), and hybrid combinations thereof. These algorithms provide strong
solutions for intrusion detection and prevention and have been carefully chosen and
customised to match the dynamic and ever-evolving nature of security concerns in cloud
systems. Researchers work to improve the overall security posture of AWS cloud
infrastructures by applying algorithms methodically and protecting vital data and resources
from a wide range of possible attacks (Zekri, 2017).

4.1 Logistic Regression

Logistic Regression is a fundamental algorithm employed primarily in binary classification
tasks, where the objective is to predict the likelihood that an observation belongs to a specific
class. It functions by creating a connection between one or more independent variables—
often referred to as features—and the dependent binary variable, which represents the class
labels (e.g., 0 or 1). The core function of a logistic regression is to estimate the probability of
the binary result, which is commonly expressed as the likelihood of falling into the positive
class (class 1, for example). The logistic function, sometimes referred to as the sigmoid
function, is used to estimate this likelihood. A few benefits of using logistic regression are its
ease of use, interpretability, and effectiveness when working with data that can be divided
into linear segments. It works especially effectively in situations when a linear function may
be used to describe the decision border between classes. Additionally, a deeper
comprehension of the underlying relationships within the data is made possible by the
insights that Logistic Regression offers into the influence of various features on the predicted
probabilities. Because of these qualities, binary classification jobs in a variety of industries,
such as marketing, finance, and healthcare, frequently employ logistic regression (Jain,
2022).

4.2 Decision Tree Classifier

The Decision Tree Classifier is an adaptable method that creates a hierarchical structure in
feature space for classification and regression applications. Leaf nodes provide expected class
labels, and each internal node indicates a judgement based on features. Its interpretability
makes decision pathways understandable to stakeholders, which is important in industries
like banking and healthcare. Nevertheless, decision trees can overfit, particularly when
dealing with intricate datasets. Methods like as pruning cut off extraneous branches,
simplifying and improving generalisation. Multiple trees are combined in ensemble
approaches, such as Random Forests, to reduce overfitting and increase accuracy. Decision
trees are widely used as machine learning basic models due to their interpretability and
simplicity, even in the face of difficulties. They are an essential tool in data analysis and
predictive modelling because they provide insightful information about patterns in data and
can be applied to a wide range of areas and data types (Jain, 2022).

11

4.3 Long-Short Term Memory (LSTM)

Long Short-Term Memory, or LSTM, is a major development in recurrent neural network
(RNN) architecture that was created expressly to solve the vanishing gradient issue that
plagues conventional RNNs. Specialised memory cells with three gates—input, forget, and
output—are the basis of LSTM operation. By controlling the input flow inside the network,
these gates allow LSTM models to selectively eliminate irrelevant data while retaining
critical information across lengthy periods. Because LSTMs can capture and retain long-term
relationships, they are very useful for processing sequential data in applications like speech
recognition, natural language processing, and time series prediction. Because LSTMs
overcome the drawbacks of conventional RNNs, they perform better at recognising
complicated sequences and capturing temporal trends. This makes them essential tools for a
wide range of applications, including intrusion detection in AWS cloud settings. Because of
their capacity to learn from sequential data, intrusion detection systems are more resilient
overall by enabling precise identification of network abnormalities and possible security risks
(M. Mayuranathan, 2022).

4.4 Bidirectional Long-Short Term Memory (Bi-LSTM)

Bidirectional Long Short-Term Memory, or BiLSTM, is an addition to the LSTM
architecture that improves sequential data modelling and comprehension. BiLSTMs interpret
input sequences concurrently using information from both past and future time steps, in
contrast to typical LSTMs that solely take into account past data. BiLSTMs use backward
and forward processing to handle input sequences, allowing them to extract context from both
the items that come before and after them in the sequence. This two-way technique greatly
enhances the network's comprehension and modelling of data relationships. BiLSTMs are
widely used in jobs like natural language processing where contextual awareness is crucial. In
applications like machine translation, named entity identification, and sentiment analysis,
where obtaining the context from surrounding words is essential for precise interpretation and
prediction, they perform exceptionally well. By using data from both past and future data
points, BiLSTMs provide improved capabilities for comprehending network traffic patterns
and spotting possible security risks in the context of intrusion detection in AWS cloud
systems (M. Mayuranathan, 2022).

5 System Architecture

12

Figure: Architecture Diagram

The Virtual Private Cloud (VPC) framework, which offers a safe and separate environment
within the cloud infrastructure, is the foundation of the recommended design. To provide
high availability and fault tolerance, it is composed of four subnets that are divide over
several availability zones. Two of these subnets are open to the public and are home to
resources that may be accessed over the internet, including web servers, VPN servers, load
balancers, and NAT gateways. These parts follow security best practices and allow for
external communication.

The other two subnets are private and include sensitive resources such as Elastic Cache and
the database. Placing these resources in private subnets increases security by limiting direct
internet access, protecting critical data from unauthorized access.

A public route table that is linked to an internet gateway facilitates internet connectivity.
Additionally, internet access for resources in the private subnet is provided via a NAT
Gateway that is linked to the private route table.

Security Groups control incoming and outgoing network traffic for a variety of components,
including the load balancer, Elastic Cache, VPN server, web server, and RDS (Relational
Database Service). These security groups implement access controls by allowing or refusing
communication according to predefined rules and protocols.

The autoscaling group handles web servers in the public subnet, scaling them dynamically
based on demand to maximize resource utilization and provide constant performance during
peak traffic periods.

13

AWS Code Deploy simplifies continuous integration and deployment, making it possible to
update and publish web applications seamlessly. This ensures that new features or repairs
may be implemented efficiently without affecting the application's availability.

The database server securely stores application data, while Elastic Cache is used for caching
to improve speed by reducing database load and response times.

CloudFront, a content delivery network (CDN), is used for content caching to improve
website performance by delivering material to users from edge locations that are closer to
them, lowering latency and enhancing user experience.

CloudWatch monitors the overall health and performance of the system, providing
information on resource utilization, application metrics, and system logs. Logs are kept in an
S3 bucket for analysis and compliance, with auditing and troubleshooting capabilities
available as needed.

The machine learning model is trained on historical network traffic data, which covers both
normal and attack scenarios. Once trained and validated, the model is integrated into the
architecture using Docker container to conduct real-time inference on incoming network
traffic.

As fresh network packets are acquired by monitoring tools like CloudWatch Logs, they go
through preliminary preprocessing steps with the help of an automated pipeline with pre-
written scripts. These preparation stages are critical to ensure data consistency, quality, and
readiness for further analysis. The automated pipeline performs activities such as handling
missing value, removing duplicates, and data normalization, preparing it for the machine
learning model's classification step.

The architecture is intended to be extremely scalable, allowing the machine learning model to
rapidly analyze large amounts of network traffic in real time. Scalability guarantees that the
system can withstand changes in incoming traffic volumes while maintaining performance
and responsiveness. Additionally, batch processing methods and distributed computing
frameworks can be used to improve the model's throughput and efficiency. By combining
these methodologies, the system can identify network attacks quickly and accurately while
minimizing latency, hence improving overall cybersecurity defenses in cloud settings.

6 Implementation

In my research, the acquisition and utilization of a complex UNSW-NB15 dataset which
comprises of a hybrid mix of real-world network activity and simulated attack behaviors, the
UNSW-NB15 dataset provides a thorough picture of the complexity of cloud infrastructure
security. This dataset, which is a huge collection of network packets produced at the Cyber
Range Lab of the Australian Centre for Cyber Security (ACCS), offers a special chance to
assess intrusion detection systems in settings similar to actual cloud installations. There are
nine different kinds of attacks in this dataset: worms, reconnaissance, shellcode, DoS,
backdoors, fuzzers, and exploits. In order to provide a total of 49 features with the class label,
twelve algorithms are built, and the Argus and Bro-IDS tools are utilised. There are 175,341
records in the training set and 82,332 records in the testing set, which includes both normal

14

and other attack kinds. The significance of this dataset stage lies in its contribution to access
intrusion detection in cloud environments, establishing it as not only important but also the
initial step in the research process (Sarosh, 2021).

Dataset Loading and Cleaning:

The import of necessary libraries, such NumPy, Pandas, and Seaborn, which offer powerful
data manipulation and visualisation capabilities, is the first step in the dataset loading
process. The UNSW-NB15 dataset, which is kept in a CSV file format, is loaded using the
Pandas package. After which I moved on to data cleaning which involves several essential
stages in order to guarantee data integrity and get the information ready for analysis.
Columns that are deemed unnecessary, such "service" and "id," are removed. In addition, the
target column is updated to exclude instances of the 'Analysis' attack category in order to
highlight more pertinent assault kinds. To find possible data inconsistencies, the presence of
missing values is also evaluated. Finding patterns and trends in the dataset's features and
attributes is the goal of visual analysis. First, to comprehend the numerical and category
character of the data, the unique values in every column are looked at. The distribution and
frequency of particular traits, like "attack categories" and "transaction protocols," are then
visualised using box plots and bar charts as shown below in Fig.2 and Fig.3 (Moustafa,
2015).

Figure 2: Value count of different attack categories.

Figure 3: Value count of different protocols

15

Dataset Pre-processing:

After loading and cleaning the dataset, the second step involves data pre-processing.
First, label encoding is used to transform the feature set's categorical variables into a numeric
representation. In order to investigate the linear relationship between characteristics, a
correlation matrix is computed. It helps in locating strongly linked or redundant features,
which may have an impact on model performance. The range of feature values between 0 and
1 is normalised for the feature set using Min-Max scaling. This helps in ensuring that every
feature contributes equally to the training of the model and that features with bigger scales do
not control the learning process. Synthetic Minority Over-sampling Technique (SMOTE) is
used to balance the dataset. To address class imbalance difficulties, this strategy creates
synthetic samples for the minority class (less common attack categories) so that the model
learns from a more representative dataset as shown in Fig.5.

Figure 5: Value count of different attack categories after applying SMOTE

Feature Selection:

The selection of features is one of the most crucial steps in the machine learning and deep
learning model training process. Feature selection is used in this study to make sure the
model is trained with the best possible set of features—removing any that are considered
unimportant. The method used for feature evaluation is correlation-based feature selection.
Based on how well a feature correlates with the target variable, it evaluates a dataset. Weakly
correlated features are deemed less predictively useful than those that are strongly correlated
with the target variable. The correlation method groups features according to how closely
they resemble the target variable, analysing the relationship between each feature and the
intended result. It then chooses a subset of features to give the machine learning model the
most pertinent characteristics (M. Mayuranathan, 2022).

16

Figure 6: Statistics of correlation matrix

Models (Training & Testing):

The train-test split was the method used for data partitioning, which divided the labels and
data. 10% was set aside for testing and 90% of the dataset was allocated for training. Building
a hybrid learning model for intrusion detection in cloud environments was the aim of this
project. The hybrid learning approach incorporates Long-Short-Term Memory (LSTM),
Decision Tree, Bidirectional Long-Short-Term Memory (BiLSTM), and Logistic Regression
classifiers. After developing the model, the split data and labels were fitted to the hybrid
learning model that was trained on the training dataset. After the model was trained and
saved, the testing dataset was used to assess the model's accuracy and F1 score.

During the last stage, the system was tested using the testing dataset. Ten percent of the
original dataset was set aside for testing, and the other ninety percent was used for system
training. The testing findings are presented below in the evaluation section including the
specific results from each algorithm.

7 Evaluation

The results of applying and assessing machine learning and deep learning models for
Intrusion detection in cloud environments are shown in this part, along with metrics like
accuracy, F1-score, and confusion matrix. Based on the data, Logistic Regression was able to
attain an accuracy rate of 62%. Decision Tree Classifier showed the least accuracy, with F1
score of 53%. LSTM when trained and tested without autoencoder was able to achieve an
accuracy of 82%. BiLSTM without the use of autoencoder reaches accuracy rate of 83%.
With an F1 score of 80% and accuracy of 81%, there was not much difference of using
autoencoders with the LSTM model. With an 86% accuracy rate and an F1 score of 86% for
intrusion detection, BiLSTM with autoencoders demonstrated remarkable proficiency in
detection cyber-attacks. The outcomes of every algorithm include a Confusion Matrix along
with related measures such as accuracy, recall, precision, f1-score, weighted average, and
macro-average.

17

Accuracy - Accuracy measures the proportion of correctly classified instances out of the total
instances. It is calculated as the ratio of the number of correct predictions to the total number
of predictions.

Precision - Precision measures the proportion of true positive predictions out of all positive
predictions made by the model. It is calculated as the ratio of true positives to the sum of true
positives and false positives.

Recall (Sensitivity) - Recall measures the proportion of true positive predictions out of all
actual positive instances in the dataset. It is calculated as the ratio of true positives to the sum
of true positives and false negatives.

F1-score – The F1-score is the harmonic mean of precision and recall, providing a balance
between these two metrics.

Confusion Matrix - A confusion matrix provides a tabular representation of the actual vs.
predicted classes by the model. It includes four values: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).
True Positive (TP): The percentage of values correctly identified as true by the model,
considering both the actual truth and the predicted outcomes.
True Negative (TN): The true negative represents the percentage of values that are genuinely
negative, and the model correctly predicts a negative outcome as well.
False Positive (FP): The False Positive is the count of truly negative values for which the
model predicted a positive outcome.
False Negative (FN): The false negative is the percentage of truly negative values that the
model erroneously predicted to be true (Azawii, 2019).

18

ML & DL MODEL Test Accuracy Score Precision Recall F1-sccore
Logistic Regression 62 64 62 63
Decision Tree Classifier 56 56 56 52
LSTM 82 82 82 81
Bi-LSTM 83 84 83 83
LSTM with AutoEconder 81 82 81 80
Bi-LSTM with AutoEncoder 86 87 86 86

7.1 Experiment 1: Evaluating Logistic Regression Classifier

The experiment attempts to assess the Logistic Regression classifier's performance in terms
of precision, recall, and F1 score. The confusion matrix visualises the classifier's capacity to
categorise cases. Rows indicate expected labels, with "Backdoor" denoted by zero, “DoS”
denoted by one, “Exploits” denoted by two, “Fuzzers” denoted by three, “Generic” denoted
by four, “Normal” denoted by five, “Reconnaissance” denoted by six, “Shellcode” denoted
by seven and "Worms" by eight. Columns correspond to the actual labels and rows
correspond to predicted labels. True Positive (TP) and True Negative (TN) is represented by
counts of 2643, 1732,1784, 2162, 3344, 2291, 1751, 2136 and 2940 for the respective labels
from backdoor till worms. False Positive (FP) is represented by the values present in the same
column by counts of 428, 291, etc for backdoor and so on for the respective labels. False
Negative (FN) is represented by the values present in the same rows by counts of 269, 88, etc
for backdoor and so on for respective labels.
The bar graph above shows significant metrics from the classification report. Precision,
recall, and F1 scores are provided for each class. For backdoor attacks (class 0), precision is
63%, recall is 71%, and F1 score is 67. For DoS attacks (class 1), precision is 54%, recall is
47%, and F1 score is 51. For Exploits (class 2), precision is 66%, recall is 49% and F1 score
is 56. For Fuzzers (class 3), precision is 60%, recall is 58% and F1 score is 59. For Generic
(class 4), precision is 83%, recall is 88% and F1 score is 85. For normal (class 5), precision is
93%, recall is 63% and F1 score is 75. For reconnaissance (class 6), precision is 39%, recall
is 47% and F1 score is 42. For shellcode (class 7), precision is 48%, recall is 59% and F1
score is 53. For worms (class 8), precision is 71%, recall is 79% and F1 score is 75.
These visualisations provide a succinct overview of the Logistic Regression Classifier's
ability to discriminate between different types of attacks , providing useful insights into its
classification performance.

 Actual True/False
Predicted Positive/Negative True Positive False Positive

False Negative True Negative

19

Figure 7: Confusion Matrix Logistic Regression

. . .

7.2 Experiment 2: Evaluating Decision Tree Classifier

The goal of this experiment is to determine the usefulness of the Decision Tree classifier by
assessing its precision, recall, and F1 score. The confusion matrix for the Decision Tree
classifier provides crucial performance parameters for identifying different types if attacks.
Columns correspond to the actual labels and rows correspond to predicted labels. True
Positive (TP) and True Negative (TN) is represented by counts of 2927, 1408, 524, 2439,
3594, 1817, 0, 3003 and 2959 for the respective labels from backdoor till worms. False
Positive (FP) is represented by the values present in the same column by counts of 456, 284,
164, etc for DoS and so on for the respective labels. False Negative (FN) is represented by
the values present in the same rows by counts of 524, 336, 476, etc for DoS and so on for
respective labels.
The classification report also displays the precision, recall, and F1 score for each class. For
backdoor (class 0), precision is 62%, recall is 79% and F1 score is 69. For DoS (class 1),
precision is 57%, recall is 39% and F1 score is 46. For exploits (class 2), precision is 47%,
recall is 14% and F1 score is 22. For fuzzers (class 3), precision is 40%, recall is 65% and F1
score is 50. For generic (class 4), precision is 100%, recall is 95% and F1 score is 97. For
normal (class 5), precision is 95%, recall is 50% and F1 score is 65. For reconnaissance (class
6), precision is 0%, recall is 0% and F1 score is 0. For shellcode (class 7), precision is 32%,
recall is 83% and F1 score is 47. For worms (class 8), precision is 72%, recall is 80% and F1
score is 76%.
These data highlight the Decision Tree classifier's weak performance and ability in
distinguishing between different types of attacks.

Figure 8: Confusion Matrix Decision Tree Classifier

. . .

20

7.3 Experiment 3: Evaluating Long-Short Term Memory(LSTM) without
Auto Encoders

The goal of this experiment is to determine the long-short term memory (LSTM) algorithm’s
effectiveness by evaluating its performance parameters such as precision, recall, and F1
score. The LSTM's confusion matrix visually illustrates its ability to discriminate between
different attacks. Columns show the actual labels (0 for Backdoor, 1 for DoS, 2 for Exploits,
3 for Fuzzers, 4 for Generic, 5 for Normal, 6 for Reconnaissance, 7 for Shellcode and 8 for
Worms), whereas rows represent anticipated labels. Columns correspond to the actual labels
and rows correspond to predicted labels. True Positive (TP) and True Negative (TN) is
represented by counts of 3394, 2404, 2014, 2630, 3481, 3169, 3027, 3369 and 3652 for the
respective labels from backdoor till worms. False Positive (FP) is represented by the values
present in the same column by counts of 10, 57, 5, etc for exploits and so on for the
respective labels. False Negative (FN) is represented by the values present in the same rows
by counts of 875, 120, 0, etc for exploits and so on for respective labels. The classification
report refines these parameters. For Backdoor, precision is 70%, emphasising accurate
positive predictions. The model's 93% recall indicates accuracy in detecting valid cases,
resulting in an 80 F1 score. For DoS, the model had a 60% precision, indicating exact
affirmative predictions, while a 66% recall captures a significant amount along with F1 score
which is 63. For Exploits, precision is 75%, recall is 54% and F1 score is 63. For Fuzzers, a
precision of 80%, recall 71% along with F1 score of 75. For Generic, precision is 100%,
recall is 96% and F1 score is 98. For Normal, precision is 92%, recall is 86% and F1 score is
89. For Reconnaissance, precision is 85%, recall is 82% and F1 score is 83. For Shellcode,
precision is 83%, recall is 90% and F1 score is 86. And lastly, for Worms, precision is 93%,
recall is 97% and F1 score is 95. These data highlight the Long-Short Term Memory
algorithm’s robust performance and ability in distinguishing between different types of
attacks.

Figure 9: Confusion Matrix Long-Short Term Memory (LSTM)

. . .

7.4 Experiment 4: Evaluating Bidirectional Long-Short Term Memory
(Bi-LSTM) without Auto Encoders

The purpose of this experiment is to assess the Bidirectional Long-Short Term Memory (Bi-
LSTM) algorithm’s usefulness by measuring performance parameters such as precision,
recall, and F1 score. The confusion matrix visually represents the Bidirectional Long-Short
Term Memory (Bi-LSTM) algorithm’s performance in discriminating between different types
of attacks. Columns represent actual labels, whereas rows represent anticipated labels.
Columns correspond to the actual labels and rows correspond to predicted labels. True

21

Positive (TP) and True Negative (TN) is represented by counts of 3510, 2443, 2000, 2518,
3492, 3383, 3095, 3478 and 3719 for the respective labels from backdoor till worms. False
Positive (FP) is represented by the values present in the same column by counts of 17, 92, 62,
etc for fuzzers and so on for the respective labels. False Negative (FN) is represented by the
values present in the same rows by counts of 12, 3, 302, etc for fuzzers and so on for
respective labels. In the classification report, precision for Backdoor attacks is 69%,
demonstrating moderate accuracy in properly identifying them, while recall is 96%,
suggesting the model's success in catching a large number of actual legitimate backdoor
attacks. The F1 score for backdoor attacks is 80%, indicating a balanced performance. For
DoS, the precision is 60%, recall is 67% and F1 score is 63. For Exploits, precision is 79%,
recall is 53% and F1 score is 63%. For Fuzzers, precision is 87%, recall is 68% and F1 score
is 76. For Generic, precision is 100%, recall is 96% and F2 score is 98. For Normal, precision
is 89%, recall is 91% and F1 score is 90. For Reconnaissance, precision is 85%, recall is 84%
and F1 score is 85. For Shellcode, precision is 88%, recall is 93% and F1 score is 90. For
Worms, precision is 97%, recall is 99% and F1 score is 98, indicating a balanced approach to
identifying different types of attacks.

Figure 10: Confusion Matrix Bidirectional Long-Short Term Memory (Bi-LSTM)

. . .

7.5 Experiment 5: Evaluating Long-Short Term Memory with Auto
Encoder

The goal of this experiment is to determine the effectiveness of the Long-Short Term
Memory (LSTM) algorithm by evaluating its performance parameters such as precision,
recall, and F1 score. The Long-Short Term Memory (LSTM) algorithm's confusion matrix
visualises its ability to discriminate between different types of attacks. Columns reflect actual
labels (0 for Backdoor, 1 for DoS, 2 for Exploits, 3 for Fuzzers, 4 for Generic, 5 for Normal,
6 for Reconnaissance, 7 for Shellcode and 8 for Worms), whereas rows indicate anticipated
labels. Columns correspond to the actual labels and rows correspond to predicted labels. True
Positive (TP) and True Negative (TN) is represented by counts of 3653, 2572, 1438, 2540,
3401, 3149, 2934, 3570 and 3602 for the respective labels from backdoor till worms. False
Positive (FP) is represented by the values present in the same column by counts of 24, 6, 0,
etc for generic and so on for the respective labels. False Negative (FN) is represented by the
values present in the same rows by counts of 54, 31, 4, etc for generic and so on for
respective labels. The classification report improves upon these indicators. The precision for
backdoor attacks is 66%. A 97% recall illustrates the model's ability to recognise authentic
cases, resulting in a 79 F1 score. DoS attacks have a 56% precision, recall is 68% and F1
score 62. For Exploits, precision is 79%, recall is 38% and F1 score is 52. For Fuzzers,
precision is 81%, recall is 69% and F1 score is 75. For generic, precision is 99%, recall is

22

94% and F1 score is 97. For Normal, precision is 91%, recall is 87% and F1 score is 89%.
For Reconnaissance, precision is 82%, recall is 80% and F1 score is 81. For Shellcode,
precision is 86%, recall is 95% and F1 score is 90. Lastly, for Worms, precision is 99%,
recall is 98% and F1 score is 99, demonstrating the model's balanced precision and recall in
most of the classes.

Figure 11: Confusion Matrix LSTM with AutoEncoder

. . .

7.6 Experiment 6: Evaluating Bidirectional Long-Short Term Memory
with Auto Encoders

The purpose of this experiment is to assess the Bidirectional Long-Short Term Memory (bi-
LSTM) algorithm with AutoEncoder by measuring performance parameters such as
precision, recall, and F1 score. The confusion matrix visually represents the Bi-LSTM
algorithm’s performance in discriminating between different types of attacks. Columns
represent actual labels, whereas rows represent anticipated labels. Columns correspond to the
actual labels and rows correspond to predicted labels. True Positive (TP) and True Negative
(TN) is represented by counts of 3656, 2959, 2197, 2711, 3469, 3309, 3082, 3626 and 3655
for the respective labels from backdoor till worms. False Positive (FP) is represented by the
values present in the same column by counts of 7, 11, 143, etc for normal and so on for the
respective labels. False Negative (FN) is represented by the values present in the same rows
by counts of 145, 12, 65, etc for normal and so on for respective labels. In the classification
report, precision for Backdoor is 71%, demonstrating accuracy in properly identifying them,
while recall is 98%, suggesting the model's success in catching a large number of actual
backdoor attacks. The F1 score for backdoor attacks is 82%, indicating a balanced
performance. The algorithm accurately identified DoS attacks with a precision of 66% and
recall of 78%. The F1 score for DoS attacks is 72%, indicating a balanced approach to
identifying DoS attacks. For Exploits, precision is 84%, recall is 59% and F1 score is 69. The
algorithm’s precision for Fuzzer attacks is 91%, recall is 74% and F1 score is 81. For Generic
attacks, precision is 99%, recall is 96% and F1 score is 98%. For normal connections,
precision is 93%, recall is 91% and F1 score is 92%. For Reconnaissance, precision is 90%,
recall is 84% and F1 score is 87%. For Shellcode attacks, precision is 92%, recall is 96% and
F1 score is 94%. For worm attacks, precision is 98%, recall is 100% and F1 score is 99%,
illustrating a balanced performance in classifying different types of attacks.

23

Figure 12: Confusion Matrix Bi-LSTM with AutoEncoder

. . .

7.7 Discussion

The experiments in this study sought to assess the performance of various machine learning
algorithms, including Logistic Regression, Decision Tree Classifier, Long-Short Term
Memory (LSTM), and Bidirectional Long-Short Term Memory (Bi-LSTM), in classifying
different types of attacks in network intrusion detection. Each trial revealed the individual
algorithm’s strengths and flaws.

In Experiment 1, the Logistic Regression classifier performed moderately across the assault
classifications. Precision, recall, and F1 scores varied between classes, with some
outperforming others. For example, the classifier performed well for "Generic" and "Normal"
classes, but poorly for "Reconnaissance" and "Shellcode." The confusion matrix revealed
information on the classifier's ability to categorise distinct attack types, and the classification
report summarised the precision, recall, and F1 scores for each class. Overall, the Logistic
Regression classifier produced encouraging results; however, there is potential for
improvement, particularly in classes with lower performance metrics.

In Experiment 2, the performance of the Decision Tree classifier varied among attack classes.
Some courses obtained excellent precision, recall, and F1 scores, while others had lower
performance measures. For example, the classifier performed well for "Generic" and
"Normal" classes, but poorly for "Exploits" and "Reconnaissance." The confusion matrix
revealed information on the classifier's ability to categorise distinct attack types, and the
classification report summarised the precision, recall, and F1 scores for each class. Overall,
the Decision Tree classifier performed inconsistently, showing the need for additional
optimisation, and refining to improve its effectiveness in network intrusion detection.

In Experiment 3, the Long-Short Term Memory (LSTM) algorithm performed well across
multiple attack types. Precision, recall, and F1 scores varied between classes, with some
outperforming others. For example, the LSTM scored great precision and recall for "Generic"
and "Normal" classes but performed poorly for "DoS" and "Reconnaissance." Overall, the
LSTM algorithm without autoencoders produced encouraging results, pointing to its potential
for network intrusion detection.

In Experiment 4, similar to the LSTM technique, the Bidirectional Long-Short Term Memory
(Bi-LSTM) approach without autoencoders performed well across multiple attack classes.
Precision, recall, and F1 scores varied between classes, with some outperforming others. For
example, the Bi-LSTM performed well in "Generic" and "Normal" classes, but poorly in

24

"Exploits" and "Reconnaissance." Overall, the Bi-LSTM algorithm without autoencoders
produced promising results, demonstrating its usefulness in network intrusion detection.

In Experiment 5, adding autoencoders to the LSTM algorithm enhanced its performance
metrics across a variety of attack types. Precision, recall, and F1 scores improved
significantly compared to the LSTM without autoencoders. Classes such as "DoS" and
"Exploits" showed significant increases in precision, recall, and F1 scores, demonstrating that
the LSTM with autoencoders can distinguish between different attack types. Overall, the
LSTM with autoencoders outperformed the unencoded LSTM, demonstrating autoencoders'
usefulness for feature extraction in network intrusion detection.

In Experiment 6, incorporating autoencoders into the Bidirectional Long-Short Term
Memory (Bi-LSTM) method improves performance metrics across a variety of attack classes.
Precision, recall, and F1 scores improved significantly compared to the Bi-LSTM without
autoencoders. Classes such as "Exploits" and "Reconnaissance" showed significant increases
in precision, recall, and F1 scores, demonstrating that the Bi-LSTM with autoencoders can
distinguish between different attack types. Overall, the Bi-LSTM with autoencoders
performed better, highlighting the efficacy of autoencoders in feature extraction for network
intrusion detection.

8 Conclusion and Future Work

In this study, I sought to evaluate the performance implications of employing machine
learning and deep learning algorithms for intrusion detection in cloud environments, and how
do they contribute to improving the overall security posture of cloud infrastructures?

Throughout my research, I have successfully assessed a variety of machine learning methods,
including Logistic Regression, Decision Tree, Long-Short Term Memory (LSTM), and
Bidirectional Long-Short Term Memory (Bi-LSTM), for intrusion detection in cloud
environments. I evaluated each algorithm's performance measures across distinct attack
classes using a series of trials, including precision, recall, and F1 scores. The findings provide
important insights into the effectiveness of these machine learning and deep learning methods
for detecting intrusions in cloud environments. While some algorithms performed well in
detecting specific attack types, others showed limitations in their usefulness. For example,
algorithms like as LSTM and Bi-LSTM have shown promising results in differentiating
between different attack classes, especially when combined with feature extraction
approaches such as autoencoders. However, the research identifies several limitations and
obstacles in using hybrid deep learning for intrusion detection in cloud systems. These
include challenges with dataset imbalance, algorithm complexity, and the necessity for
ongoing monitoring and adaption to changing threats. Despite these limitations, this study
adds to the body of knowledge in cloud security by exploring the performance implications
of hybrid deep learning methods for intrusion detection. Understanding the benefits and
disadvantages of various algorithms enables organisations to make informed decisions when
designing and implementing intrusion detection systems in cloud settings.

When evaluating future prospects, there are various options for improving intrusion detection
capabilities in cloud systems. One possible approach is to use ensemble approaches such as
Random Forests and Gradient Boosting to improve classification accuracy and robustness.
Additionally, building intrusion detection systems that dynamically react to incoming threats
using adaptive learning algorithms has the potential to dramatically improve detection

25

capabilities. Advanced deep learning architectures, such as Convolutional Neural Networks
(CNNs) and Transformer models, may provide additional advances in pattern recognition.
Furthermore, combining Explainable AI (XAI) approaches may improve the interpretability
and transparency of intrusion detection systems. Real-world deployment and evaluation via
field trials are required to prove the scalability and practical applicability of these solutions in
live cloud environments.

In conclusion, while the research sheds light on the performance implications of using
machine learning methods for intrusion detection in cloud systems, there is still more to be
discovered and improved. Using the conclusions of this study, organisations can increase
their security posture and better defend against emerging cyber threats in cloud
infrastructures.

References

Azawii, Ali & Al-Janabi, Sufyan & Al-Khateeb, Belal. (2019). Survey on Intrusion Detection
Systems based on Deep Learning. Periodicals of Engineering and Natural Sciences (PEN). 7.
1074-1095. 10.21533/pen.v7i3.635.

Moustafa, Nour & Slay, Jill. (2015). The Significant Features of the UNSW-NB15 and the
KDD99 Data Sets for Network Intrusion Detection Systems. 25-31.
10.1109/BADGERS.2015.014.

Balajee, R. & Kannan, M.K.Jayanthi. (2023). Intrusion Detection on AWS Cloud through
Hybrid Deep Learning Algorithm. 12. 1423.

M. Mayuranathan, S.K. Saravanan, B. Muthusenthil, A. Samydurai. An efficient optimal
security system for intrusion detection in cloud computing environment using hybrid deep
learning technique. Advances in Engineering Software, Volume 173, 2022, 103236, ISSN
0965-9978.

Aldallal, Ammar & Alisa, Faisal. (2021). Effective Intrusion Detection System to Secure
Data in Cloud Using Machine Learning. Symmetry. 13. 1-26. 10.3390/sym13122306.

Sarosh, Ayesha. (2021). Machine Learning Based Hybrid Intrusion Detection ForVirtualized
Infrastructures In Cloud Computing Environments. Journal of Physics: Conference Series.
2089. 012072. 10.1088/1742-6596/2089/1/012072.

Zekri, Marwane & El Kafhali, Said & Aboutabit, Noureddine & Saadi, Youssef. (2017).
DDoS attack detection using machine learning techniques in cloud computing environments.
1-7. 10.1109/CloudTech.2017.8284731.

Bhardwaj, A., Mangat, V., Vig, R. (2021). Hybrid Deep Neural Architecture for Detection of
DDoS Attacks in Cloud Computing. In: Paprzycki, M., Thampi, S.M., Mitra, S., Trajkovic,
L., El-Alfy, ES.M. (eds) Intelligent Systems, Technologies and Applications. Advances in
Intelligent Systems and Computing, vol 1353.

Alqahtani, Hamed & Sarker, Iqbal & Kalim, Asra & Hossain, Syed & Ikhlaq, Sheikh &
Hossain, Sohrab. (2020). Cyber Intrusion Detection Using Machine Learning Classification
Techniques. 10.1007/978-981-15-6648-6_10.

26

S. Parampottupadam and A. -N. Moldovann, "Cloud-based Real-time Network Intrusion
Detection Using Deep Learning," 2018 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), Glasgow, UK, 2018, pp. 1-8, doi:
10.1109/CyberSecPODS.2018.8560674. keywords: {Network security;intrusion
detection;deep learning;cloud computing;NSL-KDD},

Rajendra Patil, Harsha Dudeja, Chirag Modi. Designing an efficient security framework for
detecting intrusions in virtual network of cloud computing, Computers & Security, Volume
85, 2019, Pages 402-422, ISSN 0167-4048.

G. Tiwari and R. Jain, "Detecting and Classifying Incoming Traffic in a Secure Cloud
Computing Environment Using Machine Learning and Deep Learning System," 2022 IEEE
7th International Conference on Smart Cloud (SmartCloud), Shanghai, China, 2022, pp. 16-
21, doi: 10.1109/SmartCloud55982.2022.00010. keywords: {Deep learning;Training;Cloud
computing;Machine learning algorithms;Firewalls (computing);Cloud computing
security;Classification algorithms;Cloud computing;Intrusion Detection System;Machine
Learning;Deep Learning;UNSW-NB-15.},

K. Shanthi and R. Maruthi, "Machine Learning Approach for Anomaly-Based Intrusion
Detection Systems Using Isolation Forest Model and Support Vector Machine," 2023 5th
International Conference on Inventive Research in Computing Applications (ICIRCA),
Coimbatore, India, 2023, pp. 136-139, doi: 10.1109/ICIRCA57980.2023.10220620.
keywords: {Support vector machines;Analytical models;Computational modeling;Memory
management;Intrusion detection;Machine learning;Forestry;Intrusions detection;Anomaly-
based;Machine Learning;Isolation Forest Model;Support Vector Machine},

