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Abstract 
 
In todays mordern word ensuring strong security measures against network 

intrusions is essential for cloud computing. This study investigates the use of deep 
learning and machine learning approaches for intrusion detection to improve cloud 
environment security. It looks at how well different models—such as Bidirectional 
LSTM, Decision Trees, Long-Short Term Memory (LSTM), and Logistic Regression—
identify and categorize network intrusions. These models are assessed using accuracy, 
recall, and F1 score metrics on the UNSW-NB15 dataset. The study also explores how to 
pick features and how to employ autoencoders to improve model performance. The 
outcomes provide important insights into the potential real-world applications of each 
algorithm by highlighting its advantages and disadvantages. 

 

1 Introduction 
 
This thesis addresses the growing threat of intrusions and presents a novel solution by 
integrating machine learning and data learning methods into cloud security. The socially 
engineered techniques used in various intrusion types, such as DoS, backdoor, shellcode, etc., 
are frequently too strong for conventional defense measures to handle. The study uses the 
extensive dataset known as (UNSW-NB15) to address this problem. It has Fuzzers, analysis, 
backdoors, denial-of-service, exploits, generic, reconnaissance, shellcode, and worms are the 
nine types of attacks included in this dataset. In order to create a total of 49 features with the 
class label, twelve algorithms are constructed, and the Argus and Bro-IDS tools are utilized. 
Cloud computing has completely changed the IT environment because it provides unmatched 
scalability, accessibility, and efficiency. Effectively managing and transferring data across 
large networks is a key component of this change. However, a variety of security threats are 
rapidly posing a threat to the vital assets housed in cloud technologies (Moustafa, 2015). 
 
With distributed content delivery networks (CDNs), cloud service providers like AWS, 
Azure, and GCP have made it easier for data to be shared globally while offering quick 
content delivery through localized edge points. Although these developments improve 
performance and accessibility, they also expose data to increased hazards associated with 
long-distance network traffic. As a result, network-based assaults that target cloud settings 
are now a serious threat. 
  
For network security defenses to be strengthened, it is essential to comprehend and 
counteract routing-based threats. A wide range of advanced attacks, from traditional Denial 
of Service (DoS) attacks to sneaky penetration methods like SQL injection and malware 
distribution, are included in the spectrum of potential threats. The confidentiality, availability, 
and integrity of cloud resources are by these vulnerabilities (Zekri, 2017). 
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Furthermore, to protect cloud infrastructures against newly discovered vulnerabilities, 
ongoing research, and innovation are required due to the dynamic nature of cyber threats. 
Even while cloud computing has the potential to revolutionize many industries, its broad 
adoption depends on strong security protocols that can mitigate a variety of dangers. This 
article includes relevant work Hybrid deep learning, a relatively new and creative method for 
intrusion detection in cloud environments, is explained in Section 4 along with the deep 
learning models used for machine learning. It has the ability to drastically lower different 
threats by using algorithms and data analysis to identify and stop invasions. The use of 
machine learning and deep learning methods for intrusion detection using cloud infrastructure 
is the main focus of this research. In Section 3, the research technique is explained. The 
design elements of the framework for machine learning algorithms are covered in Section 5. 
Section 6 details how this study was carried out. The evaluation results are presented and 
discussed in Section 7. The study is concluded in Section 8 with a discussion on future work. 
has context menu. 
 
2 Related Work 
 

The literature review presented in this paper offers a comprehensive overview of recent 
findings and methods related to intrusion detection systems (IDS) in cloud computing 
environments. Efficient security solutions that are optimized for cloud environments are 
essential due to the rapid use of cloud services and a growing number of cyber threats. A 
variety of studies with different viewpoints on the creation, use, and evaluation of intrusion 
detection systems are included in the review. By examining recent advancements in machine 
learning, deep learning, and hybrid approaches, the literature review highlights the 
importance of strong security frameworks in safeguarding cloud infrastructures and 
demonstrates how intrusion detection is evolving. The review offers a foundation for the 
methodology employed in this work as well. (Alqahtani, 2020)  

2.1 Comparative Analysis of Deep Learning Techniques and Dataset 
Evaluation in Network Intrusion Detection 

 
An in-depth analysis of deep learning methods for intrusion detection is presented by Ali 
Azawii, with a focus on widely used datasets (DARPA, KDD99, NSL-KDD), as well as deep 
learning frameworks (TensorFlow, Theano, and Caffe). In-depth discussions of autoencoders, 
sum-product networks, and recurrent neural networks among the deep learning architectures 
are provided in this publication. Along with suggestions for further study, including the use 
of hybrid approaches and the mixing of algorithms to improve performance, it emphasizes 
the significance of feature extraction and selection in making improvements in accuracy 
(Azawii, 2019). On the other hand, a research paper by Nour Moustafa and Jill Slay 
compares the effectiveness of two popular datasets for network intrusion detection system 
(NIDS) evaluation: KDD99 and UNSW-NB15. It suggests a thorough technique that is 
divided into three layers: the network layer, the processing layer (using decision engines and 
Association Rule Mining), and the assessment layer for NIDS effectiveness assessment. In 
summary, the report indicates that UNSW-NB15 features outperform KDD99 in many 
circumstances, but it also highlights the need for more research in this area by noting how 
difficult it may be to discern between comparable record values in datasets. Both publications 
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provide significant contributions to the field of intrusion detection; Nour Moustafa and Jill 
Slay focus on dataset comparison and NIDS assessment methodology, while Ali Azawii 
concentrates on deep learning frameworks and methodologies (Moustafa, 2015). 

2.2 Innovations in Cloud-Based Intrusion Detection Systems 
 
Both M. Mayuranathan and RM Balajee, the authors of the two articles, offer creative 
methods for intrusion detection in cloud systems. A hybrid approach that combines deep 
learning algorithms, clustering, optimization, and dimensionality reduction is proposed by 
RM Balajee to address the dimensionality and performance issues in attack detection. 
Through the integration of both traditional and deep learning approaches, their approach 
offers a comprehensive solution for faster and more accurate attack detection. AutoEncoder, 
FCM, PCA, and SMO are integrated (Balajee, 2023). On the other hand, intrusion detection 
is handled by the deep Kronecker neural network (DKNN) in the EOS-IDS model, which is 
tailored for cloud computing environments. In order to enhance detection accuracy, this 
model prioritizes feature selection, optimal pre-processing, and hybrid deep learning 
methods. (M. Mayuranathan, 2022). 
 

2.3 Hybrid Intrusion Detection Systems in Cloud Environments: A 
Comparative Analysis 

 
This article presents a hybrid intrusion detection system (IDS) by Ammar Aldallal and Faisal 
Alisa that combines genetic algorithms (GA) for feature selection with support vector 
machines (SVM) for classification. The GA is used to optimize feature selection by reducing 
the dataset's dimensionality and raising the efficiency of SVM classification. Numerous SVM 
kernel functions are examined; the most effective ones are discovered to be polynomial and 
linear kernels, especially when the feature set is reduced to 20, or one-fourth of the original 
features. The impressive results of 100% accuracy obtained with a minimal number of 
features show how effective this strategy is; nonetheless, further investigation into various 
machine learning (ML) techniques is recommended to confirm. In order to improve detection 
accuracy, the system uses PCA for dimensionality reduction in conjunction with data 
preparation techniques including traffic analysis and categorization. While SVM is utilized 
for anomaly detection, K-means clustering is employed for data categorization. The system 
exhibits scalability for integrating many virtual machines and increasing analysis to include 
VM IDs, with an emphasis on contextual analysis and the relationship between network and 
application logs. When compared to standalone IDSs, it also offers better accuracy and 
quicker detection times. (Sarosh, 2021). 
 

2.4 Contrasting Approaches to DDoS Attack Detection in Cloud 
Environments 

 
The important issue of identifying Distributed Denial of Service (DDoS) attacks in cloud 
computing environments is addressed in both research studies, albeit with different methods 
and strategies. In addition to several intrusion detection techniques, including Signature-
based Detection (SD), Anomaly-based Detection (AD), and Stateful Protocol Analysis, the 
study by Marwane Zekri examines machine learning techniques including Naive Bayes, 
Decision Trees (C4.5), and Neural Networks (SPA). The study addresses the importance of 
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DDoS detection systems for cloud platform security and offers suggestions for further 
research on real-time attack traffic detection and mitigation (Zekri, 2017). However, the 
research by Aanshi Bhardwaj presents a DDoS attack detection method that employs Deep 
Neural Networks (DNN) optimized by the Ant Colony Method (ACO). In this 4-phase study, 
the CICIDS2017 dataset is used for pre-processing, pre-training, training, and testing; the 
results indicate good performance in detecting DDoS traffic in cloud environments. A 
temporal complexity study of deep learning approaches for DDoS detection and more real-
world validation are two possible directions for future research that are highlighted in the 
paper's conclusion. In conclusion, both studies provide important viewpoints and approaches 
for addressing the security threats put on by DDoS attacks in cloud computing environments. 
(Bhardwaj, 2021). 
 

2.5 Comparative Analysis of Data-Driven and Deep Learning Approaches 
for Intrusion Detection Systems 

 
These research publications revolve around the development of machine learning-based 
intrusion detection systems (IDS); deep learning may be emphasized in different ways. 
Hamed Alqahtani uses the KDD'99 Cup dataset and other traditional machine-learning 
techniques to model IDS. The research highlights the significance of comprehending the 
nature of cyber-security data and extracting pertinent features through its comprehensive 
approach to dataset preparation and examination. Classification issues are addressed by a 
variety of machine learning techniques, including Decision Trees, Random Forests, Artificial 
Neural Networks, Bayesian Networks, and Naive Bayes. The evaluation of the success of the 
IDS model focuses mostly on performance indicators, such as accuracy, precision, recall, and 
F-score. The study concludes that a data-driven strategy is essential for providing intelligent 
cyber-security services (Alqahtani, 2020). However, Santhosh Parampottupadam is more 
concerned in using deep learning models to detect network intrusions in real time. The work 
starts with an awareness of the problem and an assessment of the literature, using the CRISP-
DM methodology and highlighting the need to investigate the possibilities of deep learning in 
this field. Because the NSL-KDD dataset is of greater quality than KDDcup99, it was used. 
In particular, binomial and multinomial deep learning models are being created to predict 
intrusions and classify attacks, respectively. When comparing H2O deep learning models 
with other machine learning techniques, evaluation metrics like accuracy and detection rates 
show better results. (Moldovann, 2018). 
 

2.6 Comparative Analysis of Cloud Security Frameworks: Traditional vs. 
Machine Learning Approach 

 
An comprehensive security framework for efficiently detecting network breaches is provided 
in a research paper written by Rajendra Patil. Scalability, accuracy, and a low number of false 
alarms are the main priorities of the method, which makes use of techniques including multi-
threaded models, Random Forest classifiers, signature-based detection, and feature selection 
using an extended Bat Algorithm. Comprehensive recommendations for future work are 
made, and quick processing times and good detection rates are demonstrated by experimental 
validation (Rajendra Patil, 2019). On the other hand, a work written by Geetika Tiwari 
presents an improved cloud security intrusion detection system based on machine learning 
and deep learning. The process it describes involves gathering data, preparing it, selecting 



 

5 
 

 

features, and categorizing it in multiple ways. As evidenced by the experimental results, the 
proposed model is effective in improving attack detection abilities and potentially reaching 
up to 97% classification accuracy. Possible future research directions include improving 
categorization efficiency and creating techniques for packet profiling. As a result, whereas 
Rajendra Patil focuses on a comprehensive security architecture that emphasizes efficiency 
and scalability, Geetika Tiwari's study offers a machine learning and deep learning-based 
strategy with improved threat detection skills and the potential for high accuracy. These 
papers provide useful advice on enhancing cloud security through the application of cutting-
edge intrusion detection methods. (Jain, 2022). 
 

2.7 Comparative Analysis: Diverse Approaches to Intrusion Detection in 
Cloud Security 

 
This paper is by Muhammad Salman Saeed where the author discusses the nature and 
mitigation of distributed denial-of-service (DDoS) attacks that are a significant threat to cloud 
systems. The article stresses the lack of efficient intrusion detection systems and provides the 
reader with a detailed overview of the several kinds of DDoS attacks and their causes. In 
digging into the screening of intrusion detection, this work particularly pays attention to three 
methods, namely: signature-based detection, anomaly-based detection, and stateful protocol 
analysis. Moreover, the research also focuses on the effectiveness of machine learning 
techniques namely as Random Forest, Naive Bayes, SVM, and decision trees for the 
identification of intrusions. Based on experience, it is possible to conclude that the proposed 
work contributes significantly to using the Random Forest classifier for improving the feature 
selection and enhancing the accuracy of the intrusion detecting model up to 97,5% (M. S. 
Saeed, 2022). On the other hand, K. Shanthi’s paper discusses basically the Anomaly based 
IDS and focuses more on the use of machine learning techniques for accurate anomalies 
detection. This technique entails applying SVM for this anomaly detection and for isolation 
forest model. While classification is used by SVM to label anomalies the isolation forest 
model on the other hand uses recursive partitioning to isolate the peculiarities of network 
traffic data. Categorization is performed on input data after it has gone through feature 
extraction methods such as auto-encoder structures. The proposed isolation forest model is 
then compared with the SVM model on the NSL-KDD dataset and it is observed that the 
SVM model performs slightly better than the isolation forest model. Consequently, the 
anomaly-based machine learning models were seen to offer very fast and accurate outcomes 
in terms of anomaly detection and especially when working with very big datasets that 
consume very little memory. (Maruthi, 2023). 
 
Index Research Papers Release 

Date 
Authors Results Limitations 

1 Survey on Intrusion 
Detection Systems 
based on Deep 
Learning 

2019 Ali Azawii, 
Sufyan T. Faraj 
Al-Janabi, Belal 
Al-Khateeb 

High precision and detection 
rate which reached 
approximately 99%. 

Limitations include dataset limitations, a 
framework that focuses on TensorFlow, and 
a lack of architecture reviews. Model 
interpretability, complexity, and overfitting 
are all ongoing challenges. Resolving these 
enhances future research. 

2 The Significant 
Features of the 
UNSW-NB15 and 
the KDD99 Data 
Sets for Network 
Intrusion Detection 
Systems 

2015 Moustafa, Slay  The UNSW-NB15 dataset 
demonstrates that the suggested 
feature selection ARM approach 
yields feature that represent 
both normal and attack records. 
However, decision engine 
algorithms struggle to discern 
between normal and attack rows 
due to their comparable values. 

The reliance on a small set of 100 rules for 
feature selection, potentially overlooking 
crucial attributes. The strict requirement of 
precisely 11 features may limit adaptability, 
and the lack of extensive validation across 
various datasets could compromise 
generalizability. 

3 Intrusion Detection 
on AWS Cloud 

2023 RM & MK  PCM + FCM-SMO + AE 
technique accuracy = 95.3%. on 

The study analysed existing and new 
strategies across four assault categories 
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through Hybrid 
Deep Learning 
Algorithm 

CSE-CIC-IDS-2018 dataset. using various criteria, resulting in 480 
statistics in total. However, potential biases, 
dataset-specific overfitting, and limited 
generalizability to real-world circumstances 
are significant drawbacks, emphasising the 
importance of careful interpretation of the 
results. 

4 An efficient 
optimal security 
system for intrusion  
detection in cloud 
computing 
environment using 
hybrid deep 
learning technique 

2022 M.Mayuranathan,  
S.K. Saravanan,  
B. Muthusenthil,  
A. Samydurai 

The proposed DKNN classifier 
outperformed current state-of-
the-art LSTM-SGDM, LSTM-
ADAM, CNN, CNN-LSTM, 
RC-NN, and DKNN classifiers 
in terms of accuracy, TPR, 
TNR, precision, recall, and F-
measure. 

The study demonstrates the effectiveness of 
the proposed EOS-IDS model using 
DARPA-IDS and CSE-CIC-IDS2018 
datasets. However, limitations include 
potential dataset biases, reliance on specific 
pre-processing methods and algorithms, and 
the absence of real-world deployment 
validation. 

5 Effective Intrusion 
Detection System 
to Secure Data 
 in Cloud Using 
Machine Learning 

2021 Ammar Aldallal, 
Faisal Alisa 

Outperformed benchmarks by 
up to 5.74% using CICIDS2017 
dataset. Achieved a maximum 
detection rate of 100% with 20 
optimal features. Improvement 
ranged from 3.32% to 5.14% 
compared to previous works 
using different datasets. 

The study showcased the efficacy of SVM 
kernel functions and feature selection for 
intrusion detection, albeit with potential 
constraints related to dataset-specific 
nuances and methodological choices. 
Comparisons with prior works may be 
influenced by varying experimental setups 
and metrics, underscoring the need for 
broader investigations with diverse datasets 
and methods to validate the findings. 

6 Machine Learning 
Based Hybrid 
Intrusion Detection 
for Virtualized 
Infrastructures In 
Cloud Computing 
Environments 

2021 Ayesha Sarosh Better accuracy compared to 
earlier approaches 

The hybrid intrusion model of K-means and 
SVM ensures accurate and quick detection, 
however it may have scaling limitations. 
Correlating application and network logs 
improves detection but may increase 
computational effort. 

7 DDoS attack 
detection using 
machine learning 
techniques in cloud 
computing 
environments 

2017 M. Zekri, S. E. 
Kafhali, N. 
Aboutabit, Y. 
Saadi 

High detection accuracy (C4.5: 
98.8%, Naïve Bayesian: 
91.4%), Low false positives and 
false negatives, Efficient 
detection rate, Comparative 
analysis showing superiority of 
C4.5 algorithm for DDoS 
detection. 

The experiment detects DDoS attacks using 
C4.5 classification with a promising 
detection rate of over 98%. However, 
limitations include the inability to simulate 
large cloud networks and reliance on a 
virtual environment instead. The use of 
parameterized python-scripts for generating 
normal network traffic may not fully 
replicate real-world scenarios. 

8 Hybrid Deep 
Neural Architecture 
for Detection of 
 DDoS Attacks in 
Cloud Computing 

2021 Aanshi Bhardwaj, 
Veenu Mangat, 
Renu Vig 

Achieved a detection rate of 
95.74% and an accuracy of 
98.25%. 

The suggested technique detects DDoS with 
high accuracy and speed; however it is 
prone to dataset overfitting and lacks 
generalizability outside the CICIDS2017 
dataset. Further validation across several 
datasets and real-world contexts is required. 

9 Cyber Intrusion 
Detection Using 
Machine Learning 
Classification 
Techniques 

2020 Hamed Alqahtani  Random Forest classifier 
consistently outperforms others 
in terms of accuracy, precision, 
recall, and F1-score, reflecting 
cyber-attack patterns 
effectively. 

The study recommends Random Forest for 
intrusion detection because of its higher 
performance across metrics. However, 
relying on a single dataset restricts 
generalizability and may miss developing 
dangers. Integrating recency-based or 
contextual models may improve system 
efficacy. 

10 Cloud-based Real-
time Network 
Intrusion Detection  
Using Deep 
Learning 

2018 Santhosh 
Parampottupada, 
Arghir-Nicolae 
Moldovann 

H2O deep learning models 
using cross-validation achieved 
over 99.5% accuracy on the 
training dataset and over 83% 
accuracy on the test dataset for 
both binomial and multinomial 
classification. 

The study compares binomial and 
multinomial models for intrusion detection. 
Binomial models excel in accuracy but lack 
generalization, while multinomial models 
perform decently but lack consistency 
across attack classes. 

11 Designing an 
efficient security 
framework for 
detecting intrusions 
in virtual network 
of cloud computing 

2019 Rajendra Patil, 
Harsha Dudeja,  
Chirag Modi 

Detection of intrusions with 
high accuracy (more than 
 97% intrusive connections 
detected in real-time 
simulation), Low false positives 
(<0.5% false positive rate), 
Comparative analysis with 
existing approaches showing 
improved performance 

The HLDNS framework shows promising 
results in detecting intrusions in both real-
time simulation and offline validation. 
However, limitations include potential 
performance variations in dynamic network 
environments, increased computational 
costs with larger datasets, reliance on the 
quality of training data, and the need for 
further validation across diverse network 
architectures. 

12 Detecting and 
Classifying 
Incoming Traffic in 
a Secure Cloud 
Computing 
Environment Using 
Machine Learning 
and Deep Learning 

2022 Geetika Tiwari, 
Ruchi Jain 

Results showed enhanced attack 
detection and  
increased classification 
accuracy up to 97%. Future 
work aims to explore advanced 
packet profiling and improve 
categorization performance 
through methods like data 

Reliance on a single dataset, UNSW-NB15, 
potentially limiting real-world applicability.  
Evaluation metrics may oversimplify 
performance assessment. Lack of validation 
on diverse datasets or real cloud 
environments hampers generalizability. 
Additionally, practical deployment and 
resource constraints are not fully explored. 
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System mining and clustering. 
13 Machine Learning 

Based Intrusion 
Detection System 
in Cloud 
Environment 

2022 Muhammad 
SalmanSaeed, 
Raman Saurabh, 
Sarang  
Balasaheb 
Bhasme, Alexey 
N.Nazarov 

The study proposes a security 
framework for cloud intrusion 
detection, with a focus on 
DDoS attacks. It suggests 
machine learning, namely 
Random Forest, which achieves 
99.99% accuracy. It focuses on 
real-time detection and the 
exploration of various machine 
learning algorithms to improve 
cloud security. 

The paper mainly concentrates on DDoS 
attacks, neglecting other intrusion types. 
The evaluation could be more 
comprehensive with diverse datasets and 
attack scenarios. 

14 Machine Learning 
Approach for 
Anomaly-Based 
 Intrusion Detection 
Systems Using 
Isolation Forest 
Model and Support 
Vector Machine 

2023 K. Shanthi, R. 
Maruthi 

The research compared isolation 
forest and SVM for  
anomaly detection, with 
isolation forest showing slightly 
better performance. Anomaly-
based machine learning offers 
fast, accurate detection, 
depending on proper feature 
selection. 

It doesn't address the scalability of the 
proposed approach for larger datasets. Does  
not consider the impact of different anomaly 
types on detection performance 

15 Intrusion Detection 
in Cloud 
Environments 
using Hybrid Deep 
Learning 

2024 Kunal Rana The experiments emphasised 
the relevance of algorithm 
selection and feature extraction 
strategies, with autoencoders 
demonstrating potential for 
enhancing classification 
accuracy with Bi-LSTM with 
auto encoder performing the 
best with 86% accuracy. 

Limitations include dataset reliance, 
algorithm focus, metric selection, and 
interpretability issues. These concerns could 
be addressed by diversifying datasets, 
experimenting with different methods, and 
improving interpretability. 

 
 
3 Research Methodology 
 
In my research, I have used supervised and unsupervised learning. Supervised learning 
implies that the algorithm is privy to the expected outcome. In other words, through the input 
data, the mathematical model is trained for making accurate predictions. This type of learning 
is known as supervised learning and it utilizes data from a dataset, both the input and output. 
For example, the application of supervised learning can be employed to justify whether an 
email is genuine or not (0/1 situation). 
 
The research design applied in this study aims at systematically achieving the major research 
goals of this study, which is to build and test the efficiency of machine learning and deep 
learning algorithms in intrusion detection on cloud computing systems. The basic preparation 
involves the installation of essential libraries and the loading of datasets using the Pandas 
library. The next step involves rigorous data cleaning procedures to handle the missing values 
and ensure that the cleaned data is of good quality. Plots and visualizations are then 
performed to explain the features of the dataset by applying tools from exploratory data 
analysis. Following the data preparation process there are several pre-processing techniques 
used for enhancing the usefulness of the data in the model, these include; label encoding, 
Min-Max scaling for normalization, and label binarization. To handle the problem of class 
imbalance, Synthetic Minority Over-Sampling Technique or SMOTE is applied. To 
guarantee a robust model evaluation, the dataset is then divided into training and testing sets 
at a ratio of 90:10. This account relies on the following sources: The process of feature 
selection and enhancement involves employing AutoEncoder neural networks which reduce 
the dimensionality a given dataset while preserving vital details. This step is necessary in 
order to optimise the performance and efficiency of the above model. Some of these are 
decision trees, logistic regression, and LSTMs and BiLSTMs which are different types of 
architectures in Machine learning and Deep learning. Standard model performance evaluation 
metrics such as confusion matrix and classification report are used. These metrics explain 
how accurately the models predict the cybersecurity outcomes that needs to be fixed for 
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creating robust security system resistant to the constantly evolving threats. (M. 
Mayuranathan, 2022). 
 
My novelty in the research comprises using Long Short-Term Memory (LSTM) and 
Bidirectional LSTM (Bi-LSTM) with autoencoders to identify intrusions in cloud settings. 
This solution overcomes numerous issues inherent in standard intrusion detection systems by 
using the capabilities of recurrent neural networks (RNNs) and autoencoders. 
 
Recurrent Neural Networks are special artificial neural networks that are used to process 
sequential data while keeping information from the previous steps. In contrast to feedforward 
neural networks, which work on inputs separately, RNNs contain connections that form 
directed loops, so they can incorporate temporal characteristics. The main characteristic of 
RNNs is the presence of memory or state of the previous inputs so they can model sequential 
data. This memory mechanism allows the RNNs to utilize information from previous time 
steps to make a prediction or decision on the present data. Another major drawback of most 
basic RNNs is the gradient vanish or explode problem which hinders the ability of the 
network to develop long-term dependencies during the training phase. To overcome this 
difficulty, other types of RNNs such as Long Short-Term Memory (LSTM) network have 
been proposed. 
 
Autoencoders work such that they are able to come up with a simplified and more 
informative version of the input data. The technique utilized training of autoencoder models 
to learn first and second-order statistics features of the unlabeled network traffic data of both 
normal and anomalous traffic. These learnt properties, are feed into the LSTM and Bi-LSTM 
models to enhance the performance of intrusion detection. 
 
The study is concerned with intrusion detection in cloud environment taking into 
consideration challenges typical for this environment. Specificity, constraints, and inherent 
volatility of cloud environments are crucial aspects to bear in mind when it comes to 
designing customized intrusion detection algorithms for the cloud. 
 
 

 
Figure 1: Process flow of proposed model 

 
Step 1: Dataset acquisition 
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In this stage, all the libraries needed for data manipulation, analysis, and machine learning 
model implementation are imported and installed. NumPy, Seaborn, Matplotlib, NumPy, and 
Scikit-learn are among the frequently used libraries. The dataset is brought into the 
programming environment using the Pandas library. Pandas is well-suited for managing 
structured data, such as CSV files, because it offers robust capabilities for data analysis and 
modification. 
 
Step 2: Data pre-processing and Visualization 
 
This process removes null or missing values in the dataset hence is regarded as data cleaning 
process. To achieve this, missing data may be drop down to rows or columns, or values can 
be imputed employing techniques such as mean or median imputation. The process of 
gaining knowledge about the set of variables and their distributions is called exploratory data 
analysis or EDA. ‘Loans and deposits’ refers to money given and received by a company for 
a fixed period of time usually for business operations. When preparing the data to be used for 
training the model, certain pre-processing steps are taken. This involves performing label 
encoding to transform a categorical feature into numerical, normalizing the numerical 
features with the Minmax Scaler, and binarizing the labels if necessary. 
 
Step 3: Data Splitting  
 
In order to correct the imbalance in class, the Synthetic Minority Over-sampling Technique 
(SMOTE) oversamples the minority class. To reduce class imbalance and increase model 
correctness, this approach generates new samples. To assist in assessing the performance of 
the model, the dataset was split into test and training sets. It is common practice to divide the 
data into 90:10 training and test data sets in order to guarantee efficient training and 
validation.. 
 
Step 4: Model Training & Evaluation 
 
I used autoencoder neural networks for feature selection and augmentation. This method 
improves the learning and efficiency of the model by reducing the dimensionality of the input 
characteristics while maintaining crucial information. Common assessment tools like the 
confusion matrix and classification report are used to evaluate the model's performance. 
These metrics give information on the model's recall, accuracy, precision, and F1-score, 
enabling a thorough evaluation of the model's performance.(Moldovann, 2018). 
 
4 Algorithms 
 
Algorithms are essential for creating and implementing intrusion detection systems (IDS) in 
AWS cloud settings, which improve network security. These algorithms cover a wide 
spectrum of methodologies, ranging from complex deep learning structures to conventional 
machine learning classifiers. Researchers want to improve the capacity to identify and 
successfully counteract cyber-attacks by utilising algorithms like Logistic Regression, 
Decision Tree Classifier, Long Short-Term Memory (LSTM), Bidirectional Long Short-Term 
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Memory (BiLSTM), and hybrid combinations thereof. These algorithms provide strong 
solutions for intrusion detection and prevention and have been carefully chosen and 
customised to match the dynamic and ever-evolving nature of security concerns in cloud 
systems. Researchers work to improve the overall security posture of AWS cloud 
infrastructures by applying algorithms methodically and protecting vital data and resources 
from a wide range of possible attacks (Zekri, 2017). 

4.1 Logistic Regression 
 
Logistic Regression is a fundamental algorithm employed primarily in binary classification 
tasks, where the objective is to predict the likelihood that an observation belongs to a specific 
class. It functions by creating a connection between one or more independent variables—
often referred to as features—and the dependent binary variable, which represents the class 
labels (e.g., 0 or 1). The core function of a logistic regression is to estimate the probability of 
the binary result, which is commonly expressed as the likelihood of falling into the positive 
class (class 1, for example). The logistic function, sometimes referred to as the sigmoid 
function, is used to estimate this likelihood. A few benefits of using logistic regression are its 
ease of use, interpretability, and effectiveness when working with data that can be divided 
into linear segments. It works especially effectively in situations when a linear function may 
be used to describe the decision border between classes. Additionally, a deeper 
comprehension of the underlying relationships within the data is made possible by the 
insights that Logistic Regression offers into the influence of various features on the predicted 
probabilities. Because of these qualities, binary classification jobs in a variety of industries, 
such as marketing, finance, and healthcare, frequently employ logistic regression (Jain, 
2022). 
 

4.2 Decision Tree Classifier 
 
The Decision Tree Classifier is an adaptable method that creates a hierarchical structure in 
feature space for classification and regression applications. Leaf nodes provide expected class 
labels, and each internal node indicates a judgement based on features. Its interpretability 
makes decision pathways understandable to stakeholders, which is important in industries 
like banking and healthcare. Nevertheless, decision trees can overfit, particularly when 
dealing with intricate datasets. Methods like as pruning cut off extraneous branches, 
simplifying and improving generalisation. Multiple trees are combined in ensemble 
approaches, such as Random Forests, to reduce overfitting and increase accuracy. Decision 
trees are widely used as machine learning basic models due to their interpretability and 
simplicity, even in the face of difficulties. They are an essential tool in data analysis and 
predictive modelling because they provide insightful information about patterns in data and 
can be applied to a wide range of areas and data types (Jain, 2022). 
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4.3 Long-Short Term Memory (LSTM) 
 
Long Short-Term Memory, or LSTM, is a major development in recurrent neural network 
(RNN) architecture that was created expressly to solve the vanishing gradient issue that 
plagues conventional RNNs. Specialised memory cells with three gates—input, forget, and 
output—are the basis of LSTM operation. By controlling the input flow inside the network, 
these gates allow LSTM models to selectively eliminate irrelevant data while retaining 
critical information across lengthy periods. Because LSTMs can capture and retain long-term 
relationships, they are very useful for processing sequential data in applications like speech 
recognition, natural language processing, and time series prediction. Because LSTMs 
overcome the drawbacks of conventional RNNs, they perform better at recognising 
complicated sequences and capturing temporal trends. This makes them essential tools for a 
wide range of applications, including intrusion detection in AWS cloud settings. Because of 
their capacity to learn from sequential data, intrusion detection systems are more resilient 
overall by enabling precise identification of network abnormalities and possible security risks 
(M. Mayuranathan, 2022). 
 
 

4.4 Bidirectional Long-Short Term Memory (Bi-LSTM) 
 
Bidirectional Long Short-Term Memory, or BiLSTM, is an addition to the LSTM 
architecture that improves sequential data modelling and comprehension. BiLSTMs interpret 
input sequences concurrently using information from both past and future time steps, in 
contrast to typical LSTMs that solely take into account past data. BiLSTMs use backward 
and forward processing to handle input sequences, allowing them to extract context from both 
the items that come before and after them in the sequence. This two-way technique greatly 
enhances the network's comprehension and modelling of data relationships. BiLSTMs are 
widely used in jobs like natural language processing where contextual awareness is crucial. In 
applications like machine translation, named entity identification, and sentiment analysis, 
where obtaining the context from surrounding words is essential for precise interpretation and 
prediction, they perform exceptionally well. By using data from both past and future data 
points, BiLSTMs provide improved capabilities for comprehending network traffic patterns 
and spotting possible security risks in the context of intrusion detection in AWS cloud 
systems (M. Mayuranathan, 2022). 
 
5 System Architecture 
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Figure: Architecture Diagram 

 

The Virtual Private Cloud (VPC) framework, which offers a safe and separate environment 
within the cloud infrastructure, is the foundation of the recommended design. To provide 
high availability and fault tolerance, it is composed of four subnets that are divide over 
several availability zones. Two of these subnets are open to the public and are home to 
resources that may be accessed over the internet, including web servers, VPN servers, load 
balancers, and NAT gateways. These parts follow security best practices and allow for 
external communication.  

The other two subnets are private and include sensitive resources such as Elastic Cache and 
the database. Placing these resources in private subnets increases security by limiting direct 
internet access, protecting critical data from unauthorized access.   

A public route table that is linked to an internet gateway facilitates internet connectivity. 
Additionally, internet access for resources in the private subnet is provided via a NAT 
Gateway that is linked to the private route table.  

Security Groups control incoming and outgoing network traffic for a variety of components, 
including the load balancer, Elastic Cache, VPN server, web server, and RDS (Relational 
Database Service). These security groups implement access controls by allowing or refusing 
communication according to predefined rules and protocols.  

The autoscaling group handles web servers in the public subnet, scaling them dynamically 
based on demand to maximize resource utilization and provide constant performance during 
peak traffic periods.  
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AWS Code Deploy simplifies continuous integration and deployment, making it possible to 
update and publish web applications seamlessly. This ensures that new features or repairs 
may be implemented efficiently without affecting the application's availability.  

The database server securely stores application data, while Elastic Cache is used for caching 
to improve speed by reducing database load and response times.  

CloudFront, a content delivery network (CDN), is used for content caching to improve 
website performance by delivering material to users from edge locations that are closer to 
them, lowering latency and enhancing user experience.  

CloudWatch monitors the overall health and performance of the system, providing 
information on resource utilization, application metrics, and system logs. Logs are kept in an 
S3 bucket for analysis and compliance, with auditing and troubleshooting capabilities 
available as needed.  

The machine learning model is trained on historical network traffic data, which covers both 
normal and attack scenarios. Once trained and validated, the model is integrated into the 
architecture using Docker container to conduct real-time inference on incoming network 
traffic.  

As fresh network packets are acquired by monitoring tools like CloudWatch Logs, they go 
through preliminary preprocessing steps with the help of an automated pipeline with pre- 
written scripts. These preparation stages are critical to ensure data consistency, quality, and 
readiness for further analysis. The automated pipeline performs activities such as handling 
missing value, removing duplicates, and data normalization, preparing it for the machine 
learning model's classification step.  

The architecture is intended to be extremely scalable, allowing the machine learning model to 
rapidly analyze large amounts of network traffic in real time. Scalability guarantees that the 
system can withstand changes in incoming traffic volumes while maintaining performance 
and responsiveness. Additionally, batch processing methods and distributed computing 
frameworks can be used to improve the model's throughput and efficiency. By combining 
these methodologies, the system can identify network attacks quickly and accurately while 
minimizing latency, hence improving overall cybersecurity defenses in cloud settings. 
 

6 Implementation 
 
In my research, the acquisition and utilization of a complex UNSW-NB15 dataset which 
comprises of a hybrid mix of real-world network activity and simulated attack behaviors, the 
UNSW-NB15 dataset provides a thorough picture of the complexity of cloud infrastructure 
security. This dataset, which is a huge collection of network packets produced at the Cyber 
Range Lab of the Australian Centre for Cyber Security (ACCS), offers a special chance to 
assess intrusion detection systems in settings similar to actual cloud installations.  There are 
nine different kinds of attacks in this dataset: worms, reconnaissance, shellcode, DoS, 
backdoors, fuzzers, and exploits. In order to provide a total of 49 features with the class label, 
twelve algorithms are built, and the Argus and Bro-IDS tools are utilised. There are 175,341 
records in the training set and 82,332 records in the testing set, which includes both normal 
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and other attack kinds. The significance of this dataset stage lies in its contribution to access 
intrusion detection in cloud environments, establishing it as not only important but also the 
initial step in the research process (Sarosh, 2021). 
 
Dataset Loading and Cleaning:  
 
The import of necessary libraries, such NumPy, Pandas, and Seaborn, which offer powerful 
data manipulation and visualisation capabilities, is the first step in the dataset loading 
process. The UNSW-NB15 dataset, which is kept in a CSV file format, is loaded using the 
Pandas package. After which I moved on to data cleaning which involves several essential 
stages in order to guarantee data integrity and get the information ready for analysis. 
Columns that are deemed unnecessary, such "service" and "id," are removed. In addition, the 
target column is updated to exclude instances of the 'Analysis' attack category in order to 
highlight more pertinent assault kinds. To find possible data inconsistencies, the presence of 
missing values is also evaluated. Finding patterns and trends in the dataset's features and 
attributes is the goal of visual analysis. First, to comprehend the numerical and category 
character of the data, the unique values in every column are looked at. The distribution and 
frequency of particular traits, like "attack categories" and "transaction protocols," are then 
visualised using box plots and bar charts as shown below in Fig.2 and Fig.3 (Moustafa, 
2015).  

 
Figure 2: Value count of different attack categories. 

 

 
Figure 3: Value count of different protocols 
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Dataset Pre-processing: 
 
After loading and cleaning the dataset, the second step involves data pre-processing.  
First, label encoding is used to transform the feature set's categorical variables into a numeric 
representation. In order to investigate the linear relationship between characteristics, a 
correlation matrix is computed. It helps in locating strongly linked or redundant features, 
which may have an impact on model performance. The range of feature values between 0 and 
1 is normalised for the feature set using Min-Max scaling. This helps in ensuring that every 
feature contributes equally to the training of the model and that features with bigger scales do 
not control the learning process. Synthetic Minority Over-sampling Technique (SMOTE) is 
used to balance the dataset. To address class imbalance difficulties, this strategy creates 
synthetic samples for the minority class (less common attack categories) so that the model 
learns from a more representative dataset as shown in Fig.5.  
 

 
Figure 5: Value count of different attack categories after applying SMOTE 

 
 
Feature Selection: 
 
The selection of features is one of the most crucial steps in the machine learning and deep 
learning model training process. Feature selection is used in this study to make sure the 
model is trained with the best possible set of features—removing any that are considered 
unimportant. The method used for feature evaluation is correlation-based feature selection. 
Based on how well a feature correlates with the target variable, it evaluates a dataset. Weakly 
correlated features are deemed less predictively useful than those that are strongly correlated 
with the target variable. The correlation method groups features according to how closely 
they resemble the target variable, analysing the relationship between each feature and the 
intended result. It then chooses a subset of features to give the machine learning model the 
most pertinent characteristics (M. Mayuranathan, 2022). 
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Figure 6: Statistics of correlation matrix 

 
 

Models (Training & Testing): 
 
The train-test split was the method used for data partitioning, which divided the labels and 
data. 10% was set aside for testing and 90% of the dataset was allocated for training. Building 
a hybrid learning model for intrusion detection in cloud environments was the aim of this 
project. The hybrid learning approach incorporates Long-Short-Term Memory (LSTM), 
Decision Tree, Bidirectional Long-Short-Term Memory (BiLSTM), and Logistic Regression 
classifiers. After developing the model, the split data and labels were fitted to the hybrid 
learning model that was trained on the training dataset. After the model was trained and 
saved, the testing dataset was used to assess the model's accuracy and F1 score.  
 
During the last stage, the system was tested using the testing dataset. Ten percent of the 
original dataset was set aside for testing, and the other ninety percent was used for system 
training. The testing findings are presented below in the evaluation section including the 
specific results from each algorithm. 
 
 
7 Evaluation 
 
The results of applying and assessing machine learning and deep learning models for 
Intrusion detection in cloud environments are shown in this part, along with metrics like 
accuracy, F1-score, and confusion matrix. Based on the data, Logistic Regression was able to 
attain an accuracy rate of 62%. Decision Tree Classifier showed the least accuracy, with F1 
score of 53%. LSTM when trained and tested without autoencoder was able to achieve an 
accuracy of 82%. BiLSTM without the use of autoencoder reaches accuracy rate of 83%. 
With an F1 score of 80% and accuracy of 81%, there was not much difference of using 
autoencoders with the LSTM model. With an 86% accuracy rate and an F1 score of 86% for 
intrusion detection, BiLSTM with autoencoders demonstrated remarkable proficiency in  
detection cyber-attacks. The outcomes of every algorithm include a Confusion Matrix along 
with related measures such as accuracy, recall, precision, f1-score, weighted average, and 
macro-average. 
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Accuracy - Accuracy measures the proportion of correctly classified instances out of the total 
instances. It is calculated as the ratio of the number of correct predictions to the total number 
of predictions. 
 

 
 
Precision - Precision measures the proportion of true positive predictions out of all positive 
predictions made by the model. It is calculated as the ratio of true positives to the sum of true 
positives and false positives. 
 

 
 

Recall (Sensitivity) - Recall measures the proportion of true positive predictions out of all 
actual positive instances in the dataset. It is calculated as the ratio of true positives to the sum 
of true positives and false negatives. 
 

 
 

F1-score – The F1-score is the harmonic mean of precision and recall, providing a balance 
between these two metrics. 
 

 
 

Confusion Matrix - A confusion matrix provides a tabular representation of the actual vs. 
predicted classes by the model. It includes four values: true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN). 
True Positive (TP): The percentage of values correctly identified as true by the model, 
considering both the actual truth and the predicted outcomes. 
True Negative (TN): The true negative represents the percentage of values that are genuinely 
negative, and the model correctly predicts a negative outcome as well. 
False Positive (FP): The False Positive is the count of truly negative values for which the 
model predicted a positive outcome. 
False Negative (FN): The false negative is the percentage of truly negative values that the 
model erroneously predicted to be true (Azawii, 2019). 
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ML & DL MODEL  Test Accuracy Score Precision Recall F1-sccore 
Logistic Regression 62 64 62 63 
Decision Tree Classifier 56 56 56 52 
LSTM 82 82 82 81 
Bi-LSTM 83 84 83 83 
LSTM with AutoEconder 81 82 81 80 
Bi-LSTM with AutoEncoder 86 87 86 86 

 

 

7.1 Experiment 1: Evaluating Logistic Regression Classifier 
 
The experiment attempts to assess the Logistic Regression classifier's performance in terms 
of precision, recall, and F1 score. The confusion matrix visualises the classifier's capacity to 
categorise cases. Rows indicate expected labels, with "Backdoor" denoted by zero, “DoS” 
denoted by one, “Exploits” denoted by two, “Fuzzers” denoted by three, “Generic” denoted 
by four, “Normal” denoted by five, “Reconnaissance” denoted by six, “Shellcode” denoted 
by seven and "Worms" by eight. Columns correspond to the actual labels and rows 
correspond to predicted labels. True Positive (TP) and True Negative (TN) is represented by 
counts of 2643, 1732,1784, 2162, 3344, 2291, 1751, 2136 and 2940 for the respective labels 
from backdoor till worms. False Positive (FP) is represented by the values present in the same 
column by counts of 428, 291, etc for backdoor and so on for the respective labels.  False 
Negative (FN) is represented by the values present in the same rows by counts of 269, 88, etc 
for backdoor and so on for respective labels. 
The bar graph above shows significant metrics from the classification report. Precision, 
recall, and F1 scores are provided for each class. For backdoor attacks (class 0), precision is 
63%, recall is 71%, and F1 score is 67. For DoS attacks (class 1), precision is 54%, recall is 
47%, and F1 score is 51. For Exploits (class 2), precision is 66%, recall is 49% and F1 score 
is 56. For Fuzzers (class 3), precision is 60%, recall is 58% and F1 score is 59. For Generic 
(class 4), precision is 83%, recall is 88% and F1 score is 85. For normal (class 5), precision is 
93%, recall is 63% and F1 score is 75. For reconnaissance (class 6), precision is 39%, recall 
is 47% and F1 score is 42. For shellcode (class 7), precision is 48%, recall is 59% and F1 
score is 53. For worms (class 8), precision is 71%, recall is 79% and F1 score is 75. 
These visualisations provide a succinct overview of the Logistic Regression Classifier's 
ability to discriminate between different types of attacks , providing useful insights into its 
classification performance. 

 Actual True/False 
Predicted Positive/Negative True Positive False Positive 

False Negative True Negative 
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Figure 7: Confusion Matrix Logistic Regression 

. . . 

7.2 Experiment 2: Evaluating Decision Tree Classifier 
 
The goal of this experiment is to determine the usefulness of the Decision Tree classifier by 
assessing its precision, recall, and F1 score. The confusion matrix for the Decision Tree 
classifier provides crucial performance parameters for identifying different types if attacks. 
Columns correspond to the actual labels and rows correspond to predicted labels. True 
Positive (TP) and True Negative (TN) is represented by counts of 2927, 1408, 524, 2439, 
3594, 1817, 0, 3003 and 2959 for the respective labels from backdoor till worms. False 
Positive (FP) is represented by the values present in the same column by counts of 456, 284, 
164, etc for DoS and so on for the respective labels.  False Negative (FN) is represented by 
the values present in the same rows by counts of 524, 336, 476, etc for DoS and so on for 
respective labels. 
The classification report also displays the precision, recall, and F1 score for each class. For 
backdoor (class 0), precision is 62%, recall is 79% and F1 score is 69. For DoS (class 1), 
precision is 57%, recall is 39% and F1 score is 46. For exploits (class 2), precision is 47%, 
recall is 14% and F1 score is 22. For fuzzers (class 3), precision is 40%, recall is 65% and F1 
score is 50. For generic (class 4), precision is 100%, recall is 95% and F1 score is 97. For 
normal (class 5), precision is 95%, recall is 50% and F1 score is 65. For reconnaissance (class 
6), precision is 0%, recall is 0% and F1 score is 0. For shellcode (class 7), precision is 32%, 
recall is 83% and F1 score is 47. For worms (class 8), precision is 72%, recall is 80% and F1 
score is 76%. 
These data highlight the Decision Tree classifier's weak performance and ability in 
distinguishing between different types of attacks. 
 

 
Figure 8: Confusion Matrix Decision Tree Classifier 

. . . 
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7.3 Experiment 3: Evaluating Long-Short Term Memory(LSTM) without 
Auto Encoders 

 
The goal of this experiment is to determine the long-short term memory (LSTM) algorithm’s 
effectiveness by evaluating its performance parameters such as precision, recall, and F1 
score. The LSTM's confusion matrix visually illustrates its ability to discriminate between 
different attacks. Columns show the actual labels (0 for Backdoor, 1 for DoS, 2 for Exploits, 
3 for Fuzzers, 4 for Generic, 5 for Normal, 6 for Reconnaissance, 7 for Shellcode and 8 for 
Worms), whereas rows represent anticipated labels. Columns correspond to the actual labels 
and rows correspond to predicted labels. True Positive (TP) and True Negative (TN) is 
represented by counts of 3394, 2404, 2014, 2630, 3481, 3169, 3027, 3369 and 3652 for the 
respective labels from backdoor till worms. False Positive (FP) is represented by the values 
present in the same column by counts of 10, 57, 5, etc for exploits and so on for the 
respective labels.  False Negative (FN) is represented by the values present in the same rows 
by counts of 875, 120, 0, etc for exploits and so on for respective labels. The classification 
report refines these parameters. For Backdoor, precision is 70%, emphasising accurate 
positive predictions. The model's 93% recall indicates accuracy in detecting valid cases, 
resulting in an 80 F1 score. For DoS, the model had a 60% precision, indicating exact 
affirmative predictions, while a 66% recall captures a significant amount along with F1 score 
which is 63. For Exploits, precision is 75%, recall is 54% and F1 score is 63. For Fuzzers, a 
precision of 80%, recall 71% along with F1 score of 75. For Generic, precision is 100%, 
recall is 96% and F1 score is 98. For Normal, precision is 92%, recall is 86% and F1 score is 
89. For Reconnaissance, precision is 85%, recall is 82% and F1 score is 83. For Shellcode, 
precision is 83%, recall is 90% and F1 score is 86. And lastly, for Worms, precision is 93%, 
recall is 97% and F1 score is 95. These data highlight the Long-Short Term Memory 
algorithm’s robust performance and ability in distinguishing between different types of 
attacks. 
 

 
Figure 9: Confusion Matrix Long-Short Term Memory (LSTM) 

. . . 

7.4 Experiment 4: Evaluating Bidirectional Long-Short Term Memory 
(Bi-LSTM) without Auto Encoders 

 
The purpose of this experiment is to assess the Bidirectional Long-Short Term Memory (Bi-
LSTM) algorithm’s usefulness by measuring performance parameters such as precision, 
recall, and F1 score. The confusion matrix visually represents the Bidirectional Long-Short 
Term Memory (Bi-LSTM) algorithm’s performance in discriminating between different types 
of attacks. Columns represent actual labels, whereas rows represent anticipated labels. 
Columns correspond to the actual labels and rows correspond to predicted labels. True 
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Positive (TP) and True Negative (TN) is represented by counts of 3510, 2443, 2000, 2518, 
3492, 3383, 3095, 3478 and 3719 for the respective labels from backdoor till worms. False 
Positive (FP) is represented by the values present in the same column by counts of 17, 92, 62, 
etc for fuzzers and so on for the respective labels.  False Negative (FN) is represented by the 
values present in the same rows by counts of 12, 3, 302, etc for fuzzers and so on for 
respective labels. In the classification report, precision for Backdoor attacks is 69%, 
demonstrating moderate accuracy in properly identifying them, while recall is 96%, 
suggesting the model's success in catching a large number of actual legitimate backdoor 
attacks. The F1 score for backdoor attacks is 80%, indicating a balanced performance. For 
DoS, the precision is 60%, recall is 67% and F1 score is 63. For Exploits, precision is 79%, 
recall is 53% and F1 score is 63%. For Fuzzers, precision is 87%, recall is 68% and F1 score 
is 76. For Generic, precision is 100%, recall is 96% and F2 score is 98. For Normal, precision 
is 89%, recall is 91% and F1 score is 90. For Reconnaissance, precision is 85%, recall is 84% 
and F1 score is 85. For Shellcode, precision is 88%, recall is 93% and F1 score is 90. For 
Worms, precision is 97%, recall is 99% and F1 score is 98, indicating a balanced approach to 
identifying different types of attacks. 

 

 
Figure 10: Confusion Matrix Bidirectional Long-Short Term Memory (Bi-LSTM) 

. . . 

7.5 Experiment 5: Evaluating Long-Short Term Memory with Auto 
Encoder 

 
The goal of this experiment is to determine the effectiveness of the Long-Short Term 
Memory (LSTM) algorithm by evaluating its performance parameters such as precision, 
recall, and F1 score. The Long-Short Term Memory (LSTM) algorithm's confusion matrix 
visualises its ability to discriminate between different types of attacks. Columns reflect actual 
labels (0 for Backdoor, 1 for DoS, 2 for Exploits, 3 for Fuzzers, 4 for Generic, 5 for Normal, 
6 for Reconnaissance, 7 for Shellcode and 8 for Worms), whereas rows indicate anticipated 
labels. Columns correspond to the actual labels and rows correspond to predicted labels. True 
Positive (TP) and True Negative (TN) is represented by counts of 3653, 2572, 1438, 2540, 
3401, 3149, 2934, 3570 and 3602 for the respective labels from backdoor till worms. False 
Positive (FP) is represented by the values present in the same column by counts of 24, 6, 0, 
etc for generic and so on for the respective labels. False Negative (FN) is represented by the 
values present in the same rows by counts of 54, 31, 4, etc for generic and so on for 
respective labels. The classification report improves upon these indicators. The precision for 
backdoor attacks is 66%. A 97% recall illustrates the model's ability to recognise authentic 
cases, resulting in a 79 F1 score. DoS attacks have a 56% precision, recall is 68% and F1 
score 62. For Exploits, precision is 79%, recall is 38% and F1 score is 52. For Fuzzers, 
precision is 81%, recall is 69% and F1 score is 75. For generic, precision is 99%, recall is 
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94% and F1 score is 97. For Normal, precision is 91%, recall is 87% and F1 score is 89%. 
For Reconnaissance, precision is 82%, recall is 80% and F1 score is 81. For Shellcode, 
precision is 86%, recall is 95% and F1 score is 90. Lastly, for Worms, precision is 99%, 
recall is 98% and F1 score is 99, demonstrating the model's balanced precision and recall in 
most of the classes. 
 

 
Figure 11: Confusion Matrix LSTM with AutoEncoder 

.  .  . 

7.6 Experiment 6: Evaluating Bidirectional Long-Short Term Memory 
with Auto Encoders 

 
The purpose of this experiment is to assess the Bidirectional Long-Short Term Memory (bi-
LSTM) algorithm with AutoEncoder by measuring performance parameters such as 
precision, recall, and F1 score. The confusion matrix visually represents the Bi-LSTM 
algorithm’s performance in discriminating between different types of attacks. Columns 
represent actual labels, whereas rows represent anticipated labels. Columns correspond to the 
actual labels and rows correspond to predicted labels. True Positive (TP) and True Negative 
(TN) is represented by counts of 3656, 2959, 2197, 2711, 3469, 3309, 3082, 3626 and 3655 
for the respective labels from backdoor till worms. False Positive (FP) is represented by the 
values present in the same column by counts of 7, 11, 143, etc for normal and so on for the 
respective labels.  False Negative (FN) is represented by the values present in the same rows 
by counts of 145, 12, 65, etc for normal and so on for respective labels. In the classification 
report, precision for Backdoor is 71%, demonstrating accuracy in properly identifying them, 
while recall is 98%, suggesting the model's success in catching a large number of actual 
backdoor attacks. The F1 score for backdoor attacks is 82%, indicating a balanced 
performance. The algorithm accurately identified DoS attacks with a precision of 66% and 
recall of 78%. The F1 score for DoS attacks is 72%, indicating a balanced approach to 
identifying DoS attacks. For Exploits, precision is 84%, recall is 59% and F1 score is 69. The 
algorithm’s precision for Fuzzer attacks is 91%, recall is 74% and F1 score is 81. For Generic 
attacks, precision is 99%, recall is 96% and F1 score is 98%. For normal connections, 
precision is 93%, recall is 91% and F1 score is 92%. For Reconnaissance, precision is 90%, 
recall is 84% and F1 score is 87%. For Shellcode attacks, precision is 92%, recall is 96% and 
F1 score is 94%. For worm attacks, precision is 98%, recall is 100% and F1 score is 99%, 
illustrating a balanced performance in classifying different types of attacks. 
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Figure 12: Confusion Matrix Bi-LSTM with AutoEncoder 

.  .  . 

7.7 Discussion 
 
The experiments in this study sought to assess the performance of various machine learning 
algorithms, including Logistic Regression, Decision Tree Classifier, Long-Short Term 
Memory (LSTM), and Bidirectional Long-Short Term Memory (Bi-LSTM), in classifying 
different types of attacks in network intrusion detection. Each trial revealed the individual 
algorithm’s strengths and flaws. 
 
In Experiment 1, the Logistic Regression classifier performed moderately across the assault 
classifications. Precision, recall, and F1 scores varied between classes, with some 
outperforming others. For example, the classifier performed well for "Generic" and "Normal" 
classes, but poorly for "Reconnaissance" and "Shellcode." The confusion matrix revealed 
information on the classifier's ability to categorise distinct attack types, and the classification 
report summarised the precision, recall, and F1 scores for each class. Overall, the Logistic 
Regression classifier produced encouraging results; however, there is potential for 
improvement, particularly in classes with lower performance metrics. 
 
In Experiment 2, the performance of the Decision Tree classifier varied among attack classes. 
Some courses obtained excellent precision, recall, and F1 scores, while others had lower 
performance measures. For example, the classifier performed well for "Generic" and 
"Normal" classes, but poorly for "Exploits" and "Reconnaissance." The confusion matrix 
revealed information on the classifier's ability to categorise distinct attack types, and the 
classification report summarised the precision, recall, and F1 scores for each class. Overall, 
the Decision Tree classifier performed inconsistently, showing the need for additional 
optimisation, and refining to improve its effectiveness in network intrusion detection. 
 
In Experiment 3, the Long-Short Term Memory (LSTM) algorithm performed well across 
multiple attack types. Precision, recall, and F1 scores varied between classes, with some 
outperforming others. For example, the LSTM scored great precision and recall for "Generic" 
and "Normal" classes but performed poorly for "DoS" and "Reconnaissance." Overall, the 
LSTM algorithm without autoencoders produced encouraging results, pointing to its potential 
for network intrusion detection. 
 
In Experiment 4, similar to the LSTM technique, the Bidirectional Long-Short Term Memory 
(Bi-LSTM) approach without autoencoders performed well across multiple attack classes. 
Precision, recall, and F1 scores varied between classes, with some outperforming others. For 
example, the Bi-LSTM performed well in "Generic" and "Normal" classes, but poorly in 
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"Exploits" and "Reconnaissance." Overall, the Bi-LSTM algorithm without autoencoders 
produced promising results, demonstrating its usefulness in network intrusion detection. 
 
In Experiment 5, adding autoencoders to the LSTM algorithm enhanced its performance 
metrics across a variety of attack types. Precision, recall, and F1 scores improved 
significantly compared to the LSTM without autoencoders. Classes such as "DoS" and 
"Exploits" showed significant increases in precision, recall, and F1 scores, demonstrating that 
the LSTM with autoencoders can distinguish between different attack types. Overall, the 
LSTM with autoencoders outperformed the unencoded LSTM, demonstrating autoencoders' 
usefulness for feature extraction in network intrusion detection. 
 
In Experiment 6, incorporating autoencoders into the Bidirectional Long-Short Term 
Memory (Bi-LSTM) method improves performance metrics across a variety of attack classes. 
Precision, recall, and F1 scores improved significantly compared to the Bi-LSTM without 
autoencoders. Classes such as "Exploits" and "Reconnaissance" showed significant increases 
in precision, recall, and F1 scores, demonstrating that the Bi-LSTM with autoencoders can 
distinguish between different attack types. Overall, the Bi-LSTM with autoencoders 
performed better, highlighting the efficacy of autoencoders in feature extraction for network 
intrusion detection. 
 

8 Conclusion and Future Work 
 
In this study, I sought to evaluate the performance implications of employing machine 
learning and deep learning algorithms for intrusion detection in cloud environments, and how 
do they contribute to improving the overall security posture of cloud infrastructures? 
 
Throughout my research, I have successfully assessed a variety of machine learning methods, 
including Logistic Regression, Decision Tree, Long-Short Term Memory (LSTM), and 
Bidirectional Long-Short Term Memory (Bi-LSTM), for intrusion detection in cloud 
environments. I evaluated each algorithm's performance measures across distinct attack 
classes using a series of trials, including precision, recall, and F1 scores. The findings provide 
important insights into the effectiveness of these machine learning and deep learning methods 
for detecting intrusions in cloud environments. While some algorithms performed well in 
detecting specific attack types, others showed limitations in their usefulness. For example, 
algorithms like as LSTM and Bi-LSTM have shown promising results in differentiating 
between different attack classes, especially when combined with feature extraction 
approaches such as autoencoders. However, the research identifies several limitations and 
obstacles in using hybrid deep learning for intrusion detection in cloud systems. These 
include challenges with dataset imbalance, algorithm complexity, and the necessity for 
ongoing monitoring and adaption to changing threats. Despite these limitations, this study 
adds to the body of knowledge in cloud security by exploring the performance implications 
of hybrid deep learning methods for intrusion detection. Understanding the benefits and 
disadvantages of various algorithms enables organisations to make informed decisions when 
designing and implementing intrusion detection systems in cloud settings. 
 
When evaluating future prospects, there are various options for improving intrusion detection 
capabilities in cloud systems. One possible approach is to use ensemble approaches such as 
Random Forests and Gradient Boosting to improve classification accuracy and robustness. 
Additionally, building intrusion detection systems that dynamically react to incoming threats 
using adaptive learning algorithms has the potential to dramatically improve detection 
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capabilities. Advanced deep learning architectures, such as Convolutional Neural Networks 
(CNNs) and Transformer models, may provide additional advances in pattern recognition. 
Furthermore, combining Explainable AI (XAI) approaches may improve the interpretability 
and transparency of intrusion detection systems. Real-world deployment and evaluation via 
field trials are required to prove the scalability and practical applicability of these solutions in 
live cloud environments. 
 
In conclusion, while the research sheds light on the performance implications of using 
machine learning methods for intrusion detection in cloud systems, there is still more to be 
discovered and improved. Using the conclusions of this study, organisations can increase 
their security posture and better defend against emerging cyber threats in cloud 
infrastructures. 
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