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An MLHOps-Driven Vision Transformer Approach for
Pneumonia Classification in Chest X-Rays

Dharma Teja Venkatesh Nagothi
X22173897

Abstract

Diagnostic innovations are needed to enhance early detection and treatment of
pneumonia, a global public health crisis. This work improves pneumonia detection
from chest X-rays using Machine Learning Operations (MLOps) and Vision Trans-
formers (ViT), a sophisticated deep learning (DL) model used in many computer
vision applications. Pre-processed chest X-rays are given to a ViT model for feature
extraction. The ViT encoder extracts hierarchical visual cues, whereas the classifier
predicts pneumonia. The proposed method is tested using 5863 pneumonia-labeled
NIH Chest X-ray pictures. The experiment compares the ViT model to a CNN clas-
sifier model for pneumonia classification based on accuracy, sensitivity, specificity,
and AUC score criteria and it was found that ViT performed in terms of validation
accuracy of 95.22% better than CNN accuracy of 94.84%. The ViT model execution
was completed much faster than CNN execution (3018 seconds vs 7816 seconds).
Based on these results, ViT was chosen to be implemented using MLOps practices
for model training, evaluation, and deployment on Microsoft AzureML cloud. The
suggested pneumonia detection on ML Health Operations (MLHOps) infrastruc-
ture using integrated ML pipelines allows rapid iteration and model optimization
and ensures reproducibility for additional medical image analysis applications.

1 Introduction

Pneumonia is a severe lung infection caused by several viral diseases. Pneumonia is the
leading cause of infectious disease-related death in Western countries. Early detection
and treatment of pneumonia can help manage the condition effectively. Approximately
800,000 children under the age of five die from pneumonia annually, equating to over
2,200 deaths every day. Pneumonia is detected by chest X-ray scans. Diagnosing Pneu-
monia from chest X-ray pictures is difficult even for skilled radiologists. Diagnosing and
managing pneumonia on chest X-ray images can be challenging because of its resemb-
lance to other lung conditions. Computerized assistance technologies are necessary to
aid radiologists in diagnosing Pneumonia from chest X-ray pictures. Automated medical
image classification has considerably expanded to diagnose medical images into predeter-
mined classes. Deep Learning (DL) has become a popular technology for medical picture
categorization jobs. DL models outperformed traditional methods when analyzing chest
X-ray pictures of patients with pneumonia (Ben Atitallah et al.; 2022; [lori et al.; [2022)).

Recent studies have shown significant advancements in DL models for classifying
medical images and detecting objects. Convolutional neural networks (CNNs) have shown
remarkable performance in identifying pneumonia from chest X-rays (Rajpurkar et al.;



2017; |Li et al.; 2020)). Most studies have mostly concentrated on maximizing accuracy
metrics during internal validation. The CNN model examines the relationship between
adjacent pixels within a specific receptive area defined by the filter size. Therefore, it
is challenging to establish connections with remote pixels. There has been a lack of
thorough evaluation to determine if these models will effectively apply to diverse real-
world clinical environments. The lack of model explainability remains a barrier to clinical
adoption (Wiens et al.; 2019). Transformers, a self-attention-based architecture, offer a
new approach to address the visual complexities in modern medical image processing.

1.1 Problem Statement

The advancements in pneumonia detection models to facilitate the modern medical care
system have been stunted by the lack of standardized development, evaluation, and gov-
ernance protocols tailored to healthcare machine learning (Sendak et al.; [2020). Embra-
cing the growing conventions around ML governance will be vital for gaining practitioner
acceptance and enabling seamless incorporation with healthcare workflows that include
model development, bias mitigation, monitoring, and maintenance — collectively termed
as MLOps. (Alsagheer et al. [2023). There is a need for not just accurate models,
but accountable and reliable Al systems engineered for patient benefit. This provides
the motivation for exploring alternate architectures better suited for medical visual data.
Vision transformers (ViTs) have emerged as a promising candidate, demonstrating strong
performance on imaging tasks while offering inherent advantages for contextual modeling
and explainability (Parvaiz et al.; [2023]).

1.2 Motivation

There is a compelling need for automated and reliable pneumonia screening to improve
outcomes and save lives. We postulate that the convergence of two emerging techniques
- Vision Transformers (ViTs) and MLOps for Health (MLHOps) could overcome many
barriers to real-world clinical deployment. On the model architecture front, ViTs are
well-suited to handle the visual complexity and contextual nuances of medical images.
Additionally, ViTs segment images into patches and tokens in a way that is closer to
natural language, lending themselves better to sequence-based explanations about model
predictions than CNN-based approaches (Han et al.; 2022). Complementing these pre-
dictive advantages, orchestrating model development, evaluation, and deployment per
MLOps guidelines could address pressing gaps in transparency, fairness, and monitoring.

1.3 Research Question

Can a vision transformer (ViT) model implemented as an end-to-end MLHOps pipeline on
Azure outperform CNN models in accurately classifying chest X-ray images for pneumonia
detection?

1.4 Research Objective

This thesis proposes a ViT architecture for classifying pneumonia from chest X-rays, as-
sessed through detailed empirical evaluation and compared with CNN. The best-performing
model was selected and implemented using MLHOps practices for automated model train-
ing, evaluation, and deployment using AzureML pipelines.



1.5 Research Contributions

The salient contributions of this research include:

1. Attaining state-of-the-art classification performance on public chest X-ray datasets
through an improved ViT based deep learning approach.

2. Conducting laborious bias assessments on training data and internally testing model
fairness across key demographic attributes to mitigate ethical hazards.

3. Operationalizing the ML lifecycle through MLHOps - leveraging data versioning,
automated retraining pipelines, model deployment and continuous monitoring to
ensure reliability in medical image analysis.

4. Providing a comprehensive evaluation that demonstrates the superior performance
of ViTs over traditional CNN models.

1.6 Scope and Limitations

This research focuses on developing an end-to-end pipeline for automated pneumonia
screening from chest radiographs. The findings may subsequently be extended to multi-
disease classification, optimized deployment across varied healthcare environments, and
combinations with clinical metadata analytics. However, such directions are beyond the
current scope of this research undertaking. The model development and evaluation are
limited to openly available chest X-ray datasets from journal publications and public
repositories.

1.7 Thesis Structure

Section 1 presents the research projects, motivation, research question and objectives of
the research. Section 2 details all the existing literature and their research gap that this
research tries to cover. Section 3 provides the methodology for pneumonia detection using
CNN and ViT models. Section 4 details the design specification of the ViT and CNN
model architecture. Section 5 provides the implementation of CNN and ViT with training
parameters and presents the MLHOps approach. Section 6 showcases the evaluation of
both ViT and CNN in terms of accuracy, loss and other metrics. Section 7 concludes the
research with future scope.

2 Related Work

Transformers have demonstrated similar performance to CNNs in tasks such as med-
ical image classification (Matsoukas et al.; 2021)), segmentation (Heidari et al.; [2023)),
and reconstruction (Zhou et al.; [2023)). The present literature documents transformers
with superior performance compared to even the most advanced CNN models. However,
there is an ongoing debate over the performance of transformers against CNNs, with new
improvements to transformer architecture introduced periodically to address transformer-
related limitations. Dosovitskiy et al. (2020) introduced Vision Transformer (ViT), an
adaptation of the original transformer model to patches of images in sequences to ex-
tract the salient information. It is made possible by the optimization of the attention



mechanism that combines the global context into visual features without compromising
on computational efficiency. At present, researchers are further probing at the flexibil-
ity of vision transformers in addressing different problems in diverse fields. This section
aims to offer a nuanced review of how ViTs contribute to the classification problem by
automatically diagnosing diseases, specifically focusing on their efficacy in detecting and
classifying pneumonia.

2.1 Medical Image Analysis using Deep Learning

For medical image segmentation, the authors (Jafari et al.; [2020) proposed DRU-Net, a
novel deep convolutional neural network (DCNN) architecture that combines ResNet and
DensNet’s benefits. The skip connections and fewer model parameters used in comparison
to DenseNet and attention networks (AttnNet) improved the segmentation accuracy with
efficient training. The suggested method was tested on the Grand-challenge dataset for
skin lesion segmentation and a local brain MRI dataset for multi-class segmentation.
DRU-Net also outperformed ResNet, DenseNet, and AttnNet in segmentation accuracy,
precision, and Jaccard metrics eboth the datasets, especially for label classes with few
pixels and training examples. A similar research proposed in (Feng et al.; 2020) using
DCNN with a cascading structure and conditional random fields (CRF) was used to
segment medical images. The CRF is used for post-segmentation processing to resolve
the conflict between segmentation accuracy and network depth. The CNN-CRF model’s
cascading structure simulates spatial closure tag dependencies and enhances segmentation
accuracy. The research presented in (An et al;; [2021) used multiscale CNN (MCNN)
with visual attention for medical image classification. The technique extracts high-level
discriminative features and uses a Mahalanobis distance optimization model for robust
training to enhance image classification. The algorithm was evaluated on the JSRT lung
nodule database and the WBCD breast cancer database. It outclassed traditional DL
methods in classification accuracy owing to the visual attention mechanism combined
with unique MCNN architecture increasing the performance, proving the algorithm’s
stability and robustness in medical image classification.

Tang et al.| (2022) introduced a self-supervised learning system for 3D medical im-
age analysis using Swin UNETR, a unique 3D transformer-based model. To improve 3D
CT image analysis, the model was pre-trained using 5,050 publically available CT scans
from diverse body organs. The pre-trained Swin UNETR model performed well in seg-
mentation tasks involving 13 abdominal organs, proving that self-supervised pre-training
improves downstream segmentation tasks and opens up new uses for large-scale unlabeled
medical image datasets. In (Zeid et al.; 2021)), Vision Transformers (ViT) were used to
classify colorectal cancer (CRC) histology images, proving their efficacy in diagnosing and
managing complicated tissue patterns. A public dataset of 5000 histological pictures from
eight CRC tissue types were trained on Vision Transformer and Compact Convolutional
Transformer to achieve 93.3% and 95% accuracy, respectively. A new method integrating
YOLOv4+4+ASFF and Swin Transformer was introduced in (Pan et al.; [2024)) to detect
and classify renal incidentalomas in C'T images, potentially improving early identification
and clinical practice. The model was trained using 1485 images, including 705 benign and
780 malignant, formed through image augmentation from 990 training and 495 valida-
tion images. The Swin Transformer backbone-based YOLOv4+ASFF network enhanced
renal incidentaloma detection accuracy while maintaining competitive inference speed
and strong generalization across datasets and settings.



Zhao (2022) used DL to classify skin cancer lesions, comparing CNNs with ViTs. This
study’s novel approach to overcome dataset imbalance by performing median frequency
balancing, data augmentation, and sample size enhancement was combined with a de-
tailed comparison of CNNs and ViTs on the skin lesion dataset, HAM10000. The CNN
models (VGGNet and ResNet) and ViT models (regular ViT and DeepViT with reatten-
tion module) were trained using 10,015 dermoscopic pictures from seven skin lesions in
the HAM10000 dataset. While CNNs exceed ViTs in accuracy (93.26% vs 84.20%), both
can accurately classify skin cancer lesions. It was suggested that CNNs and ViTs could be
combined with transfer learning to handle datasets with small sample numbers. Hence,
(Li et al.; [2022) proposed the Trans-ResNet, a new architecture that combines CNN and
Transformer strengths to classify Alzheimer’s disease using MRI data. Trans-ResNet
solves the problem of limited sample sizes in neuroimaging datasets by pre-training on a
large-scale dataset for brain age estimate to capture both local and global dependencies
in brain MRI images. The design included a ResNet-18 CNN encoder for local feature
extraction and a Transformer encoder for global context modeling. It was pretrained for
brain age estimation on the UK Biobank dataset and fine-tuned for Alzheimer’s disease
classification on the ADNI and AIBL datasets Trans-ResNet’s classification accuracy in
Alzheimer’s disease prediction was 93.85% on the ADNI dataset and 93.94% on the AIBL
dataset, outperforming CNN-based approaches and CNN-ViT ensemble models.

2.2 Pneumonia Detection using CNN and ViT

The authors in (Sharma et al.; 2020) proposed various CNN frameworks for feature ex-
traction to detect pneumonia due to its prevalence and mortality rate from the chest
X-ray dataset, using both the original and augmented datasets to explore the impact
of the dataset size on the model’s performance. This study reiterated on the import-
ance of training the models from scratch, without using pretrained models which can
lead to overfitting and generalization. The results achieved show that the CNN model
trained on the augmented dataset performed better in terms of both validation and test
accuracy, asserting the fact that the dataset size can also be a factor in disease classi-
fication. A research was proposed by (Labhane et al.; 2020) for the early detection of
pediatric pneumonia from chest X-ray images using CNNs and transfer learning process.
This study utilized four different CNN frameworks: standard CNN, VGG16, VGG19 and
Inception to train on the pediatric pneumonia dataset that comprised of 2972 normal
and 2992 pnuemonia X-rays providing a balanced dataset for proper classification per-
formance. The efficiency of using the pretrained CNN transfer learning models trained
on the ImageNet dataset was also evaluated with an accuracy of 97% highlighting the
case for transfer learning for pneumonia disease detection. Six different CNN models like
ResNet50, LeNet, AlexNet, GoogLeNet, VGG16 and StrideNet were used in the research
presented in (Militante et al.; 2020)), thus offering a encompassing assessment of CNN
architectures for pneumonia classification. The models were trained on the chest x-ray
dataset comprising of 28000 images of 224x224 resolution with a learning rate of le-4 and
using Adam Optimizer. The final findings indicate that LeNet and GoogLeNet achieved
the highest accuracy of 98%, followed by VGG16 with 97% and ResNet50 performing
badly with only 80% accuracy.

Singh et al.| (2024) The study used a public dataset of chest X-ray images from Kaggle,
with three classes: normal, pneumonia, and COVID-19. The ViT model achieved an
accuracy of 97.61%, sensitivity of 95%, and specificity of 98% in detecting pneumonia from



chest X-ray images. The research presents a simple yet powerful model for pneumonia
detection using ViTs on a relatively small dataset.The research presented by (Jalalifar
and Sadeghi-Naini; 2022)) focused on classifying normal and abnormalities like pneumonia
or COVID-19 from the chest X-ray images on a relatively smaall dataset comprising of 763
images, with 197 for COVID-19, 117 for pneumonia, and 449 for normal cases, addressing
the data scarcity problem in medical imaging analysis. The detection framework was built
on a Data-efficient image Transformer (DeiT) that employed a teacher-student scheme
for training, achieved a test accuracy of 92.2% for classifying chest X-ray images into
three distinct classes: normal, pneumonia and COVID-19 with the performance in par
with CNNs, asserting the potential of Transformers for Pneumonia Classification. This
study focuses on COVID-19 screening using chest radiography (X-ray and CT images).
The authors in (Mondal et al.; 2021) proposed xViTCOS for COVID-19 screening using
chest X-rays and CT images. This study highights the xViTCOS model’s performance
over other COVID-19 detection techniques focusing only on the regions of interest (ROI)
in the chest X-rays, leading to the accurate diagnosis and precise localization of the
disease lung region. The research concluded with the proposition that xViTCOS can
complement or used in tandem with RT-PCR tests for rapid prognosis of COVID-19
for automated analysis of disease severity. (Wang et al.; [2023) introduces PneuNet, that
combines ResNet18 and multi-head attention network from ViT for COVID-19 pneumonia
diagnosis. The study used a custom dataset collected from seven public repositories,
totalling 33,920 chest X-ray images divided and label under the three categories of cases
of COVID-19, normal pneumonia, and healthy. PneuNet achieved a 94.96% accuracy on
the test set for the multiclass classification problem, and for binary classification, 99.30%
accuracy outperforming other DL models.

2.3 MLOps in Healthcare

Igbal et al.| (2023]) focuses on the importance of MLOps in the healthcare sector for the
deployment and management of DL. models for medical image analysis using conventional
machine learning models and CNN. It emphasizes the importance of collaboration among
different companies and resources, including as technologies, algorithms, scripts, libraries,
and tools, to automate data pretreatment, digestion, training, validation, and production
processes. This research (Kundu and Bilgaiyan}; 2022a)) presented a comprehensive insight
into the Machine Learning Operations (MLOps) practices for biomedical image classific-
ation, considering the specific requirements and challenges related to the handling and
processing of biomedical data. This covers the processes behind the successful classifica-
tion of biomedical images such as image filtering and segmentation using DL models like
CNN, U-Net. The MLOps tools used at each stage of the software development workflow
for biomedical images that includes data acquisition, preprocessing, model training, and
deployment. The research concluded that the automation of medical image segmentation
and classification models can be improved further with the use of MLOps pipelines and
adhering to the MLOps practices for scalable and deployable models.

Khattak et al.| (2023) An extensive review of MLHOps for reliable, efficient, and ethical
deployment and maintenance of ML models in healthcare was presented in this research
work. Proper guidelines and ethical practices for developers and clinical persons to deploy
and maintain their MLOps models that addresses the long-term monitoring, updating,
and other ethical issues. It also presented the data sources, pipeline engineering, de-
ployment, monitoring, updating models, and ethical considerations specific to healthcare



use cases. The paper concludes that to fully realize the potential of machine learning
in healthcare, practical considerations must be standardized and specified in engineering
pipelines, termed MLHOps. A more practical approach of MLOps implementation in the
diagnosis of COVID-19 from chest X-ray images was presented in (Kundu and Bilgaiyan;
2022b) using an automated hyper-parameter tuning pipeline to enhance the accuracy of
DL models. This approach overcomes the time-consuming process of hyper-parameter
tuning, leading to improved model accuracy with minimal human indulgence. A pre-
trained model, CheXNet was used in this study and open-source tools like Docker and
Jenkins were employed to create a Continuous Integration (CI) pipeline. The proposed
MLOps approach successfully automated the hyper-parameter tuning process, resulting
in a deep learning model that achieved an accuracy of 97.03%. The system continu-
ously retrains itself until the desired accuracy is reached, eliminating the need for trained
personnel during the model re-training stage.

3 Methodology

The research methodology presents the MLHOps based Pneumonia Detection from Chest
X-Rays using the proposed CNN and ViT-based deep learning models. The primary
focus of the study is to determine the performance of the CNN and ViT models in
identifying pneumonia and deploy the best performing model using MLOps practices.
This section discusses in brief: the dataset, data preprocessing techniques, model selection
and training, model evaluation and MLOps integration. Figure.1l presents block diagram
for better understanding of the process behind the design methodology.

3.1 Dataset

The NIH Chest X-ray dataset [[| comprising 5,863 frontal-view chest radiographs with
labeled predictions of pneumonia was used in this study. The images were selected from
pediatric patients of one to five years old from the NIH Clinical Center over the period
of 1992-2015. The dataset contains 1,583 (27.0%) images with pneumonia findings and
4,280 (73.0%) normal images making it an unbalanced dataset which may facilitate the
need for data augmentation for more reliable predictions.

3.2 Data Preprocessing

From the patient information provided in the dataset, it is clear that the age distribution
is skewed towards the younger patients and the gender ratio shows a predominant male
patient population. Along with the imbalanced class distribution with 2.7 times more
normal cases than pneumonia cases, which can result in bias towards the majority class,
the role of preprocessing the data is significant in working with such a dataset.

All images from the dataset have 1024 x 1024 resolution, but the pixel value distri-
bution shows varying intensities across the dataset, likely due to differences in imaging
equipment and other image capturing techniques. This necessitates the need for nor-
malization during preprocessing. The pixel values of the images are normalized in the
range [0,1] to ensure consistent intensity distributions across the dataset. The images
also need to be resampled to a lesser resolution to reduce the workload on the model

thttps:/ /www.kaggle.com/datasets/tolgadincer /labeled-chest-xray-images
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Figure 1: Pneumonia Detection with MLHOps.

improving the training and computing time without any adverse effects. Filtering meth-
ods can be used to remove any artifacts or labels from the images. Most importantly,
data augmentation techniques like geometric transformations, intensity augmentations,
random masking to better learn the representations etc., can be utilized to increase the
diversity of the training samples and avoid overfitting of the model. These preprocessing
and augmentation techniques are tailored carefully to improve the model’s generalization
ability and performance while avoiding insignificant transformations on the data. The
augmented images can be combined with the original dataset to create the final training
data for the ViT/CNN models.

3.3 Data Preparation

This is an important step in the model realization process where the preprocessed and
augmented data is split into train, test and validation sets to evaluate the performance
of the model. The training set comprises the majority of the data and is used to train
the CNN and ViT models by optimizing its weights and biases. The validation set is the
portion of data that is kept aside from training data for tuning the model hyperparameters
and training process evaluation. The test set is also the section of data set aside to
provide an unbiased estimation of the model’s performance on the new/untrained data.
The use of separate test set ensures that the model is not overtrained on any specific
data, thereby avoiding any biases. The performance metrics like accuracy, precision,
sensitivity and specificity can be used for evaluating the test set. As a general case, the
train /validation /test data splits are in the ratio 75%, 15% and 15%, respectively.

3.4 CNN Model Architecture

CNN based frameworks have been used for medical image classification problems in the
past decade, including pneumonia detection. In this study, we propose to use a custom
CNN architecture with three blocks, with each block comprising of 2D convolutional
layer with 16 filters, and a 3x3 kernel, followed by batch normalization, ReLU activation,
MaxPooling and dropout. We also add a flattening layer to convert the feature maps
into 1D vector. The output layer is a fully-connected layer (dense) with a single unit and
sigmoid activation which is representative of a binary classification task. The CNN is
trained using the binary cross-entropy loss function and the Adam optimizer. The number



of layers, filters, and its hyperparameters can be modified or fine-tuned to optimize the
model performance.

3.5 ViT Model Architecture

Recently, Vision Transformers (ViT) have gained popularity over CNN for their ability to
capture the global context and far-reaching dependencies in images, making it a natural
choice for working Chest X-Ray images in this work. This could be beneficial for de-
tecting subtle abnormalities indicative of pneumonia. The proposed ViT model uses the
standard approach by splitting the input image into non-overlapping 16x16 size patches
and linearly embeds them into a sequence of tokens of 768 dimensional vectors. This
process is called patch embedding and a learnable class token is added to the sequence
that serves as the representation for the image during classification. These sequence of
patch embeddings and class tokens are then processed by a standard transformer encoder,
having a multi-headed self-attention module and feed forward network to capture the re-
lationships between different patches. The output of the transformer encoder is passed
through a multi-layer perceptron (MLP) classification head to predict the probability of
the presence or absence of pneumonia. The categorical cross-entropy function was the
selected loss function and the optimizer was Adam. The use of Azure ML pipelines to
create workflows that are modular, scalable and fast deployable in nature for training
the registered, well-performing model on newer datasets can facilitate the process of ML
development and deployment at faster speeds, leading to more reusable models in diverse
application domains. The pipeline stages can be refined further to include more stages
with complex hyperparameter optimizations and model evaluation processes. However,
the focus of this research is limited to the deployment of the best-performing classification
model using Azure ML pipelines in addition to other Azure services like Azure Compute,
AzureML core, Azure Blob storage and others.

3.6 MLHops Pipeline

The entire MLHOPps pipeline is implemented using Azure Machine Learning (Azure ML)
services, that offers services for data versioning, model training on the cloud, model
management, deployment, and monitoring. The following is the breakdown of the key
components and processes in the MLHOps pipeline, as in Figure 1.

1. Data preprocessing and Data augmentation

2. Model Training (Python Data Science libraries like TensorFlow, Keras and Com-
puter Vision library, OpenCV)

3. Model Prediction, where the predictions on the test data classifies the X-ray im-
ages as Normal (Class 0) and Pneumonia (Class 1). The Best-Performing Model
Selection, where the performance of both the CNN and ViT models is evaluated
using evaluation metrics like accuracy, sensitivity, specificity etc., and the overall
best-performing model is selected for deployment.

4. The chosen best-performing model is then deployed to the production environment
where it can serve for further predictions on other similar chest X-ray datasets from
other sources.



4 Design Specification

The proposed pneumonia detection method classifies chest X-ray images as normal or
pneumonia using CNN and ViT deep learning architectures. The model architecture of
CNN and ViT model implementations are presented in this section.

4.1 Proposed CNN model

The chest radiographs are preprocessed by downsampling them to a standard 224 by 224
pixels and rescaling the intensity values to fall between 0 and 1. The proposed CNN ar-
chitecture (see Figure 2) is structured into three primary convolutional stages succeeded
by a densely connected classification module. Each convolutional stage is composed of a
2D convolution operation with a 3 by 3 spatial filter, followed by batch normalization,
rectified linear unit (ReLU) nonlinearity, max pooling for downsampling, and dropout
regularization. The series of convolutional stages progressively learn a hierarchy of dis-
criminative visual patterns from the input radiographs. The densely connected head takes
the final feature maps, reshapes them into a 1D vector representation, and feeds them
through fully-connected layers with ReLLU activations to perform the classification. The
final output node applies a sigmoid activation to estimate the probability of pneumonia
presence versus a normal case. The entire CNN is optimized end-to-end on the NIH
Chest X-ray collection by minimizing the binary cross-entropy objective using the Adam
stochastic gradient descent algorithm. To synthetically expand the training data and
boost the model’s invariance properties, random flips, rotations, zooms and translations
are applied as data augmentations during the learning process.

Figure 2: Proposed CNN architecture

4.2 Proposed ViT model

The input chest X-ray images are split into non-overlapping 16x16 patches and linearly
embedded into a sequence of tokens of 768-dimensional vectors. This process, called patch
embedding (See Figure 3 (a)), also adds a learnable class token to the sequence to serve
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as the aggregate representation for classification. The sequence of patch embeddings and
class token are processed by a standard transformer encoder, consisting of alternating
layers of multi-head self-attention and feed-forward networks. The self-attention mech-
anism enables modeling of global dependencies between different regions of the image.
Stochastic transformations like flipping, rotation, and zooming are performed by this
layer on input images. These improvements help the model generalize by representing
a variety of situations. The output shape is (None, 224, 224, 3), unchanged from the
input. Here, 'None” means the batch size might vary. The Patches layer splits enhanced
images into non-overlapping patches. The shape is (None, 14, 14, 768), suggesting that
each image is divided into 14x14 pieces and compressed into a 768-dimensional vector
space. Positional information from the patch encoder layer helps the model understand
the sequence and position of each patch in the original image. The form (None, 14, 14,
64) shows that each patch is now a 64-dimensional vector. A thick PatchEncoder layer
may reduce dimensionality from 768 to 64.

keras_tensor_80CLONE (InputLayer)

Output shape: (None, 14, 14, 64)

representation_flatten (Flatten)

Output shape: (None, 12544)

representation_dropout (Dropout)

Output shape: (None, 12544)

dense_0_dense (Dense)

inputs (Inputlayer) Output shape: (None, 1024)

Output shape: (None, 224, 224, 3)

l dense_0_dropout (Dropout)

data_augmentation (Sequential) Output shape: (None, 1024)

Output shape: (None, 224, 224, 3)

l dense_1_dense (Dense)

Output shape: (None, 512)
patches (Patches)

Output shape: (None, 14, 14, 768)
dense_1_dropout (Dropout)

i Output shape: (None, 512)

patch_encoder (PatchEncoder)

Output shape: (None, 14, 14, 64) outputs (Dense)
(a) ViT Patch Embed-

ding (b) ViT Classification

Figure 3: ViT Architecture for Pneumonia Detection

The output of the transformer encoder (Figure 3 (b)) corresponding to the class
token is passed through a multi-layer perceptron (MLP) head to predict the probability
of pneumonia vs normal. The classification head is typically the final part of a neural
network model, responsible for taking the high-level features extracted by the previous
layers and producing the final output or classification. In this case, the classification head

11



takes the flattened representation from the previous layers, applies two dense layers with
dropout regularization, and produces a final output with two units, likely representing the
probability or logits for the two classes, pneunomia, and normal.The ViT model is trained
end-to-end on the NIH Chest X-ray dataset using the binary cross-entropy loss function
and Adam optimizer. Data augmentation techniques like random cropping, horizontal
flipping, and intensity are applied during training to improve robustness.

5 Implementation

5.1 Pneumonia Detection using CNN

The pneumonia detection system was implemented in an iterative manner following the
design specifications. The final model and pipeline consisted of: Data Preprocessing:
The NIH Chest X-ray dataset was version controlled and split into train/validation/test
sets. Images were resized to 224x224 resolution and pixel values normalized. Data aug-
mentation was implemented using Keras’ ImageDataGenerator. Model Architecture: A
custom CNN model with three convolutional blocks and a dense head was implemented
using Keras Sequential API as shown in Figure 2. The model was compiled with binary
cross-entropy loss and Adam optimizer. CNN Model Architecture is discussed in Section
3.4. The model was trained for 50 epochs on Azure ML compute clusters with early stop-
ping and learning rate reduction callbacks. The binary cross-entropy loss and accuracy
metrics were monitored on the validation set. The trained model was evaluated on the
test set based on metrics like accuracy, and loss. Learning curves for the training and
validation sets were plotted to analyze performance. The MLHOps process was divided
into a three stage pipeline: data preprocessing, CNN Model training and Model Eval-
uation. The best-performing model based on validation accuracy was registered in the
model registry. The training parameters for the CNN model is provided in Table 1.

Table 1: CNN Training Parameters

H Parameter CNN H
Input Size 224x224
Convolutional Filters [16,32,64]
Kernel Size 3x3
Dense Units 64
Learning Rate 0.000003
Dropout (0.2, 0.2, 0.4, 0.5]

5.2 ViT based Pneumonia Detection

The preprocessing of NIH Chest X-ray dataset was done by resizing the images to 224x224
resolution, and normalizing the pixel values. A ViT-Base model with 12 transformer
layers, 768 hidden dimensions, and 12 attention heads was implemented using TensorFlow
and Keras. The MLP head consisted of two fully-connected layers. Pretrained weights
from ImageNet were used to initialize the model. The model classification process is
presented in Figure 3(b). The model was trained for 100 epochs with early stopping
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to stop the training process if the validation loss does not decrease for more than 10
epochs on Azure ML compute clusters. The categorical cross-entropy was chosen as the
loss function and Adam was the optimizer with a learning rate of 0.0001. The trained
model was evaluated on the test set based on metrics like accuracy, precision, recall and
fl-score. Visualizations like confusion matrices, accuracy and loss plots were logged. The
best-performing model based on validation AUC was registered in the model registry.
The model training parameters are presented in Table 2. The MLHOps process was
divided into a three-stage pipeline: data preprocessing, ViT Model training and Model
Evaluation. The best-performing model based on validation accuracy was registered in
the model registry.

Table 2: ViT Training Parameters

H Parameter ViT H

Patch Size 16x16
Project Dimension 64
Transformer Layers 8
Attention Heads 4

MLP units (1024, 512]
Learning Rate 0.001
Weight Decay 0.0001

5.3 MLHops Implementation on Azure

The AzureML pipeline implementation for pneumonia detection is presented as a three-
stage pipeline involving data preprocessing, ViT/CNN model training, and model evalu-
ation. The first step of the process involves downloading the dataset from the Azure
Blob storage using the right credentials that includes blob datastore name, account
name, and account key. A compute cluster is created and assigned to each pipeline
step. Since it is a sequential pipeline execution, the same compute instance can be
utilized by the other pipelines too once a pipeline is completed. An execution envir-
onment with the necessary libraries is created for the pipeline as it runs in a virtu-
alized environment ,and the libraries that are available in the main pipeline code are
not available to the individual pipeline code files. The pipeline step is defined by the
PythonScriptStep() function that takes the python script to run the pipeline as in-
put with the input and output arguments. This enables moving the data easily to
the next pipeline stage once the data has been processed and the pipeline step is ex-
ecuted. The CPU compute cluster and the coding environment is also defined to help
with the execution of the pipeline. The order of execution of the pipeline is provided
using the Pipeline() function. For instance, pipeline = Pipeline(workspace, steps =
[dataprepstep, modeltrainingstep, modelevaluationstep]) will execute the dataprepstep
pipeline first, followed by modeltrainingstep and finally, modelevaluationstep. Lastly, the
pipeline is submitted for execution using the function, run = Experiment.submit(pipeline)
and can be tracked using the link generated upon successful submission of the pipeline.
The created pipeline and its execution is presented in Figure 4.
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Figure 4: Three-Stage Pipeline Submitted for Execution

6 Evaluation

The CNN and ViT models were tested on NIH Chest X-ray images. The models’ pneu-
monia vs. normal classification performance was measured using several parameters.

6.1 Experiment: CNN Model Evaluation Plots

The CNN model was trained with a learning rate of 3e-5, batch size of 32, for 50 epochs
with an early stopping criteria if the validation loss does not reduce over 10 iterations of
model training. Adam was chosen as the optimizer and binary cross entropy as the loss
function. The model was able to achieve a validation accuracy of 0.9484 and test accuracy
of 0.8605 which is good for the pneumonia detection classification problem. This section
presents the evaluation results of the CNN model in terms of model training accuracy
and loss plots (see Figure 5, 6). A classification report is also presented in Table-3 with
metrics like precision, recall, and F1-score for better model performance analysis.

Table 3: CNN Evaluation Metrics

H Classification  Precision Recall Fl-score Support H

NORMAL 0.94 0.67 0.78 234
PNEUMONIA 0.83 0.97 0.90 390
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6.2 Experiment: ViT Model Evaluation Plots

The ViT model was trained with an epsilon value of le-6, learning rate of 0.001, weight
decay of 0.0001, batch size of 32, for 40 epochs with an early stopping criteria if the
validation area under curve (AUC) value does not reduce over 10 iterations of model
training. Adam was chosen as the optimizer and categorical cross entropy as the loss
function. The model was able to achieve a training accuracy of 0.9345 and validation
accuracy of 0.9522 which is better than the CNN approach for the pneumonia detection
classification problem. This section presents the evaluation results of the ViT model in
terms of model training accuracy and loss plots (see Figure 7,8). A classification report
is also presented in Table-4 with metrics like precision, recall, and Fl-score for better
model performance analysis.

Table 4: ViT Evaluation Metrics

H (Classification  Precision Recall F1l-score Support H

NORMAL 0.91 0.58 0.71 234
PNEUMONIA 0.79 0.96 0.87 390
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6.3 Discussion

From a comparison of the results, it can be inferred that both the models perform well
for the prediction of two classes, NORMAL and PNEUMONTIA. This can be analyzed
further from Table-3 and Table-4 where the classification report for both ViT and CNN
model performance is presented. The CNN model performed improvedly well for the
classification of the NORMAL class with a high recall value of 0.67 compared to 0.58
in ViT. This is important as recall scores can tell how many instances of a specific
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class are correctly predicted out of all the actual instances of the class. CNN also had
better balance in the predictions with an Fl-score with a value of 0.78 over 0.71. But
for the detection of PNEUMONIA class, both models performed exceptionally well with
nothing much to differentiate between as seen in Table-3 and Table-4. However, the CNN
model training and evaluation took about 7816 seconds while ViT completed the model
evaluation in about 3018 seconds. This indicates an enormous difference in the speed of
the model performance where ViT is more than twice faster than CNN in its detection
performance. This is not particularly not preferrable for real-time deployment of these
models using MLHOps where the CNN model’s longer execution time can result in more
cloud computing time and incur more costs in the long run. ViT with its shorter execution
times and comparable performance metrics will be the ideal model to be deployed on the
cloud.

7 Conclusion and Future Work

Vision Transformer (ViT) models constructed as end-to-end MLHOps pipelines on Azure
were tested to see if they could outperform CNN models in pneumonia identification from
chest X-ray images. The goals were to achieve improved classification results using an
improved ViT-based DL approach, provide a comprehensive evaluation showing ViTs per-
form better than CNN models and implement the ML lifecycle using Azure ML pipelines.
The research successfully addressed the question and achieved the objectives. Key find-
ings of this research are: 1. The ViT model achieved a training accuracy of 93.45% and
validation accuracy of 95.22%, over the CNN model (validation accuracy of 94.84% and
test accuracy of 86.05%). The ViT model completed evaluation more than twice as fast
as the CNN model (3018 seconds vs 7816 seconds), making it more suitable for real-time
MLHOps deployment. MLHOps best practices were implemented using Azure ML ser-
vices for data versioning, model training, and streamlined model deployment. Subsequent
research should prioritize refining the findings to involve the classification of multiple dis-
eases, optimizing the model deployment in various cloud environments, and integrating
the models with medical information analytics.
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