" National
College
Ireland

Comparative performance of RF and GBM
for short-term customer segmentation
forecasting

MSc Research Project
Cloud Computing

Thomas Jose
Student ID: x22146962

School of Computing
National College of Ireland

Supervisor: Dr Giovani Estrada

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Thomas Jose
Student ID: x22146962
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Dr Giovani Estrada
Submission Due Date: 27/05/2024
Project Title: Comparative performance of RF and GBM for short-term cus-
tomer segmentation forecasting
Word Count: XXX
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Thomas Jose

Date: 26th May 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Comparative performance of RF and GBM for
short-term customer segmentation forecasting

Thomas Jose
x22146962

1 Introduction

This manual is presented as supplementary material to the thesis report to help other
researchers with the setting up of the software environment and other necessary tools to
carry out the execution of this research project on their own, without any expert help or
intervention.

2 Local PC Configuration

e Intel/AMD based Quad Core PC Configuration
e min 16GB RAM
e min 256GB SSD storage

e Windows 10,11 or Ubuntu 20.04 or higher

3 Software Packages

e Python 3.8 or higher
e Pandas

e Matplotlib

e NumPy

e Seaborn

e SciPy

e Scikit-learn

4 Google Colab - Cloud Computing Platform

Google Colab |I| is a great place to work with deep learning tools like PyTorch, Keras,
TensorFlow, and OpenCV. In Colab, you can create notebooks, save notebooks for future
runs, share notebooks, and mount your Google Drive so you can use everything that’s in
it.

4.1 Setting up Google Drive

L Drive Q. Seart

NAvs r‘lriue
Folder
es
ﬁ File upload
Folder upload =
E Google Docs >
Google Sheets >
Google Slides > sty
dit
More >
Folders

Figure 1: Create Folder in Google Drive

Thttps://colab.research.google.com/

4.2 Creating Colab Notebook

L Drive Q_ Search Drive

A MNeivia o

Folder Sed today You edited t

File upload

B

B3 Folder upload
B Google Docs arrel House B ca
EIE Google Sheets

Google Slides > olab Notebooks B fow

More >
B Google Forms

B Google Drawings
& Bockups Files Kl Google My Maps
B Google Sites
O storage Colaboratory
276 ed Google Data Studio
UPGRADE STORAG

f1 Google Jamboard

& ZIP Extractor

Figure 2: Creating a new jupyter notebook on Colab

4.3 Notebook Compute Instance Selection

& rfm_ltv_v2.ipynb
File Edit View Insert Runtime Tools Help Lastedited on April 22

+ Code + Text Run all Ctri+F9
Run before Ctri+F8
[] 1# Install p Run the focused cell Ctri+Enter o
2 %pip instal Run selection Ctrl+Shift+Enter mat)
3 %pip instal Runafter crrl+F10 -leal
4 %pip instal scike

° 1 from google
2 drive.mount

Mounted at /cont Disconnect and delete runtime
Change runtime type
[1 1# Clean up

2 from os imp Manage sessions
3 from os.pat
4 import date
S import pand
6 import matplotlib.pyplot as plt
7 import numpy as np

View resources

Figure 3: Selecting Runtime Instance

4.4 Runtime Types

Change runtime type

Runtime type

Python 3 v

Hardware accelerator @

@® cru (O atooepu (O L4GPU
(O V1006GPU (deprecated) () T4 GPU

(O TPU (deprecated) O TPUV2

Figure 4: Runtime Types

4.5 Mounting Google Drive for file access

[») 1 from google.colab import drive
2 drive.mount('/content/drive')

E) Mounted at /content/drive

Figure 5: Mount Google Drive

4.6 Runtime Resource Utilization

Resources X

You are not subscribed. Learn more
Available: 63.07 compute units

Usage rate: approximately 0.07 per hour
You have 1 active session.

Manage sessions

Python 3 Google Compute Engine backend
Showing resources since 5:41PM

System RAM Disk
0.9/12.7GB 26.2/107.7 GB

Figure 6: Resource Monitoring

5 Code Development

The code development is carried out on Google Colaboratory using Jupyter Notebooks
with preconfigured python and machine learning framework for faster code initialization
and execution with better runtime computes.

5.1 Import Libraries

This section specifies the various libraries and packages used in code development that
includes Pandas, a data manipulation library, MatplotLib, for creating plots and figures,
and NumPy, a numerical computing package for Python. The "Sklearn’ or ’Scikit-Learn’
is the machine learning library that makes both Random Forest (RF) and Gradient Boost
Machines (GBM) classification possible. The ’datetime’ library provides date and time
classes to utilize in this work.

1# Clean up unused imports ...

2 from os import getcwd

3 from os.path import isfile

4 import datetime as dt

5 import pandas as pd

6 import matplotlib.pyplot as plt

7 import numpy as np

8 from matplotlib import pylab

9 import sklearn

10

11 from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier #, etc, etc
12 from sklearn.metrics import classification_report
13 from dateutil.relativedelta import relativedelta

Figure 7: Import necessary libraries

5.2 Loading Dataset

This code section loads the online retail dataset from the provided URL as a pandas
dataframe, 'retail data’. The retail data dataframe is displayed in Figure 9.

1
2 # Loading dataset
3%

4 if isfile('Online%2@Retail.xlsx'):

5 print("Loading dataset")

6 retail_data = pd.read_excel('Online%20Retail.x1sx"')

7 else:

8 print("Saving dataset to " + getcwd())

9 url = ‘https://archive.ics.uci.edu/ml/machine-learning-databases/00352/0nline%2@Retail.x1sx"
10 retail_data = pd.read_excel(url)

11

12 retail_data.head

Figure 8: Load Dataset from source

InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID Country
0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 2010-12-0108:26:00 255 17850.0 United Kingdom
1 536365 71053 WHITE METAL LANTERN 6 2010-12-01 08:26:00 3.39 17850.0 United Kingdom
2 536365 844068 CREAM CUPID HEARTS COAT HANGER 8 2010-12-0108:26:00 275 17850.0 United Kingdom
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 2010-12-0108:26:00 3.39 17850.0 United Kingdom
4 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6 2010-12-01 08:26:00 3.39 17850.0 United Kingdom

Figure 9: Online Retail Dataset

5.3 Dataset Preprocessing

This code section performs the data preprocessing analysis on the retail_data dataframe.
The customerID columns with NULL values are dropped, and converts the column to
integer datatype. The ’Quantity’ column is also converted to integer datatype. 'Invoi-
ceDate’ and "InvoiceDate2’ are converted to datetime datatype using pd.to_datetime().
The 'TotalPrice’ column is created by multiplying 'Quantity’ and ’UnitPrice’ columns
element-wise.

Quantity InvoiceDate UnitPrice CustomerID InvoiceDate2 TotalPrice
count 406789.000000 406789 406789.000000 406789.000000 406789 406789.000000
mean 12.028359 2011-07-10 16:28:44.845459968 3.460811 15287.795830 2011-07-10 16:28:44.845453968 20.403860

min -80995.000000 2010-12-01 08:26:00 0.001000 12346.000000 2010-12-01 08:26:00 -168469.600000
25% 2.000000 2011-04-06 15:02:00 1.250000 13954.000000 2011-04-06 15:02:00 4.200000
50% 5.000000 2011-07-31 11:46:00 1.950000 15152.000000 2011-07-31 11:46:00 11.100000
75% 12.000000 2011-10-20 13:06:00 3.750000 16791.000000 2011-10-20 13:06:00 19.500000
max 80995.000000 2011-12-09 12:50:00 38970.000000 18287.000000 2011-12-09 12:50:00 168469.600000
std 247927842 NaN 69.318561 1713.573064 NaN 427 612692

Figure 10: Data Preprocessing

Quantity InvoiceDate UnitPrice CustomerID InvoiceDate2 TotalPrice
count 406789.000000 406789 406789.000000 406789.000000 406789 406789.000000
mean 12.028359 2011-07-10 16:28:44.845459968 3.460811 15287.795830 2011-07-10 16:28:44.845453968 20.403860

min -80995.000000 2010-12-01 08:26:00 0.001000 12346.000000 2010-12-01 08:26:00 -168469.600000
25% 2.000000 2011-04-06 15:02:00 1.250000 13954.000000 2011-04-06 15:02:00 4.200000
50% 5.000000 2011-07-31 11:46:00 1.950000 15152.000000 2011-07-31 11:46:00 11.100000
5% 12.000000 2011-10-20 13:06:00 3.750000 16791.000000 2011-10-20 13:06:00 19.500000
max 80995.000000 2011-12-09 12:50:00 38970.000000 18287.000000 2011-12-09 12:50:00 168469.600000
std 247927842 NaN 69.318561 1713.573064 NaN 427612692

Figure 11: Preprocessed Dataset

5.4 RFM Score Computation

This code segment performs the RFM analysis by assigning scores to each customer based
on their recency, frequency and monetary value. The records are grouped by 'Custom-
erID’, following which ’InvoiceDate’ is used to calculate the cutoff date from ’allRecords’
(max or most recent invoice date) to derive the 'Recency’ value, Counting the number of
invoices per customer gives the 'frequency’ number, sum of "TotalPrice’ of all purchases
for each customer gives the 'MonetaryValue’. A new dataframe, 'rfm’ is constructed
from this. The percentile ranks are calculated for 'Recency’, 'Frequency’ and "Monetary-
Value’ and the rfm score is assigned to each customer using their percentile ranking using
'pd.qcut()’ that creates equal sized bins. A weighted RFM score is calculated using the
formula: 70.15 * recency score + 0.28 * frequency score + 0.57 * monetary score”.

allRecords = retail_data['InvoiceDate'].max() # a cut off date, dt.datetime(y,m,d). Here we take all records.
rfm = retail_data.groupby('CustomerID').agg({"InvoiceDate': lambda x: (allRecords - x.max()).days,

*InvoiceNo': ‘“count’,

‘TotalPrice': "sum',

'InvoiceDate2': 'max'}).reset_index()
rfm.columns = ['CustomerID', 'Recency’', 'Frequency', 'MonetaryValue', ‘lastPurchase’]

rfm = rfm[rfm['Monetaryvalue']>@] # Remove any customers that have zero contributions ...

Number of days since a customer last made a purchase (How recently)
rfm['r_percentile'] = rfm['Recency’].rank(pct=True,ascending=True) # the more recent the better
rfm['r_score'] = pd.qcut(rfm['r_percentile'], levels, labels=range(1l, levels+1))

How often a customer makes a purchase
rfm[' f_percentile'] = rfm['Frequency'].rank(pct=True,ascending=False) # the more purchases the better
rfm['f_score'] = pd.qcut(rfm['f_percentile'], levels, labels=range(1l, levels+1))

How much money a customer spends on purchases
rfm['m_percentile'] = rfm['MonetaryValue'].rank(pct=True,ascending=False) # the more spent the better
rfm['m_score'] = pd.qcut(rfm['m_percentile’'], levels, labels=range(l, levels+1l))

#rfm_scores = rfm[["CustomerID', ‘"r_score', 'f_score', 'm_score']]
rfm['score'] = rfm['r_score'].astype(str) + rfm['f_score'].astype(str) + rfm['m_score'].astype(str)
print('We have', len(rfm.score.unique()), 'different RFM rankings (from a max of', levels*levels*levels,')')

Weighted RFM score (typical weights are @.15r + ©.28f + ©.57m). Smaller score means better customers
rfm.r_score = pd.to_numeric(rfm.r_score)

rfm.f_score = pd.to_numeric(rfm.f_score)

rfm.m_score = pd.to_numeric(rfm.m_score)

rfm['rfm_score'] = @.15*rfm.r_score + ©.28*rfm.f_score + ©.57*rfm.m_score

Figure 12: RFM Analysis

Ve have 121 different RFM rankings (from a max of 125)
CustomerID Recency Frequency HonetaryValue lastPurchase r_percentile r_score f percentile f score m_percentile m_score score rfm_score

1 12347 1 182 4310.00 2011-12-07 15:52:00 0.035053 1 0421703 1 0.073808 1m 1.00
2 12348 74 31 1797.24 2011-09-25 13:13:00 0.627834 4 0.588038 3 0.226516 2 432 258
3 12349 18 73 1757.55 2011-11-21 09:51:00 0.281930 2 0341277 2 0.232094 2 222 200
4 12350 309 7 33440 2011-02:02 16:01:00 0.949560 5 0.759949 4 0.711708 4 su 415
5 12352 3% % 154541 2011-11-03 14:37:00 0432901 3 0271402 2 0.261453 2 32 215

Figure 13: Dataset after RFM Analysis

5.5 RFM Class

A new class column is created with the following classes: good - ’g’, bad - ’b’, medium -
'm’ based on their weighted RFM score under a certain threshold value for each class.

Function used in the creation of a class column out of RFM score
Good, medium, and bad customers based on the weighted RFM score
def myClass(num):

if num »>=1 and num <2:

return ‘g’ ## good customers
elif num >=2 and num <4:

return 'm’ ## medium customers
else:

return 'b’ ## bad customers

create the class column (RFM as a classification problem here, it could also
be posed as a regression problem)
rfm[*class"] = list(map(myClass, rfm['rfm_score']))

Figure 14: Cluster creation - g,b,m

5.6 Cluster Classification & Forecasting

A time-based evaluation of RF & GBM classifier on the RFM dataset to determine the
best month for forecasting customer classes is conducted in this code section. The code

7

iterates 10 times (from 1 to 10) to evaluate the classifier’s performance for different time-
periods, where a two-month training period and one-month test or forecasting period
is considered. ’clf fit(X_train, y_train)’ is used to train the model on the train dataset.
The classification report generates the evaluation metrics such as, precision, recall and
Fl-scores. A table or plot can be used to visualize the Fl-scores and accuracies for each
month. Based on the results, the month with the highest F'1-score or accuracy is identified
as the best month for forecasting.

trainData = rfm[(rfm['lastPurchase’'] >= baseDate) & (rfm['lastPurchase'] <= baseDate+relativedelta(months=2))] ## take 2m data
testData = rfm[(rfm['lastPurchase’'] > baseDate+relativedelta(months=2)) & (rfm['lastPurchase’'] < baseDate+relativedelta(months=3))
#

print('Train data Min and max dates are:', trainData['lastPurchase'].min(), 'to', trainData['lastPurchase'].max())
print('Test data Min and max dates are:', testData['lastPurchase’'].min(), 'to', testData['lastPurchase’].max())
#

X_train = trainData[['r_score', 'f_score', 'm_score']]

y_train = trainData['class']

X_test = testData[['r_score', 'f_score', 'm_score']]

y_test = testData['class']

#

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

#

report = classification_report(y_test, y_pred, output_dict=True)

print(classification_report(y_test, y_pred))

#

f1_score_rf = report['weighted avg']['fl-score']

f1_scores_rf.append(fl_score_rf)

Figure 15: Cluster Forecasting

Train data Min and max dates are: 2011-07-01 10:47:00 to 2011-08-31 16:28:00
Test data Min and max dates are: 2011-09-©1 ©9:57:00 to 2011-09-30 15:52:00

precision recall fl-score support

b 8.97 8.97 0.97 119

g 1.80 9.97 0.98 33

m 8.98 9.99 0.98 242

accuracy 9.98 394
macro avg 9.98 8.97 9.98 394
weighted avg 0.98 ©.98 0.98 394

Figure 16: Classification Report for September forecast

	Introduction
	Local PC Configuration
	Software Packages
	Google Colab - Cloud Computing Platform
	Setting up Google Drive
	Creating Colab Notebook
	Notebook Compute Instance Selection
	Runtime Types
	Mounting Google Drive for file access
	Runtime Resource Utilization

	Code Development
	Import Libraries
	Loading Dataset
	Dataset Preprocessing
	RFM Score Computation
	RFM Class
	Cluster Classification & Forecasting

