
Enhanced File Transfer Security in Django
Web Applications with TOTP-Based
Multi-Factor Authentication and

Blowfish/AES Encryption on AWS Cloud

MSc Research Project

Master of Science in Cloud Computing

NIKHIL DEVABHAKTUNI
Student ID: x22156411

School of Computing

National College of Ireland

Supervisor: Shreyas Setlur Arun



2

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: NIKHIL DEVABHAKTUNI

Student ID: x22156411

Programme: Master of Science in Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Shreyas Setlur Arun

Submission Due Date: 25/04/2024

Project Title: Enhanced File Transfer Security in Django Web Applications
with TOTP-Based Multi-Factor Authentication and Blow-
fish/AES Encryption on AWS Cloud

Word Count: 6718

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Devabhaktuni

Date: 27th May 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Enhanced File Transfer Security in Django Web
Applications with TOTP-Based Multi-Factor

Authentication and Blowfish/AES Encryption on
AWS Cloud

NIKHIL DEVABHAKTUNI
x22156411

Abstract

Securing web applications and sensitive data stored on the cloud is critical to
prevent breaches. Django web frameworks lack native security capabilities making
apps vulnerable which necessitates the need for multi-layered authentication sys-
tems to harden security. This research implements a multi-layered security solution
to improve data protection in a Django application by combining Time-based One
Time Password (TOTP) with the default Django authentication process and the use
of blowfish and AES encryption algorithms for securing the file transfer to Amazon
Web Services (AWS) S3 storage bucket. The inclusion of TOTP adds an additional
verification layer after logging with user credentials, requiring users to enter a one-
time code that expires in time from an authenticator app. Blowfish, chosen for its
variable key length and AES, chosen for its larger block size are used to encrypt
the files providing strong security. The encrypted files are then transferred to S3
buckets with strict access control permissions to prevent unauthorized access. The
results show that this defense approach substantially boosted the Django applica-
tion data security by preventing a hacker from getting access to the account with
compromised credentials as TOTP provides additional authentication layer. The
performance of Blowfish and AES are also evaluated in terms of execution times
and compression ratios to identify the best candidate for cloud data transfers. This
system with multi-factor authentication, strong encryption, and secure AWS cloud
storage works seamlessly to prevent unauthorized access and protect against various
threats to Django applications and data hosted on the cloud.

1 Introduction

Web applications built using frameworks like Django enable rapid development but lacks
native security capabilities making web applications built using the framework suscept-
ible to various cyber threats and attacks like cross-site scripting, SQL injections, remote
code execution, etc (Gupta et al.; 2022). With increasing cybercrimes, it becomes im-
perative to harden the security of Django apps to protect sensitive user data as well as
ensure availability and integrity of services. Additionally, with rapid cloud adoption, web
applications now integrate with cloud platforms like AWS for hosting backend infrastruc-
ture and storing critical data assets. The distributed architecture of cloud introduces new

1



attack surfaces making data hosted on cloud storage vulnerable to breaches due to issues
like data leaks, hijacking of accounts, insider threats, etc. Thus, enhancing the security
of Django web applications along with securing data storage and transfers on cloud is
crucial (Veeresh and Parvathy; 2022). Multi-layered solutions need to be implemented
spanning across user access controls, cryptography, cloud security configurations follow-
ing the defense-in-depth approach to harden the web apps and cloud data against cyber
threats.

1.1 Problem Statement

The default Django framework lacks native authentication, access controls and crypto-
graphy capabilities. Passwords stored in cleartext are prone to offline dictionary attacks
along with the risk of credentials stuffing to gain unauthorized access. Further, cloud
storage data can be compromised due to issues like data leaks, hijacking of accounts by
insiders in cloud provider environments. According to Acunetix Acunetix (n.d.) research,
around 39% of web applications contain high severity vulnerabilities and the average time
to remediate them is 197 days after discovery. Verizon’s 2021 Data Breach Investigations
Report Verizon (n.d.) also found that web application attacks continue to dominate with
over 25,000 incidents. High-profile examples include the DoorDash data breach Mash-
able (n.d.) affecting 4.9 million users and the Printful customer data breach impacting
thousands of accounts. Lack of multi-factor authentication and unencrypted data were
key issues.

This necessitates implementing multi-factor authentication in Django to strengthen
user access controls by requiring an additional one-time password over and above the
username/password. Cryptography algorithms need to be used to encrypt sensitive files
before secure transfers to cloud storage for preventing data breaches. Hardening cloud
security configurations through measures like identity access management, strict access
controls on cloud storage buckets is also vital. There is a need for a multi-layered security
solution spanning authentication, cryptography and cloud security to protect Django web
apps and data hosted on cloud against adversaries. The approach should follow security
best practices and defense-in-depth strategy to significantly enhance security and privacy.

1.2 Motivation

This research is motivated by the need to improve the security posture of web applications
such that sensitive user data is protected against compromise and unauthorized access.
While the Django framework itself provides user authentication, this relies solely on
username and password making it vulnerable to credential stuffing or brute force attacks
to gain entry. Adding a second-factor authentication using one-time passwords (OTPs)
generated by apps like Google Authenticator requires the user to prove their identity
using something they possess i.e. their smartphone. This mechanism is already widely
adopted by financial, e-commerce, and technology platforms. Integrating Time-based
OTP (TOTP) based multi-factor authentication improves the security of Django admin
login and user login before access is granted. Furthermore, the Blowfish cipher provides
strong symmetric key encryption suitable for encrypting data before network transfer and
file storage. Using Blowfish encryption in Cipher Block Chaining (CBC) mode increases
the complexity for attackers and limits data exposure. This research provides a blueprint
and reference architecture to add these data security layers.

2



1.3 Research Question

To what extent can the overall security posture of Django web applications be strengthened
by TOTP-based multi-factor authentication and Blowfish/AES encryption algorithms,
with particular reference to user authentication and secure file transfers for data stored
in AWS S3 buckets?

1.4 Research Objective

The objective of this research is to develop a multi-layered security solution for Django
web applications and data hosted on AWS cloud that provides enhanced protection
against cyber threats by combining Time-based One-Time Password TOTP multi-factor
authentication and Blowfish symmetric encryption algorithm to provide confidentiality
of sensitive files before secure transfer to Amazon S3 cloud storage.

1.5 Research Contributions

The salient contributions of this research include:

1. Integrate TOTP multi-factor authentication with the Django authentication system
to strengthen access control by adding an extra layer of user identity verification.

2. Utilize Blowfish symmetric encryption algorithm to provide confidentiality of sens-
itive files before secure transfer to Amazon S3 cloud storage. Blowfish leverages
variable length keys making it resistant to brute force attacks.

3. Strengthen AWS S3 cloud storage security configurations including access controls,
logging, and user permissions to prevent unauthorized data access.

4. Implement a strategy across authentication, cryptography, and cloud security layers
following security best practices to significantly improve Django application and
data security.

1.6 Scope and Limitations

The scope of this research is limited to enhancing data security within Django framework-
based web applications deployed on Amazon Web Services. While other authentication
schemes like biometrics and hardware tokens are emerging options, only software-based
TOTP has been chosen for implementation feasibility. The Blowfish cipher with CBC
mode has been selected for its strong security properties, but the research is limited to
symmetric encryption only and does not cover asymmetric public key encryption. The
reference architecture demonstrates integration with Django and AWS services but does
not extend to deployment mechanisms like Docker containers.

1.7 Thesis Structure

Section 1 presents the research projects, motivation, research question and objectives
of the research. Section 2 details all the existing literature and their research gap that
this research tries to cover. Section 3 provides the methodology for Django web applica-
tion development using 2FA and Blowfish/AES encryptions. Section 4 details the design

3



specifications of the research problem covering system architecture, algorithms, s3 con-
figuration and sequence flow diagrams. Section 5 provides the implementation of Django
web application from user registration , 2FA, encryption and decryption process and s3
data upload and download. Section 6 showcases the hands-on deployment of the django
web application in the local. Section 7 concludes the research with future scope.

2 Related Work

The impressive growth of cloud data storage systems with large enterprises and small
businesses migrating their local data storage to the cloud has increased the possibility
of unwarranted risks like data leaks, and privacy. The novelty of the research lies in
proposing solutions to ensure privacy protection for users while utilizing cloud storage
services.

2.1 Data Security in Cloud Services

A survey was presented by (Yang et al.; 2020) on secure data sharing and securing against
leakages to highlight the limitations and challenges in data security on cloud storage sys-
tems. The primary focus was to avail privacy protection to the consumers of public and
private cloud services through encryption mechanisms like attribute-based encryption
(ABE), and identity-based encryption (IBE). Additionally, searchable encryption meth-
ods such as multi-keyword ranked search (MKRS) and searchable symmetric encryption
(SSE) were also studied to enhance the user understanding, and adeptness and main-
tain data confidentiality in working with encrypted cloud data. (Sun; 2020) presented
an extensive review on data security and privacy protection techniques where a frame-
work was proposed with access control, ABE, and symmetric and asymmetric searchable
encryption to evaluate different access control mechanisms, integrating the access con-
trols and searchability for improved privacy. Future directions to access control were also
discussed including dynamic fine-grained systems, trust-based access control, and space-
time awareness models. The research was significant in the way that it led to a better
comprehension and importance of privacy protection in cloud computing by stating the
key technologies and future scope.

An exhaustive survey on the challenges associated with big data security and privacy
due to the potential security threats with the storage of sensitive information on the cloud
storage systems was presented in (Alouffi et al.; 2021). It discussed on the existing data
privacy and security models, threats, and the challenges arising with it while analyzing
recent models developed to mitigate these challenges and improve cloud data security.
A systematic review was presented in (Riaz et al.; 2020) focusing on the security risks
encountered by cloud service providers by outlining the threats and potential solutions
to overcome those with the use of blockchains. The chief learnings from the study are:
that data tampering emerged as one of the top most security issues, consumer grievances
concerning service agreements and data policies, and the blockchain-based solution to
address the shortcomings of the security mishaps in the cloud environments.

2.2 Django Web Application Framework

Notwithstanding the availability of a multitude of web application frameworks like Flask,
Ruby on Rails, Express.js, and others, this research focuses on web application devel-

4



opment using Django, a Python-based opensource framework due to its high scalability,
extensive support for third-party packages and built-in security tools that offers protec-
tion against common web attacks like SQL injection, cross-site request forgery (CSRF),
etc., The authors in (Veeresh and Parvathy; 2022) focused on providing cybersecurity for
data encryption for secure data transfers over the cloud and availing data access control
through the use of private keys serviced through a Django web application. This study
resolves to improve data security in cloud environments with the use of encryption and
a web framework capable of providing the basic security features in-built. A real-time
implementation of the web application was proposed in (Stigler and Burdack; 2020) with
a focus on scalability, multiprocessing, and load optimization for faster response and
evaluating its performance of the web application based on Django by applying queuing
theory for scaling down the application based on arrival times, thereby contributing to
stable server usage. This paper placed the importance on dynamic and efficient data
handling and processing of information in real-time applications.

Duisebekova et al. (2021) presented in their research the security tools available in
Django for data security in web services by demonstrating the services like CSRF-tokens,
and cross-site scripting (XSS) protection inherent in Django. They also presented case
studies that compared various attacks, and the protection scheme in Django to mit-
igate those attacks. This work showcased Django’s abilities in protecting web applica-
tions through production configurations, HTTPS/SSL, and XSS attacks. A Django-based
framework was presented in (Yu et al.; 2023) for improving house information manage-
ment systems with user-centric approaches and real-time listing. The web application was
developed with a focus on optimizing the user registration and login processes, restrict-
ing user roles in data handling on Redis and MySQL databases, and improving system
configuration by utilizing Django’s security offerings and Python’s improved efficiency.
The contribution of this research lies in the provisioning of a scalable, agile, lightweight,
and effective housing data management based on Django.

A Django-based chat application for secure communication was presented in (Singh
et al.; n.d.) by integrating various web tools like HTML, CSS, JavaScript, MySQL, and
Django. The encryption was done using N-TEA (New Text Encryption Algorithm) for
additional data security in securely transmitting chat messages and evaluating the effi-
ciency of the algorithm in terms of encryption/decryption times and compression ratios.
A comparative study was conducted between Django and Flask in (Ghimire; 2020) in
developing a social network application using Flask and an e-commerce app with Django.
The findings suggest, that though Flask offered simplicity in implementation and fine-
grained control in configurations, Django had extensive library support to enhance the
data security and scalability in large-scale deployments. The study concluded by present-
ing that both Flask and Django have their own merits and demerits in a real-time web
application development use case, highlighting that only Django has the built-in security
mechanisms to handle data security breaches and leaks in the context of cloud storage
security.

2.3 Encryption Mechanisms for Cloud Security and Blowfish
Algorithm

Singhal et al. (2022) proposed a cryptographic steganography technique for cloud data
security using Blowfish and least significant bit (LSB) encryption to secure cloud data
from unauthorized access, and preserve user privacy and integrity. The blowfish algorithm

5



was used to encrypt the message to be uploaded with a private key and LSB embedding
was used to hide the message within a cover image. The research also compared the
results of the proposed approach with other encryption algorithms like data encryption
standard (DES), discrete cosine transforms (DCT), etc., in terms of key size, block size,
and encryption times and found out that blowfish with LSB embedding performed well
offering more flexibility making it an ideal candidate for data security in the cloud. A
related comparison study of encryption algorithms like DES, 3DES, advanced encryption
standard (AES), and Blowfish was presented in detail by (Radhi and Ogla; 2023) with
cost and performance measures of encryption/decryption times, memory usage, optimal
encoding bits, and entropy score as the evaluation criteria. This experimental framework
that implements the algorithms was tested on a Fog server running an Ubuntu 16.04
distribution. It was found that Blowfish was thrice faster than others in comparison with
least memory usage and best entropy value, an indicator of protection against cyberat-
tacks, making it the right offering for web applications that are constrained by memory
and runtimes.

The authors in (Singhal et al.; 2023) proposed an improved blowfish approach for
plaintext and file encryption and compared it to DES, DCT, and AES encryption al-
gorithms. This improved blowfish used a transformation model to reduce the rounds
from the usual 16-round Feistel model and increased the block length to enhance se-
curity. This version of Blowfish was evaluated in terms of encryption/decryption times
as the performance metric and outperformed AES and other algorithms, in addition to
offering better security for cloud-shared messages and files. The research in (Seth et al.;
2021) presented a hybrid approach with Blowfish (symmetric encryption) and Paillier
(homomorphic encryption) algorithms. The main objective was to decrease the total
computation time and encrypted text size to save power and storage, respectively. The
performance assessment was carried out utilizing factors such as quality of service (QoS)
for different block cipher modes, and its calculation overhead. The results of this hybrid
approach showed that Blowfish-Paillier-based encryption excelled in better security, stor-
age, and computing speeds in comparison with RSA and AES justifying it as the perfect
choice for cloud data security.

2.4 Multi-factor Authentication Techniques (MFA)

Reddy and Reddy (2018) presented an extensive review of multifactor authentication
(MFA) approaches and their advantages compared to the use of static passwords in of-
fering improved network security against password hacks and data leaks. This work was
specifically focused on image-based MFA, fingerprint authentication, one-time passwords
(OTPs), and time-based OTPs (TOTPs). It also explored how MFA can offer an ad-
ditional layer of security for cloud data transfer and financial transactions by making
hacking difficult to the least possible by necessitating multiple different ways of authen-
ticating the credentials to an account. TOTPs are more secure in a way that they
can avoid eavesdropping attacks by making the OTPs last only less than a minute in
most user scenarios. The study concluded by suggesting the use of TOTPs offered by
Microsoft/Google to generate unique passcodes for that added security boost for trans-
actions or data transfer on the cloud.

The research presented in (Otta et al.; 2023) surveyed cloud-specific MFA tech-
niques with new proposals like biometric authentication without any sophisticated hard-
ware/software to overcome impersonation attacks. It also offered solutions to the existing

6



issues in the cloud services authentication and access control that covers both hetero-
geneous private clouds and edge clouds. It concluded that cloud data security can be
significantly improved employing MFA-based user authentication with the inclusion of
advanced facial recognition systems and recommended investigations into the cost and
feasibility of heterogeneous cloud data centers. In the research presented by (Reese et al.;
2019), five two-factor authentication (2FA) methods were studied by following a practical
subject-based laboratory experiment involving the usability and setup of 2FA implemen-
ted using SMS, TOTP, push notifications, etc., on a model banking website designed for
this purpose. The daily login process was used as the observation point for the analysis
of user preferences and 2FA usability which is the cornerstone of the success of MFA
methods. The study found that the users preferred the use of hardware tokens and OTPs
due to their ease of setup and usability over other approaches. The research concluded
that with increased 2FA adoption, cloud-based security issues and privacy concerns can
be warded off to instill the confidence of consumers to migrate to cloud platforms for
data storage.

This section extends the discussion on MFA approaches and their integration into
the Blowfish algorithm proposed in this research work. Durga et al. (2023) presented an
MFA approach in conjunction with an optimized blowfish algorithm (OBA) for secure
cloud data retrieval that improves data security hindering the adoption to cloud-based
storage systems. The integration of MFA and OBA prevented unauthorized access to
hackers and spoofers by guaranteeing only authorized users’ access to data and with
the inclusion of binary crow search for selecting the private keys for encryption, it also
enhanced the protection against brute-force attacks. This combined strategy was found
to be effective and a significant improvement over other existing approaches for secure
cloud data security. The authors presented in (Umarani and Kumar; n.d.) a double
encryption-based Blowfish (DEBF) for MFA with a stealth authentication mechanism to
improve cloud data security. DEBF with MFA protects data by enforcing access control to
prevent illegal access with better results compared to other encryption and authentication
processes asserting their place in securing cloud computing data resources.

3 Methodology

This research proposes to develop a Django-based web application using two-factor (2FA)
authentication done with Time-based OTP (TOTP) for the user authentication process
to facilitate secure file transfers to the AWS S3 cloud storage. The methodology for the
proposed model with its key components is presented in Figure 1.

TOTP based 2FA Mechanism: The Django authentication system integrates
TOTP for improved user access controls by mandating an additional one-time password
verification in tandem with the login and password credentials. This enables an additional
level of authentication to gain access to the application. This is accomplished with the
generation of a secret key linked to the user’s account during the user registration process.
This secret key can be used by authenticator apps like Google Authenticator, Microsoft
Authenticator, Authy etc., to generate time-based one-time passwords (TOTP). During
the login process, the Django authentication system attempts to validate the provided
username and password credentials from the protected local database like MySQL. Once
the username and password details are approved, the user is then directed to enter the
TOTP code generated by the authenticator application that they have installed on their

7



mobile devices. The mobile devices themselves have in-built authentication methods like
face unlock, fingerprint or passcode, thereby offering an additional layer of security in
some unauthorized person gaining access to the TOTP application. The entered TOTP
code is validated against the user’s secret key using the TOTP library. If the provided
TOTP code matches the expected value, it is considered as valid and the user is provided
access to the application. An acknowledgement mail is also sent to the user’s email
address provided at the time of registration.

Encryption Mechanisms - Blowfish and AES: This primary role of the designed
application is to provide the function of a cloud drive to which files can be uploaded
and downloaded securely using encryption. While transferring files across the cloud
network, ensuring the safety of the files where they are prone to interception or during
the handling of the files where there is a possibility for unauthorized access is foremost
essential. The use of cryptography to encrypt the files before transmission is therefore
mandatory, especially when working with files that are shared across different places
in a network. The most popular and powerful encryption algorithms are Blowfish and
AES, both symmetric-key encryption algorithms, has been proposed to be used in this
work to encrypt the files before the transfer. Blowfish operates on blocks of 64 bits
and uses a key of variable length ranging from 32 bits to 448 bits. The AES algorithm
works on blocks of 128 bits and allows for key sizes of either 128, 192, or 256 bits.
Encryption keys are generated and securely stored in the database provider (MySQL)
for the application. The choice between Blowfish and AES primarily depends on the
application scope, like banking, e-commerce, content delivery etc., but finer control over
these algorithms can be achieved by experimenting with different key lengths, flexible
demonstrations of design, speed requirements, and others. The Django web application
framework is utilized to perform encryption and decryption of the data using third-
party python libraries that integrate well with the Django environment. Two modules
were designed for the purpose of handling uploads (UploadFileAction) and downloads
(DownloadFileAction) which provides the utilities to perform encryption and decryption
using blowfish and AES, respectively as shown in Figure 1. The encrypted file details such
as username, filename, and encryption type are saved to the application’s local database
(Auth DB) for further retrieval while decrypting the files. This manner of saving the
file details along with the username and encryption type provides the option to restrict
access to the files only to the authorised user.

AWS S3 Cloud Storage: The files are encrypted before being uploaded to the AWS
S3 cloud storage, providing data protection during transfers and when stored. The choice
of use of AWS for file storage is chiefly due to facts such as, cloud data center security,
decoupled storage where the encrypted data is separated from the user credentials, en-
hancing security by preventing direct access to files from the database, encryption key
management and compliance with industry standards. AWS also implements strict ac-
cess controls for the access of S3 storage buckets using Identity and Access Management
(IAM) policies or bucket policies. Only authorised users can upload or download files
from the S3 bucket i.e., the user will be provided an option to download only those files
that were uploaded by a specific user during a previous user login session. This ensures
that there is no unauthorised access to unknown files or files uploaded by other users.
This model of using local database like AuthDB to capture the user information, filename
and encryption type before uploading the files can facilitate the process of downloading
the file intended for a specific user with the proper decryption algorithm to retrieve the
original contents of the file.

8



Figure 1: Proposed TOTP based 2FA Secure File Transfer Application

4 Design Specification

4.1 Proposed System Architecture

Figure 2 depicts the secure process for uploading and downloading files. It involves a
client, a Django application, and an S3 bucket for storing files in the cloud. The process
commences when the customer presents his login credentials to the Django application,
which then authenticates the password. Two-factor authentication is implemented by
utilizing a Time-based One-Time Password (TOTP) technique. After a successful au-
thentication, an authenticated session is created. As an additional functionality a custom
library has been developed to enhance security measures by collecting user IP addresses
and geographical locations. This library integrates with the existing system and uses the
SMTP protocol to send email notifications to users for additional verification.

When users logging in to their account, the custom library automatically gathers their
IP address and location data. For the process of file upload, the client transmits the file
that is to be uploaded together with a description of the file. The file is encrypted using
the Blowfish/AES encryption techniques, resulting in an encrypted file. The encrypted
file is stored using PUT object API operation in the S3 bucket. While downloading a
file, the client initiates the process by requesting the file and providing its description.
The encrypted file is obtained from the S3 bucket using the GET object API operation.
The encrypted file is decoded using the appropriate algorithm used for encryption, Blow-
fish/AES decryption, resulting in the original decrypted file, which is then sent back to the
client. The method employs many security mechanisms to guarantee the confidentiality
and integrity of transferred files including password authentication, two-factor authen-
tication (TOTP), file encryption/decryption utilizing robust algorithms (Blowfish/AES),
and secure cloud storage (S3 bucket).

9



Figure 2: Proposed TOTP based 2FA Secure File Transfer Architecture

4.2 Blowfish and AES Encryption:

AES is founded on the design premise of a replacement permutation network. It utilizes
a block size of 128 bits and offers key sizes of either 128, 192, or 256 bits.It processes
a matrix of bytes called the state, which is organized in a column-major order with 4
columns. The majority of AES calculations are performed within a distinct finite field.
The AES encryption is defined by a series of transformation rounds that iteratively turn
the input plaintext into the final output of cipher text. The number of cycles of repetition
is that there are 10 iterations of repetition for keys that are 128 bits in length. Twelve
iterations of repetition for keys with a length of 192 bits, and approximately 14 iterations
are required for 256-bit keys. The encryption process consists of four essential actions:
SubBytes, ShiftRows, MixColumns, and XorRoundkey. Each round of encryption re-
quires these operations to be performed. Decryption is the reverse process of encryption,
accomplished by employing inverse operations such as InvSubBytes, InvShiftRows, and
InvMixColumns.

Blowfish is a symmetric block cipher that operates on 64-bit blocks and supports
variable-length keys. The algorithm consists of two components: a key expansion com-
ponent and a data encryption component. The primary function of the key expansion
component is to transform a key, which can be up to 448 bits in length, into many subkey
arrays with a combined size of 4168 bytes. Data encryption is achieved via a 16-round
Feistel network. It is only appropriate for use in situations where the key does not fre-
quently change, such as a communications link or an automatic file encryption. When
implemented on 32-bit microprocessors with big data caches, it exhibits notable speed
advantages over the majority of encryption techniques. Encryption methods are designed
in such a way that once a substantial amount of security analysis has been conducted,
it is highly undesirable to modify the algorithm for the sake of efficiency. This would
render the conclusions of the analysis invalid. Hence, it is crucial to concurrently consider
security and performance during the design phase. Although it is not feasible to account
for all potential computer architectures in the future, having knowledge of general op-
timization principles and conducting software experiments on current architectures to
fine-tune performance can aid in achieving faster encryption algorithms in the future.

A comparison table is presented to compare AES and Blowfish algorithms in Table-1:

10



Table 1: Blowfish Vs AES - A Comparison
Parameter Blowfish AES

Key Length 448 bits 128, 192, 256 bits
Block Size 64 128
Speed Faster Fast
Security Enough Security Excellent Security
Structure Feistel Substitution Permutation

Key Cracking Time 3200 days 5x10power21 days

4.3 S3 Bucket Configuration

An S3 storage bucket will be created to store the encrypted files with the following
configurations:

• Create an IAM user to limit access to AWS cloud computing platform with limited
roles and access policies

• Restrict access to the bucket to only the Django app’s IAM user via bucket policies

• Create specific buckets based on the user credentials.

The Django app will be assigned access to the IAM user with programmatic access.
The access key will be securely stored in the app’s configuration. Bucket policies will
allow the IAM user PutObject and GetObject permissions on the bucket.

4.4 End-to-End Authentication Workflow

Figure 3 presents the sequence diagram for the end-to-end authentication flow in Django.
The process begins when the client submits a login form to Django. Django then verifies
the password with the Django Auth module. If the password is valid, Django prompts
the client for a Time-based One-Time Password (TOTP). The client submits the TOTP,
which Django Auth verifies. Upon successful TOTP verification, an authenticated session
is established between the client and Django web application.

4.5 Sequence Diagram - Encryption Process

Figure 4 depicts a secure procedure for uploading and storing files as a sequence dia-
gram. It involves a client, the Django web framework, encryption using the Blowfish/AES
method, and an Amazon S3 bucket for storage. The process is initiated by the client when
they upload a file to Django. Django employs Blowfish/AES encryption to encrypt the
file. The encrypted file is then transferred to the S3 bucket for storage. After a successful
upload, Django sends a confirmation to the client to indicate that the upload has been
completed.

11



Figure 3: End-to-End Authentication Flow

Figure 4: Encryption Flow

4.6 Sequence Diagram - Decryption Process

Figure 5 illustrates the secure file transmission process that includes a client, a Django
web framework, an S3 cloud storage bucket, and encryption/decryption utilizing methods
such as Blowfish or AES. The user triggers a request to download a file, which prompts
Django to fetch the encrypted file from the S3 bucket. Django subsequently decrypts the
file and delivers the decrypted rendition to the client.

12



Figure 5: Decryption Flow

5 Implementation

5.1 Developing the Django Web Application

The initial step in the implementation process is to develop a Django web application
that includes user registration, login, and file upload/download options. Create a new
Django project and app using the ‘django-admin startproject‘ and ‘python manage.py
startapp‘ commands, respectively. Define the necessary models for user registration and
file management in the app’s ‘models.py‘ file. Create views and templates for user re-
gistration, login, and file upload/download functionality. The user registration view is
implemented to handle user sign-up requests.

5.2 TOTP Authentication

Upon successful registration, the user is logged in and redirected to the appropriate
page. To provide additional security of the Django application, a TOTP multi-factor
authentication is implemented using the python library, pyotp, installed in the Django
project environment. A specific view is created in views.py to handle the TOTP setup
process, generate a secret key for the user and display a QR code that the user can
scan using a TOTP app like Google Authenticator or Authy. the secret key is securely
stored securely in the database, ’multistagecloud’, associated with the user’s account.
The login view is modified to require TOTP authentication after successful password
authentication.

5.3 Custom Library

A custom library was developed to collect the IP address and geographical location of
users. It uses this information to automatically send email notifications to customers
using the SMTP protocol and Google App passwords for authentication. This library
is designed to keep customers informed about activity related to their accounts, such as
logins and about file information.

13



5.4 Blowfish/AES Encryption and Decryption

The Blowfish and AES encryption and decryption modules are implemented as separate
views using Python cryptography library, ’pycrypotodome’. When a user uploads a file, a
random encryption key is generated using the Blowfish algorithm which is used to encrypt
the file contents before saving them to S3 bucket storage. The S3 storage and bucket
access is provided by the python library, boto3. After uploading, all the details related to
the file metadata such as username, filename, encryption method and encryption key are
stored securely in the ’multistagecloud’ database. When a user requests to download an
encrypted file, the corresponding encryption key is retrieved from the database to decrypt
the file downloaded from the S3 storage bucket.

5.5 Django Web Application - Implementation

5.5.1 User Registration and TOTP Setup:

• The user visits the ’Register.html’ page and enters their details like username,
contact, email, address, and password.

• On submitting, the Signup view function is called, which generates a unique TOTP
secret key using pyotp.random base32().

• The user details, including the TOTP secret key, are stored in the ’register’ table
of the multistagecloud database, created using MySQL.

• A QR code is generated with the username and TOTP secret key, which can be
scanned by the user with an authenticator app like Google Authenticator or Mi-
crosoft Authenticator to set up 2FA.

5.5.2 User Login and TOTP Verification:

• The user clicks the User.html page and enters their username and password for the
login process.

• The ’UserLogin’ view function verifies the provided credentials against the register
table in ’multistagecloud’ database.

• If the user credentials are valid, the user is asked to enter the TOTP code from
their authenticator app on the LoginTOTP.html page.

• The LoginTOTPAction view function retrieves the user’s TOTP secret key from the
database and verifies the entered TOTP code using pyotp.TOTP(totp secret).verify(totp code).

• Upon successful verification, the user is granted access to the UserScreen.html page
where the options to upload or download files are provided.

5.5.3 File Upload and Encryption:

• The user visits the UploadFile.html page and selects a file to upload and the en-
cryption type (AES or Blowfish).

• The UploadFileAction view function is called upon form submission.

14



• If AES encryption is chosen, a random 256-bit key is generated using get random bytes(32),
and the file is encrypted using AES.new(key, AES.MODE CBC). The AES key is
stored in the files table for later decryption.

• If Blowfish encryption is chosen, a fixed key is used (getCrowKey()), and the file is
encrypted using Blowfish.new(getCrowKey(), mode=Blowfish.MODE CBC).

• The encrypted file is uploaded to the AWS S3 bucket using the boto3 library.

• The file details, including the username, filename, encryption type, and AES key,
when AES encryption was used, are stored in the ’files’ table in ’multistagecloud’
database.

5.5.4 File Download and Decryption:

• When the user visits the DownloadFile view function, a list of files associated with
his/her username from the files table is retrieved.

• The user selects a file to download by clicking the corresponding link in the file
table, which calls the DownloadFileAction view function with the filename and
encryption type as parameters.

• The encrypted file is downloaded from the AWS S3 bucket using boto3.

• If the file is AES-encrypted, the corresponding AES key is retrieved from the files
table, and the file is decrypted using AES.new(aes key, AES.MODE CBC).

• If the file is Blowfish-encrypted, it is decrypted using Blowfish.new(getCrowKey(),
mode=Blowfish.MODE CBC).

• The decrypted file is served to the user as an attachment for download.

The Django application uses the ’urls.py’ file to associate URL patterns with the
related view functions specified in ’views.py’. The program utilizes the ’pymysql’ library
to communicate with the MySQL database and the ’boto3’ library to interface with AWS
S3 to store and retrieve files.

5.6 Application Cloud Deployment

This project utilized Cloud9 which is a cloud-based Integrated Development Environment
(IDE) provided by Amazon Web Services (AWS), for developing the application code.
The codebase of the project was stored and managed using GitHub. For building and
deploying the code, a CI/CD pipeline along with Elastic Beanstalk is used. In the first
stage of the CI/CD pipeline, the source code is fetched from the GitHub and in the next
stage the CI/CD pipeline automatically tests and builds the application code. Upon
successful build, in the final stage of the pipeline, the code deploy deploys the application
to the Elastic Beanstalk. If there are any changes made to your code of the github
repository then automatically the CI/CD pipeline triggers and depolyes the updated
application to the Elastic Beanstalk.

15



Figure 6: AWS Cloud Application Deployment

6 Evaluation

6.1 User Registration Process

Figure 7: User Registration Process

Figure 8: TOTP Registration Process

16



6.2 User Login with ToTP Authentication

Figure 9: User Login

Figure 10: TOTP Verification

6.3 File Uploading after Encryption

Figure 11: File Transfer Page

17



Figure 12: Notification mail sent to Customer

Figure 13: Blowfish Encrypted File Upload

Figure 14: File Upload Completed - Blowfish

18



6.4 File Downloading after Decryption

Figure 15: Download File Window

Figure 16: Save File - Blowfish

6.5 Discussion

The sections 6.1, 6.2, 6.3, 6.4 demonstrated the Django web application with registra-
tion process, login process, file uploading and downloading process from AWS S3 bucket.
The performance of the AES and Blowfish algorithms were analysed by computing their
encryption times and compression ratios for different file sizes. Here we have presented the
analysis by computing the average encryption times and compression ratios of both AES
and Blowfish encryption standards with text file sizes of 10KB, 20 KB, 50KB, 100KB,
200KB, 500KB and 1MB. This manner of examining the performance can provide a more
constructive means of evaluation in determining the best algorithm. Table-1 showcases
the average compression ratio and encryption times for both AES and Blowfish over the
encryption of eight files with different file sizes and a plot describing their performance
is presented in Figure 16. From Table-2, it can be seen that AES has significantly low
encryption times compared to Blowfish suggesting that it would be the best algorithm

19



Figure 17: Encryption Metrics - AES and Blowfish

to use if the speed of the execution process is of high priority. The compression ratios of
both AES and Blowfish are very similar with a slight advantage to AES. However, when
transferring larger files of size in thousands of MB, the higher compression ratio can offer
an excellent advantage. Hence, AES may be ideal algorithm for encryption when working
with larger files, as this can save a lot on the cloud storage space and related costs.

Table 2: Evaluation Metrics - AES and Blowfish Encryption
Encryption type Avg.Encryption Time (s) Avg. Compression Ratio

Blowfish 0.010459 1.0003
AES 0.003444 1.0005

7 Conclusion and Future Work

This research was conducted to design a Django web application with multi-factored au-
thentication system and secure file tranfer to AWS cloud storage by integrating TOTP
authentication with the default Django authentication process and performing encryp-
tion using Blowfish and AES for securing file transfers to AWS S3 storage buckets. The
inclusion of TOTP introduced an extra verification layer requiring users to enter a one-
time password generated by an authenticator app,thereby increasing the security by pre-
venting unauthorized access in case of user login information being compromised. The
performance evaluation of Blowfish and AES encryption algorithms based on metrics like
encryption times and compression ratios showed that AES outperformed Blowfish with
better encryption times and slightly better compression ratios, making it the perfect can-
didate for scenarios prioritizing execution speed and when working with larger files to
optimize cloud storage space and costs. The encrypted files are securely transferred to S3
buckets with strict access control permissions to prevent unauthorized access. The future
scope of the research can involve automated key rotation for encryption keys, support
for other cloud providers like Oracle, Microsoft or other third parties, conducting exper-
iments with large files in sizes of gigabytes (GB), and risk-based adaptive authentication
models that can adjust authentication policies based on risk profiles and user behavioral
changes.

20



References

Acunetix (n.d.).
URL: https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-
report-2020/

Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W., Alyami, H. and Ayaz, M. (2021).
A systematic literature review on cloud computing security: threats and mitigation
strategies, IEEE Access 9: 57792–57807.

Duisebekova, K., Khabirov, R. and Zholzhan, A. (2021). Django as secure web-framework
in practice, . . (1): 275–281.

Durga, K. K., Rejeti, V. K. K., Chandra, G. R. and Ramesh, R. (2023). Utilizing
multi-stage authentication and an optimized blowfish algorithm for effective secure date
retrieval on cloud computing, Journal of Data Acquisition and Processing 38(4): 1418.

Ghimire, D. (2020). Comparative study on python web frameworks: Flask and django.

Gupta, I., Singh, A. K., Lee, C.-N. and Buyya, R. (2022). Secure data storage and sharing
techniques for data protection in cloud environments: A systematic review, analysis,
and future directions, IEEE Access .

Mashable (n.d.).
URL: https://mashable.com/article/doordash-hack-customer-details-exposed

Otta, S. P., Panda, S., Gupta, M. and Hota, C. (2023). A systematic survey of multi-
factor authentication for cloud infrastructure, Future Internet 15(4): 146.

Radhi, S. M. and Ogla, R. (2023). In-depth assessment of cryptographic algorithms
namely des, 3des, aes, rsa, and blowfish, Iraqi Journal of Computers, Communications,
Control and Systems Engineering 23(3): 125–138.

Reddy, B. K. K. and Reddy, B. I. (2018). A comparative analysis of various multifactor
authentication mechanisms, International Journal of Scientific Research in Computer
Science, Engineering and Information Technology 3(5): 8.

Reese, K., Smith, T., Dutson, J., Armknecht, J., Cameron, J. and Seamons, K. (2019). A
usability study of five {two-factor} authentication methods, Fifteenth Symposium on
Usable Privacy and Security (SOUPS 2019), pp. 357–370.

Riaz, S., Khan, A. H., Haroon, M., Latif, S. and Bhatti, S. (2020). Big data security and
privacy: Current challenges and future research perspective in cloud environment, 2020
International Conference on Information Management and Technology (ICIMTech),
IEEE, pp. 977–982.

Seth, B., Dalal, S., Le, D.-N., Jaglan, V., Dahiya, N., Agrawal, A., Sharma, M. M.,
Prakash, D. and Verma, K. (2021). Secure cloud data storage system using hybrid
paillier–blowfish algorithm., Computers, Materials & Continua 67(1).

Singh, S., Singh, S. and Sharma, A. (n.d.). Real-time web-based secure chat application
using django.

21



Singhal, V., Singh, D. and Gupta, S. (2022). Crypto stego techniques to secure data
storage using des, dct, blowfish and lsb encryption algorithms, Journal of Algebraic
Statistics 13(3): 1162–1171.

Singhal, V., Singh, D. and Gupta, S. K. (2023). Data encryption technique based on
enhancement of blowfish algorithm in comparison of des & dct methods, Int. J. Sci.
Res. in Computer Science and Engineering Vol 11(3).

Stigler, S. and Burdack, M. (2020). A practical approach of different programming tech-
niques to implement a real-time application using django, Athens J. Sci 7: 43–66.

Sun, P. (2020). Security and privacy protection in cloud computing: Discussions and
challenges, Journal of Network and Computer Applications 160: 102642.

Umarani, L. and Kumar, A. J. S. (n.d.). Multifactor authentication using double encryp-
tion based blowfish algorithm for data security in cloud environment.

Veeresh, V. and Parvathy, L. R. (2022). Data privacy in cloud computing, an implement-
ation by django, a python-based free and open-source web framework, International
Journal of Intelligent Systems and Applications in Engineering 10(3s): 56–66.

Verizon (n.d.).
URL: https://www.verizon.com/about/news/verizon-2021-data-breach-investigations-
report

Yang, P., Xiong, N. and Ren, J. (2020). Data security and privacy protection for cloud
storage: A survey, IEEE Access 8: 131723–131740.

Yu, X., Li, X., Wu, C. and Xu, G. (2023). Design and deployment of django-based
housing information management system, Journal of Physics: Conference Series, Vol.
2425, IOP Publishing, p. 012018.

22


	Introduction
	Problem Statement
	Motivation
	Research Question
	Research Objective
	Research Contributions
	Scope and Limitations
	Thesis Structure

	Related Work
	Data Security in Cloud Services
	Django Web Application Framework
	Encryption Mechanisms for Cloud Security and Blowfish Algorithm
	Multi-factor Authentication Techniques (MFA)

	Methodology
	Design Specification
	Proposed System Architecture
	Blowfish and AES Encryption:
	S3 Bucket Configuration
	End-to-End Authentication Workflow
	Sequence Diagram - Encryption Process
	Sequence Diagram - Decryption Process

	Implementation
	Developing the Django Web Application
	TOTP Authentication
	Custom Library
	Blowfish/AES Encryption and Decryption
	Django Web Application - Implementation
	User Registration and TOTP Setup:
	User Login and TOTP Verification:
	File Upload and Encryption:
	File Download and Decryption:

	Application Cloud Deployment

	Evaluation
	User Registration Process
	User Login with ToTP Authentication
	File Uploading after Encryption
	File Downloading after Decryption
	Discussion

	Conclusion and Future Work

