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A lightweight failure management pattern for
microservices

Sai Dhawanjewar
x22130063

Abstract

The project develops a novel lightweight failure management pattern for distrib-
uted transactions in microservices. We focus on issues related to data consistency,
fault tolerance, and atomicity. As the adoption of microservices architecture be-
comes prevalent due to its advantages over monolithic architecture, concerns arise
regarding the coordination of distributed transactions and the preservation of data
consistency across microservices. The specific scenario explored involves a web
application with interconnected microservices, highlighting the potential for incon-
sistent data and performance issues in the face of microservice failures.

To address these challenges, the research proposes a novel lightweight failure
management pattern for microservices. It takes the bare-minimal fault-tolerant
features of Two-Phase Commit and Saga Cloud Pattern, which are the retry mech-
anism and temporary databases. The 2PC protocol ensures atomicity, reliability,
and data consistency in distributed transactions and Saga patterns automate the
failure recovery functionality. The unique aspect of this solution lies in the incor-
poration of a temporary database, serving as a safeguard against failures. In the
event of a microservice failure, transactions are logged in the temporary database.
Upon the restoration of the failed service, it retrieves the data from the temporary
database, and the 2PC protocol verifies the availability of all participating services
before finalizing the transaction and Saga pattern automates the regaining original
state of the microservice.

To demonstrate the expected results, a web application (called My ArtGallery)
consisting of two microservices (Admin and Main) was developed. The implement-
ation involves React JS for webpages, Python and Django for backend processing,
MySQL as the database, RabbitMQ for message publication and subscription, and
Docker for deployment. Two use cases demonstrate the main features of the pro-
posed algorithm with encouraging results. We therefore think the novel lightweight
failure management pattern can be of great academic and practical interest.

1 Introduction

1.1 Software development

The traditional monolithic architecture in software development refers to building an
application as an integrated whole. Despite being straightforward for small applica-
tions, this method becomes difficult to scale and maintain as applications get larger.
The microservice architecture is an architectural pattern designed to overcome these de-
velopment difficulties as it separates services with their own codebase, database, and

1



functionality. Large and complex systems can benefit from the flexibility and scalab-
ility that microservices offer by facilitating independent development, deployment, and
scaling. Christian et al. (2023),Al-Debagy and Martinek (2018)

A research gap is identified in Microservice architecture, particularly regarding the
possibility of inconsistent data and performance issues in the event of microservice fail-
ure. An example is presented where a web application with connected web pages uses
separate microservices with their databases. The communication between microservices
is highlighted as a potential source of inconsistency, especially when a microservice goes
down during data processing.

Fault flow is discussed as a solution to these problems, which include retrying messages
in a queue and storing raw data in the database in case of failure. Both of these approaches
have benefits and cons, so a cost-effective and reliable solution is required.

We will later review methodologies like Paxos, Saga, and the Two-Phase Commit
(2PC) as well as distributed system concepts, such as transactions, data consistency, and
fault tolerance. After analysing these three approaches (2PC, Saga, and Paxos), we will
show how a lightweight design pattern based on 2PC and Saga pattern is more effective
in situations where applications require atomicity, consistency in distributed databases,
and cost-effectiveness, especially for smaller applications.

It is acknowledged that the conventional Two-Phase Commit (2PC) method has
certain drawbacks when adopting these approaches for microservices. To address the
drawbacks of the conventional 2PC approach, suggested solution deliberately integrates
aspects influenced by the 2PC methodology and Saga. This adaptation uses tempor-
ary databases to address particular issues with distributed transaction management in
microservices, offering a more effective and customised solution for instances in which
automaticity, consistency, and economy of scale are critical considerations.

1.2 Microservices

In the traditional, monolithic software development approach, the entire application is
constructed as a single, integrated unit. All components, including the user interface,
business logic, and database interfaces, are closely integrated into a single codebase. The
entire application is delivered and scaled as a single unit. While monolithic designs are
simple and straightforward to create, they can be challenging to maintain and expand as
the application grows in complexity. Any changes or updates to the application require
the entire monolith to be re-deployed.

To address the challenges posed by the monolithic approach, the Microservices ar-
chitecture has been introduced. Microservices architecture is a modern development
approach that structures an application as a collection of small, independent services.
Each service focuses on a specific business capability and operates autonomously with its
own codebase, database, and functionality. These services communicate with each other
through well-defined APIs, allowing for loose coupling and modularity. Microservices fa-
cilitate independent development, deployment, and scaling of individual services Raharjo
et al. (2022), Hasselbring and Steinacker (2017).

This modular approach enhances flexibility, scalability, and ease of maintenance, mak-
ing it particularly suitable for large and complex systems. The microservices design al-
lows for greater flexibility in selecting a distinct technology stack for each service. For
example,one service may use a relational database, while another may use a NoSQL
database, allowing individual services to manage domain data independently. Further-
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more, the microservices architecture allows for on-demand dynamic scaling of data stores.
Each microservice keeps its own database of important business transactions. As a res-
ult, dealing with distributed transactions and providing data consistency across many
services offer significant challenges. Figure 1 Illustrates the monolithic and microservice
architecture.

Figure 1: Illustration of Monolithic and Microservice architectures

1.3 Research Gap

When dealing with microservice architecture and distributed databases, the possibility
of inconsistent data and performance issues arises in the event of a failure in any mi-
croservice. This example will clarify the concept. Let us consider a web application
with two connected web pages, each linked to a separate microservice for processing, to
better understand the scenario, please refer to Figure 1. Each microservice has its own
database for storing and processing data, with some common fields shared between both
databases. Microservices communicate through message passing via queues to maintain
data consistency.

The 2nd microservice goes down while the 1st microservice receives data for processing
that is common between both databases. In this case, the 1st microservice processes
and stores the data into its database, then publishes a message to the 2nd microservice.
However, since the 2nd microservice is down, it cannot process the data, resulting in a
failure to update its database, leading to inconsistency. This inconsistency is particularly
critical for applications dealing with e-commerce, retail, etc.

To address such scenarios, fault tolerance becomes crucial. Microservice fault man-
agement is essential for maintaining the stability and performance of the application. In
fault tolerance, we attempt to handle these conditions in different ways, some of which are
effective, such as retrying fault messages in a queue (Country (2021),Perikov (2020)) and
storing raw data in the database in case of failure (Struk (2021),Laigner et al. (2021)).
However, these techniques also have drawbacks, which may lead to inconsistency in the
database, as discussed in detail in Section 2.7. To address these issues, we need an ef-
fective solution that helps maintain data consistency, atomicity, and cost-effectiveness,
especially for small-scale businesses.
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1.4 Research question

The research questions aim to explore how proposed flow can effectively address chal-
lenges in managing distributed transactions, ensuring data consistency and improving
fault tolerance in microservices. Research objectives include setting up a development
environment, implementing a sample microservice application, developing a novel flow
with a temporary database, and testing the proposed technique against existing literat-
ure.

1. What are the challenges and limitations of 2PC and Saga pattern in the handling
of data integrity for microservices?

2. To what extent and how can 2PC and Saga pattern be combined to address trans-
actional integrity in a minimalist way.

1.5 Research objectives

In order to address the research questions shown in Section 1.4, we are going to set up a
microservice environment to focus on data consistency:

1. Set up a development environment.

2. Implement a sample microservice application with dependencies between compon-
ents, specifically tailored for fault-tolerance research.

3. Develop and implement a novel fault-tolerant flow, inspired by the principles of
2PC and Saga pattern, incorporating a temporary database.

4. Test and evaluate the proposed technique against existing literature.

1.6 Outline

The structure of the report includes sections on relevant theory, details of the proposed
approach, techniques used to address the problem, proposed test cases, presentation of
novel methods, evaluation results, and conclusions with discussions of future research
directions.

The remainder of the report is organised as follows. Section 2 presents the relevant
theory and works closely related to the proposed one. Section 3 describes details of the
proposed approach. In Section 4, we describe the techniques that are used to address
the problem, as well as all proposed test cases. The two novel methods are presented in
Section 5, while evaluation results appear in Section 6. Finally, we provide conclusions
and discussions of future research directions in Section 7.

2 Related Work

2.1 Distributed Microservice Architecture

Microservices are an architectural style that organizes applications as a collection of ser-
vices, delivering large, complex applications regularly and reliably. Key properties include
high availability, scalability, loose coupling, agility, and reliability. Microservices address
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issues in traditional monolithic applications, such as single shared databases causing
scalability and failure concerns. They function as a distributed system, with transac-
tions distributed across multiple services, each with its own database. Implementing
distributed transactions for data consistency and rollback operations is crucial in a mi-
croservices architecture.Messina et al. (2016),Fan et al. (2020).Figure 1 illustrates the
distributed microservice architecture.

Three approaches were identified for the implementation of effective synchronization
and fault tolerance in distributed microservices architectures: the Paxos consensus al-
gorithm, the Saga pattern, and the Two-Phase Commit. Following a comprehensive
assessment of the application’s requirements, particularly emphasizing data consistency
and atomicity in small-scale scenarios, a critical analysis of these approaches is outlined
below.

2.2 Exploring Algorithmic Solutions for Microservice Architec-
ture

To address the identified research gap, we analysed several algorithms, including Raft
Consensus, Quorum-Based Techniques, and Chain Replication. Upon evaluation, we
determined that the Saga pattern, 2PC, and Paxos offer promising solutions for the
proposed implementation within a microservice architecture. This determination was
made with careful consideration of key constraints such as atomicity, performance, and
scalability.

2.2.1 Paxos consensus algorithm

A key protocol for attaining consensus and fault tolerance in distributed computing is the
Paxos consensus algorithm, which Leslie Lamport created in 1989. It guarantees that,
even in the event of failures and inconsistent communication channels, a group of nodes
can agree on a single value or a series of values.

Operating in phases with nodes labeled as “acceptors” and a distinguished “proposer,”
Paxos follows rounds of Prepare, Promise, Accept, and Learn. In the Prepare phase, the
proposer sends a proposal to the acceptors, who respond with a promise not to accept
lower-sequence proposals. If a threshold of acceptors promises, the proposer proceeds to
the Accept phase, achieving consensus once the value is accepted.

Despite its complexity, Paxos ensures fault tolerance by allowing a majority of nodes
to agree, even in the face of failures. Variations like Multi-Paxos and Fast Paxos address
practical challenges. Paxos remains a cornerstone in fault-tolerant distributed systems,
influencing consensus algorithms in modern distributed databases and cloud infrastruc-
ture. (Kończak et al. (2021)).Figure 2 illustrates the Paxos consensus algorithm flow
(image source1).

2.2.2 Saga Pattern

The Saga cloud design pattern is a failure management pattern long-lived transactions
without a two-phase commit protocol, ensuring fault tolerance and data consistency
across microservices2. In the Saga pattern, there is a sequence of transactions, each

1https://www.scylladb.com/glossary/paxos-consensus-algorithm/
2https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/

saga-pattern.html
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Figure 2: Illustration of paxos consensus algorithm.

one responsible for updating a microservice’s state and triggering subsequent transac-
tions. If a failure occurs, compensating transactions undo changes, restoring a consistent
state without a global, blocking two-phase commit. This pattern is ideal for scenarios like
e-commerce order processing, providing graceful recovery from failures. Illustrated in an
online product purchase system, the workflow involves multiple microservices (Warehouse,
Order, Billing, Shipping) with compensating transactions for error handling. Daraghmi
et al. (2022).

Figure 3: Saga workflow of a standard e-commerce microservices-based system.

Figure 3 illustrates the event workflow within a microservices-based e-commerce sys-
tem. The system facilitates online product purchases, allowing users to choose products,
payment methods, and shipping options. This transaction spans multiple microservices,
namely the Warehouse-Service, Order-Service, Billing-Service, and Shipping-Service. The
depicted workflow encompasses both the warehouse-before-billing and billing-before-warehouse
scenarios to emulate real-world e-commerce processes Books.com.tw (2022). The se-
quence begins with the Warehouse-Service fetching goods, followed by the Order-Service
initializing an “IN-PROGRESS” order. If goods retrieval fails, the order status is set
to “FAILED”. Subsequently, the Billing-Service validates the specified payment method,
proceeding to collect payment upon successful validation. If validation fails, the flow ter-
minates with the order marked as “FAILED”. The Shipping-Service then dispatches the
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delivery, and finally, the Order-Service completes the order, updating relevant information
such as status, shipping ID, and amount.

2.2.3 2-Phase Commit (2PC) Protocol

While implementing distributed transactions in a microservice architecture, one of the
most widely used patterns is the two-phase commit protocol (2PC) Uyanık and Ovatman
(2020). As shown in Figure 5., this protocol uses a coordinator who is in charge of
transaction control and management logic, while the microservices (participating nodes)
execute their respective local transactions.

Figure 4: Illustration of the two-phases commit protocol.

A distributed transaction follows in two stages according to the 2PC protocol. The
coordinator instructs participating nodes to commit the transaction during the initial
phase, known as the prepare phase, eliciting a yes or no response. Following that, in
the second stage, the coordinator instructs all nodes to proceed with the commit after
receiving affirmative responses from all participating nodes.

The two-phase commit (2PC) protocol proves highly effective in scenarios requiring
atomicity, where transaction consistency and reliability are paramount. Consider a scen-
ario in a web application where a batch processing is initiated for data transfer. The
application involves multiple microservices responsible for data processing and storing
processed data in respective databases. Employing 2PC ensures atomicity by orchestrat-
ing the transaction in two phases. In the first phase, the coordinator requests particip-
ating nodes to prepare for the transaction, prompting a yes or no response. If all nodes
confirm readiness, the second phase, the commit phase, ensues. Here, the coordinator
instructs all nodes to execute the transaction. If any participating node encounters an
issue or responds negatively at any point, the coordinator triggers a rollback, ensuring
that the entire batch processing either succeeds uniformly or fails entirely. This preserves
the atomic nature of the batch processing, preventing inconsistencies in data storage.

2.3 Comparison of approaches to handle distributed transac-
tions

A number of algorithms have been proposed over the decades for the synchronization
of distributed systems to address the challenges, such as distributed transactions, data
consistency, and fault tolerance. Potential solutions include considering approaches such
as Paxos, Saga pattern, and 2PC.
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Two-Phase Commit (2PC)

The Two-Phase Commit Protocol guarantees atomicity and reliability while offering a
structured method for distributed transactions. It is a classical reference algorithm for
consistency and atomicity in distributed databases. Preparation and commit are two
separate stages in which this protocol orchestrates transactions. Its blocking potential
and increased latency, particularly in scenarios with frequent transactions, are significant
drawbacks despite its effectiveness in maintaining transaction consistency. Furthermore,
by coordinating individuals to agree on transaction outcomes, the Two-Phase Commit
(2PC) protocol assures atomicity and consistency across several nodes in a transaction,
enabling fault tolerance. The main drawback of 2PC and similar algorithms is the block-
ing mechanism, which can lead to deadlocks and uncommitted transactions trapped in
the prepare state.

Paxos

The Paxos consensus algorithm enables fault tolerance by establishing agreement among
distributed nodes, allowing the system to function in the face of failures and reach a
judgement on crucial decisions. It has been recognised for its strong consensus and fault
tolerance, even when communication channels are unpredictable and nodes fail. The
way Paxos works is in phases. It involves nodes called “acceptors” and a node called
“proposer”. It accomplishes fault tolerance quite well, but in real-world applications,
its complexity of implementation gives rise to variants like Multi-Paxos and Fast-Paxos
presents even more complex design patterns for distributed applications. Kończak and
Wojciechowski (2021)

Saga Cloud Design Pattern

The Saga Pattern is a design pattern to handle long-term transactions in distributed
systems without requiring a two-phase commit protocol. It deals with distributed trans-
actions by organising local transactions within each microservice and using compensating
transactions to handle failures, allowing the system to recover and retain data consistency.
Saga pattern performs good in demanding scenarios like e-commerce order processing,
providing fault tolerance and consistency across microservices. Its application, however,
might be restricted to particular use cases, and the complexities involved in handling
compensating transactions add to the system’s complexity. The key component of the
Saga pattern is the temporary database to continue (retry) or compensate (rollback) a
transaction3. Djerou and Tibermacine (2022)

2.4 Three-Phase commit (3PC) over Two-Phase Commit (2PC)

This paper Kumar et al. (2014) identifies the drawbacks of the Two-Phase Commit Pro-
tocol (2PC) and proposes an improved Three-Phase Commit Protocol (3PC) as a solu-
tion. The primary enhancement of 3PC is the addition of a second pre-commit decision
phase to reduce blocking issues inherent in 2PC. The protocol enables the sender side to
communicate pre-commit messages and obtain acknowledgments from the recipient side

3https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/

saga.html
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before committing or canceling the transaction, enhancing decision-making. Implement-
ation analysis demonstrates that this approach significantly improves the performance
and reliability of distributed database systems. However, concerns arise regarding the
superiority of 3PC over 2PC tikv.org (2023), particularly regarding network partitions
leading to blocking problems and impairing protocol execution. The longer latency and
increased communication overhead introduced by the three phases of 3PC reduce effi-
ciency, and its assumption of a fail-stop model limits compatibility with asynchronous
communication and network partitions. Additionally, 3PC’s higher complexity compared
to 2PC restricts its adoption in real-world applications.

2.5 Saga pattern implementation with Choreography or Or-
chestration

Saga pattern implementation can be achieved through either Choreography or Orchestra-
tion. Orchestration, as a centralized coordination method, aligns well with the principles
of the Saga pattern, facilitating coordinated execution of saga steps through a central
coordinator. This centralized control simplifies managing complex sagas and ensures
atomicity, fault tolerance, and performance. In contrast, Choreography lacks centralized
control, making it challenging to coordinate saga steps and maintain a global view of the
transaction process. Additionally, choreography may struggle to ensure atomicity, man-
age failures efficiently, and scale as the system expands, leading to performance overhead
and reliability issues. Therefore, when coordinating complex distributed transactions, Or-
chestration is preferred over Choreography due to its ability to address these challenges
effectively Richardson (2018).

2.6 Combining approaches Two-Phase Commit (2PC) and Saga
pattern

In large-scale applications, managing and coordinating microservices poses challenges in
ensuring their collaborative functioning. This paper proposes a solution by combining
Two-Phase Commit (2PC) and Saga pattern techniques. While 2PC involves distinct
prepare and commit phases, Saga pattern offers choreography and orchestration-based
implementations. The paper underscores the complexity of controlling rollback scenarios
in the event of transaction issues, particularly with each microservice typically possessing
its own solutions in Saga pattern. The proposed solution suggests separating the roll-
back system from microservices for simplified and parallel execution to enhance system
safety and speed. Emphasizing the response control service within the microservices ar-
chitecture raises concerns about data inconsistency, mainly linked to unique identifiers
in response management. The paper suggests managing and synchronizing responses us-
ing unique identifiers, but highlights potential gaps in matching responses if issues arise
during identifier creation or transmission, compromising data consistency in partial or
incorrect rollback scenarios. The robustness and dependability of the unique identifier
mechanism are crucial for the approach’s efficacy, with any weaknesses potentially leading
to inconsistent system behavior.Gördesli et al. (2022).
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2.7 A Comparative Analysis of Retrying Queue vs. Storing in
Database

Fault tolerance is essential to maintaining the stability and performance of applications
in the dynamic world of microservices. Two common methods of handling errors are
analysed : storing raw data in the database in the case of a failure (Struk (2021); Laigner
et al. (2021)) and retrying error messages in a queue Country (2021); Perikov (2020).
Every strategy has advantages and drawbacks that affect the system’s overall resilience
and consistency. The merits and cons of these approaches are evaluated in this compar-
ative analysis, which also clarifies the complexities of fault management in microservices
architecture.

1. Retrying in a Queue:

• Queue management: Retrying unsuccessfully executed messages stored in the
message queue can lead to increased queue lengths and potential performance
issues.

• Timeouts and deadlines: Setting appropriate timeouts and deadlines is essen-
tial to prevent the application from getting stuck in continuous retries, which
can lead to performance degradation.

• Rate limiters: Rate limiters can control the rate at which requests are sent to
a service, preventing excessive usage that could lead to service unavailability.

• Circuit-breaking: Circuit-breaking is a pattern that helps reduce the number
of unsuccessful requests by limiting the number of retries.

• Retryable vs. non-retryable errors: It’s essential to distinguish between retry-
able errors and non-retryable errors. Retryable errors can be retried, while
non-retryable errors should not be retried, as they might lead to infinite re-
tries and degrade performance

• Stateful failure handling: Resolving failures might be stateful, and state hand-
ling is a key question for failure handling in microservices. This means that
you need to consider the state of the service and its ability to recover from
failures.

2. Storing Raw Data in DB in Case of Failure:

• Data synchronization challenges: Synchronizing data between services using
separate databases can become a significant challenge, requiring additional
effort and resources.

• Increased complexity: Managing multiple databases for each microservice in-
creases the overall complexity of the system.

• Limited code and resource reuse: Each microservice having its own data re-
pository can lead to limited code and resource reuse, resulting in duplication
and inefficiencies.

• Dependency on database technology: The choice of database technology can
impact the overall performance and scalability of the microservice architecture.
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• Lack of centralized data management: In a microservice architecture, data
is often stored in separate databases per service, which can lead to a lack of
centralized data management and difficulty in maintaining a consistent view
of the overall data landscape

3 Methodology

Detailed comparative analysis of the approaches—2-phase commit, Paxos, and Saga pat-
terns to determine which approach is more efficient in scenarios where data consistency,
atomicity, and budget are the primary considerations for a small-scale application

3.1 Critical analysis of Paxos vs. Saga vs. 2PC

1. Purpose

• 2PC (Two-Phase Commit): It is designed for coordinating transactions.
In distributed systems, it ensures that all participating nodes either commit
or roll back a transaction.

• Paxos: This is a consensus algorithm primarily used for replication in stateful
services. It facilitates agreement among distributed nodes on a specific value
or state.

• Saga Pattern: It is used for managing distributed transactions in a sequential
manner. It employs a series of local transactions to maintain consistency across
distributed systems.

2. Resilience

• Paxos: Exhibits more resilience to manager failures and involves minimal
blocking, allowing the system to continue functioning effectively.

• 2PC (Two-Phase Commit): Tends to block if the coordinator fails, requir-
ing human intervention to restart and resume normal operations.

• Saga Pattern: Requires developers to implement rollback logic themselves,
potentially leading to less efficient fault recovery.

3. Message Complexity

• Paxos: Requires more messages but is efficient in terms of message delay,
ensuring effective communication within the distributed system.

• 2PC (Two-Phase Commit): Involves less message complexity, which can
contribute to quicker transaction coordination.

• Saga Pattern: Involves increased complexity, especially in managing com-
pensating transactions, which are used to undo the effects of previously com-
mitted transactions.

4. Fault Tolerance

• Paxos: Provides fault tolerance through replication, ensuring that the system
remains operational even if some nodes fail.
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• 2PC (Two-Phase Commit): Assumes all nodes never fail, which can be a
limitation in scenarios where failures are possible.

• Saga Pattern: Relying on compensating transactions, it might be potentially
less reliable in handling failures compared to other approaches.

5. Transaction Type

• Paxos: Oriented towards achieving consensus in replication scenarios.

• 2PC (Two-Phase Commit): Enforces single commit, adhering to ACID
(Atomicity, Consistency, Isolation, Durability) transactions for strong consist-
ency.

• Saga Pattern Operates sequentially, not as a single commit, making data
eventually consistent through a series of committed operations.

6. Read Isolation

• Paxos: Not explicitly focused on read isolation, as its primary goal is achieving
consensus.

• 2PC (Two-Phase Commit): Provides read isolation, ensuring that inter-
mediate reads are allowed only if the transaction is successful.

• Saga Pattern: Allows for intermediate reads, which may lead to potential
issues like dirty reads, considered a disadvantage in many systems.

7. Complexity

• Paxos: Involves complexity and may have a performance impact on the sys-
tem.

• 2PC (Two-Phase Commit): Generally considered easier for application
developers, reducing the complexity of troubleshooting.

• Saga Pattern: Can be more complex to implement and maintain, especially
when dealing with multiple microservices and event messages.

Table 1: Approaches and its drawbacks

Approch Drawbacks Paper
Paxos consensus algorithm Complexity and performance impact Ailijiang et al. (2016)

Resource requirements Roth and Haeberlen (2021)
Message complexity

Saga Pattern Increased complexity Documentation (2024e)
Confusing workflow
Lack of isolation microservices patterns (n.d.)
Debugging challenges
Resource requirements

2 Phase Commit Protocol Synchronous nature Xiang (2028)
Resource requirements Haroon (2016)
Network overhead
Single point of failure
Lack of scalability
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3.2 Proposed idea inspired on 2PC and Saga Pattern: usage of
temporary databases and retry mechanisms

As we previously described, the bottom line of existing fault-tolerant transactions is the
usage of temporary databases and a retry mechanism. In other words, after thoroughly
analyzing all three approaches Paxos, Two-Phase Commit Protocol, Saga Pattern, and
techniques, such as retrying in a queue and the use of a database, as discussed in the
Section 2. It is thus tempting to create a 2PC-Saga pattern inspired algorithm from their
bare-minimal, fault-tolerant features.

The proposed lightweight failure management pattern was developed and tested using
small scale microservice applications. Future work should however concentrate on the
analysis of its behaviour on larger microservice systems. The selection of this innovative
approach is guided by essential factors, including data consistency, atomicity, simplicity in
design, and considerations related to the computing budget. These criteria play a critical
role, directing the choice toward a solution that is not only robust but also adaptable,
ensuring the seamless fulfillment of the application’s specific requirements.

1. Data Consistency and Atomicity

• Two-Phase Commit (2PC)

– Advantages
Provides a mechanism for ensuring atomicity and consistency of distrib-
uted transactions. Coordinates a commit or rollback decision among par-
ticipating nodes, preventing inconsistencies.

– Limitations:
Can face challenges in scenarios where any participating microservice is
temporarily unavailable, leading to blocking issues. Synchronous nature
can impact system responsiveness.

• Saga Pattern:

– Advantages:
Supports distributed transactions by employing a sequence of local trans-
actions. Enables compensating transactions for handling failures, contrib-
uting to fault tolerance.

– Limitations:
Potential for increased complexity, especially in implementation and main-
tenance. Compensation logic must be carefully designed to ensure reliab-
ility.

2. Justification for Combining 2PC, Saga Pattern, and Temporary Data-
base:

• Enhanced Fault Tolerance:

– Two-Phase Commit (2PC): Ensures transactional integrity and co-
ordination among microservices.

– Saga Pattern: Manages compensating transactions, handling failures
gracefully.

– Temporary Database: Acts as a buffer during failures, allowing the
system to store data without impacting overall functionality.

13



• Flexibility in Handling Failures:

– Two-Phase Commit (2PC): Addresses issues synchronously, ensuring
atomicity when all services are available.

– Saga Pattern: Handles failures by rolling back or compensating for
transactions, providing flexibility.

– Temporary Database: Safeguards against data loss during transient
failures, contributing to a smoother recovery process.

• Consistency Maintenance:

– Two-Phase Commit (2PC): Ensures consistent state across particip-
ating microservices during transactional operations.

– Saga Pattern: Manages compensating transactions to maintain data
consistency, even in the face of partial failures.

– Temporary Database: Supports consistent data storage during tem-
porary unavailability.

• Efficiency in Recovery:

– Two-Phase Commit (2PC): Coordinates the recovery process when a
faulty microservice returns to its original state.

– Saga Pattern: Utilizes compensating transactions for efficient recovery.

– Temporary Database: Facilitates seamless processing of stored data
during recovery.

4 Design Specification

The integration of Two-Phase Commit (2PC), Saga Pattern, and a temporary database
is used to enhance fault tolerance in the microservices architecture. Varying from al-
ternatives like Paxos and the Saga Pattern, the chosen approach aims to enhance fault
tolerance, ensure data consistency, and address challenges posed by distributed transac-
tions in microservices-based applications. This integration provides a robust foundation
for the system’s reliability and consistency under varying operational scenarios.

4.1 Algorithm/Model Functionality

In the proposed lightweight failure management pattern merges the very basics of 2PC
and Saga Pattern. By creating temporary databases for uncommitted transactions and
implementing a retry mechanism, we achieved a robust fault tolerance mechanism. Ef-
fectively handling CRUD operations during faults is achieved by utilizing a dynamically
assigned temporary database from the primary database, thereby minimizing the risk of
errors in commits. This approach, integrated with the Saga Pattern, not only reduces the
likelihood of mistakes but also amplifies the capability for successful transaction rollbacks
in the event of microservice failures. The inclusion of the 2PC paradigm further enhances
the coordination of distributed transactions, ensuring improved read-isolation and over-
all system performance. The workflow, illustrated in Figure 5, illustrates the thorough
management of database changes, contributing to a seamless and uninterrupted state
throughout the application, aligning closely with the lightweight failure management
pattern proposed. Here, a web service application is implemented using a microservice
architecture.

14



Figure 5: Illustration of the Micoservice architecture fault management with two-phases
commit, saga pattern and Temporary DB

4.2 2PC Implementation in Proposed Solution with Saga Pat-
tern Features and Temporary database

The following algorithm outlines the core steps of the proposed algorithm:

Step 1: Function handleTransaction(transaction):

• This function manages the coordination of distributed transactions between the
Admin and Main microservices.

Step 2: Check the availability of all participating microservices:

• Send a request to each participant microservice (Admin and Main) to check their
availability.

Step 3: If all microservices are available:

• Proceed with the transaction coordination process between the Admin and Main
microservices.

Step 4: Perform Prepare phase:

• The coordinator (Admin microservice) sends a prepare message to all participants
(Main microservice).

• Each participant (Main microservice) responds with a vote to commit or abort the
transaction.

• One API request will be sent to each participant. Upon its availability, it will
respond with a status code 200 for a commit vote, and in case of abort, it will
respond with a status code 400.

– Status code 200: Indicates a successful response to the request.
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– Status code 400: Indicates a client error, often used to signify that the re-
quest could not be understood by the server due to malformed syntax or other
clientside errors.

Step 5: If all participants vote to commit:

• Proceed with the commit phase, with HTTP status code 200.

Step 6: Perform Commit phase:

• The coordinator (Admin microservice) sends a commit message to all participants
(Main microservice).

• Each participant (Main microservice) executes the final commit operation.

Step 7: Else (if any participant votes to abort):

• Proceed with the abort phase, with HTTP status code 400.

Step 8: Perform Abort phase:

• The coordinator (Admin microservice) sends an abort message to all participants
(Main microservice).

• Each participant rolls back any changes made during the transaction.

Step 9: Else (if any participant is not available):

• Store transaction details in a temporary database for future processing of the work-
ing microservice.

• If the Main service encounters a failure and the coordinator service (Admin mi-
croservice) receives an abort message (status code 400) from the Main service, the
failure logs will be stored in the temporary database of the Admin microservice for
future processing.

• Failure logs consist of the raw requests originating from the respective service’s
UI/API, requesting the execution of CRUD operations or other types of transac-
tions.

Step 10: Function recoverFromFailure():

• This function handles the recovery process in case of participant unavailability.

Step 11: Send heartbeat messages to participants:

• Periodically send heartbeat messages to both the Admin and Main microservices
to check their availability.

• A heartbeat message constitutes an API request sent to all participating microservices.
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Step 12: If participant responds positively:

• If a participant (either the Admin or Main microservice) responds positively to the
heartbeat message with a status code 200, it indicates a successful response.

Step 13: Retrieve failed transactions from the temporary data-
base:

• Retrieve failed transactions from the temporary database for processing.

Step 14: Process transactions and commit changes to the primary
database:

• Process transactions and commit changes to the primary database (Main database).

• This operation ensures that any pending transactions are completed and committed
successfully.

• Additionally, send any dependent data to the associated microservice for further
processing via a queue mechanism, ensuring seamless communication and coordin-
ation between microservices.

Step 15: Delete processed transactions from the temporary data-
base:

• Once the transactions are successfully processed and committed to the primary
database, delete them from the temporary database.

Step 16: Repeat steps 11-15 periodically:

• Periodically repeat the process of sending heartbeat messages, retrieving, pro-
cessing, and deleting transactions for continuous fault recovery.

• The system will send heartbeat messages to the failed microservice repeatedly every
30 milliseconds.

• If the microservice responds with an HTTP status code 200 (OK), indicating avail-
ability, the system will proceed with fault recovery.

• If there is no response or the response is not 200 within 30 milliseconds, the system
will continue sending heartbeat messages until the 30 milliseconds time limit is
reached.

• After 30 minutes of continuous attempts without success, the retry operation will
be exhausted.

This algorithm ensures the coordination of transactions between the Admin and Main
microservices, even in the event of participant unavailability. By utilizing a temporary
database and periodic heartbeat messages, the system maintains data consistency and
integrity, thereby enhancing reliability and fault tolerance.
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4.3 Temporary database set up

The temporary databases were set up and managed as follows:

Temporary Database Configuration:

• For demonstration purposes, an in-memory space within each microservice was
utilized as the temporary database.

• This in-memory space was accessed using arrays, providing a lightweight and easily
accessible storage solution.

Scalability Considerations:

• While in-memory storage was sufficient for demonstration, scalability concerns ne-
cessitated the consideration of using separate database instances in production en-
vironments.

• Separate database instances could provide more robust and scalable storage capab-
ilities to handle larger volumes of data and ensure better fault tolerance.

Flexibility and Resource Optimization:

• Using a separate database instance for temporary storage offers greater flexibility
and resource optimization, particularly in scenarios where multiple microservices
may need to access and manage failure logs concurrently.

• This approach ensures that temporary database operations do not impact the per-
formance or stability of the main database used for storing permanent data.

5 Implementation

5.1 Research project implementation

The practical implementation of the proposed lightweight failure management pattern for
microservices was carried out through the development and testing of a microservices-
based application called My ArtGallery. This application was designed to demonstrate
the functionality and effectiveness of the fault tolerant mechanisms proposed in the re-
search.

The implementation involved creating two main microservices: the Admin microservice
and the Main microservice. The Admin microservice was responsible for handling ad-
ministrative tasks such as adding, updating, and deleting products, while the Main mi-
croservice focused on displaying products and managing user interactions such as liking
products.

Key components of the implementation include:

• Web Application Development: The front end of the application was developed
using ReactJS Documentation (2024h), providing both an Admin page and a Main
page for different user roles. These pages allowed users to perform actions like
managing products and liking items.
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• Microservices Development: The back end of the application was implemented
using Python Documentation (2024f) and the Django framework Documentation
(2024a). Two microservices, Admin and Main, were created to handle different
functionalities of the application. APIs were developed to facilitate communication
between the front end and the microservices and deployed it on Docker.

• Database Management: MySQL Documentation (2024d) was used as the primary
database management system to store and manage structured data for both mi-
croservices. Each microservice had its own database to maintain data isolation.

• Message Queue Implementation: RabbitMQ Documentation (2024g) was used
as the message broker to facilitate communication between the Admin and Main
microservices. It enabled asynchronous communication and decoupling between the
microservices, enhancing system scalability and resilience.

• Fault Tolerance Mechanisms: The fault-tolerant mechanisms, inspired by the
TwoPhase Commit (2PC) algorithm and the Saga pattern, were integrated into the
microservices architecture. A temporary database was introduced to store uncom-
mitted transactions during fault scenarios, ensuring data consistency and integrity.

The practical implementation was carried out in various scenarios, including:

• Normal Flow Without Failure: This scenario validated the seamless interaction
between the Admin and Main microservices, demonstrating the successful addition,
update, retrieval, and deletion of products, as well as user interactions like liking
products.

• Fault Flow with 2PC, Saga, and Temporary Database: This scenario sim-
ulated microservice unavailability and tested the fault-tolerant mechanisms. The
integration of 2PC and Saga, along with the temporary database, facilitated fault
recovery while maintaining data consistency and system integrity.

5.2 Candidate tool consideration and discarded tools:

Tools used to create the development environment were chosen based on their proven
track record, reliability, and ability to meet the specific requirements of the project,
including backend and frontend development, database management, message brokering,
deployment, and version control.

• Backend Development: Python Documentation (2024f) and Django Documenta-
tion (2024a) were chosen for their readability, versatility, modularity, and scalability,
providing a strong foundation for microservices. Java and Ruby on Rails were con-
sidered but discarded due to concerns regarding community support and scalability
compared to Python and Django.

• Frontend Development: ReactJS Documentation (2024h) was chosen for its
component-based architecture and good performance, outperforming competitors
such as AngularJS due to its popularity and extensive community support.

• Database Selection: MySQL Documentation (2024d) was chosen for its perform-
ance, scalability, and stability, whereas competing databases such as Postgres and
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MongoDB were ruled out due to MySQL’s established track record and extensive
acceptance.

• Integrated Development Environment (IDE): Visual Studio Code (VS Code)
Documentation (2024i) was chosen due to its lightweight yet robust features and
good support for a variety of programming languages and frameworks, above al-
ternatives such as Eclipse in terms of versatility and ease of use.

• Message Broker Selection: RabbitMQ Documentation (2024g) was chosen for
its dependability, scalability, and support for complex messaging patterns such as
publish-subscribe, using MQTT, which is more compatible with microservices ar-
chitecture.

• Deployment Tool: Docker Documentation (2024b) was chosen for its lightweight
containerisation strategy, portability, and scalability, which ease the deployment
process and ensure consistency across environments. Cloud services like AWS and
Azure were rejected in favour of Docker due to its flexibility and ease of use.

• Version Control: Git Repository: Git Documentation (2024c) allows for ver-
sion control, fostering collaboration by providing seamless access to code updates,
improving reproducibility and transparency through branching for parallel devel-
opment, and serving as a central hub for efficient issue reporting and improvement
suggestions.

6 Evaluation

To validate the proposal’s results, a microservices-based application was developed, with
two interdependent microservices for data processing. Inspired by the Saga pattern and
Two-Phase Commit, a temporary fault-tolerant database was introduced. The applic-
ation comprises a web interface for an Art Gallery, including Main and Admin pages
connected to respective microservices via APIs. The Main microservice communicates
with the Admin microservice through RabbitMQ for publishing and subscribing to de-
pendent data. The Admin page allows CRUD operations on images and titles, processed
by the Admin microservice, stored in the Admin database, and published to maintain con-
sistency. The Main page displays images and titles, facilitates liking images, and ensures
consistency by updating the Main database and notifying the Admin microservice.

To demonstrate the proposed approach, the following use cases were implemented
within the microservices-based application for the Art Gallery web interface.

6.1 Experiment / Case Study 1: Normal flow without failure

Use Case 1 explains the normal or expected flow when a user attempts to add, update,
retrieve, or delete a product through the Admin page and tries to retrieve and like
products through the Main page. Figure 6 illustrates the expected behavior of the system.

Following steps explain the verified expected flow of the system

1. When the admin Add, Update, or Delete an image or title by accessing the Ad-
min page, the system processed and reflect the changes in the Admin database.
Additionally, it published the added, updated, or deleted product (image, title)
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Figure 6: Illustration of Normal flow without failure.

along with a product ID, acting as a primary key, to the main microservice through
RabbitMQ.

2. RabbitMQ then consumed the product published by the admin microservice and
stored it in the Main database with the corresponding product ID.

3. Whenever a normal user accesses the Main page of the art gallery, the Main mi-
croservice retrieved all the products available in the Main database and sent the
results to the main webpage, allowing users to see all the available products.

4. The main page also provided the functionality to LIKE a product. When the main
page receives a like request, the Main microservice updated the like count in the
Main database and published the count to the Admin microservice.

5. The Admin microservice then consumed the like count from the Main microservice
and updated it in the Admin database to maintain consistency throughout the
application.

6.2 Experiment / Case Study 2: Fault flow with 2PC, saga and
temporary DB

Use Case 2 Outlines the fault-handling mechanism when any of the microservices is not
operational. It illustrates how the Two-Phase Commit and Saga patterns collaborate
with a temporary database during the recovery process. The Figure 7. illustrates the
implementation of fault flow with Two-Phase Commit and a temporary database when
any of the services is not responding.

Step 1

1. When the Admin attempts to ADD, UPDATE, or DELETE a product, or when a
normal user tries to LIKE any product, the functionality influenced by the Two-
Phase Commit (2PC) algorithm should verify the availability of all participating
microservices.

2. If, due to some failure, the coordinator microservice (for ADD, UPDATE, or DE-
LETE - Microservice Admin; for LIKE - Microservice Main) does not receive a ’Yes’
response from the participant microservice, the coordinator microservice should
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Figure 7: Illustration of fault flow.

store the failed logs in the respective temporary database without affecting other
application functionalities and the primary database.

Step 2

1. The coordinating microservice should send heartbeat messages to the participating
microservice at specific intervals to check its availability status. This automated
recovery mechanism is influenced by the Saga pattern.

2. If the coordinator microservice receives a ’Yes’ response from the participant mi-
croservice, it should first check for all available failed records in the temporary
database. Retrieve all records from the temporary database, process them accord-
ing to the normal flow, and store the results in the respective primary database.
Additionally, a message should be sent to the dependent microservice to maintain
data integrity. Once all data stored in the temporary database is processed, the
corresponding failed logs should be deleted to free up memory.

3. While processing the normal flow, if any regular request arises, the system should
process it according to the standard flow without involving the temporary database.
In case of any subsequent failures, the system should then follow the fault recovery
flow.

6.3 Experiment / Case Study 3: Fault flow without temporary
database

Use Case 3 outlines the fault-handling mechanism without utilizing a temporary database.
In the traditional approach, the primary database is used to store fault logs in the event
of failure, or alternative techniques such as retrying in a queue may be utilized. However,
these methods may introduce inconsistency in distributed database systems.

Fault flow with Storing Raw Data in primary DB

(Struk (2021),Laigner et al. (2021))
When implementing a fault-handling mechanism by storing raw data in the primary

database while dealing with distributed databases, the potential issue may arise in the
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following scenarios like for data inconsistency, high budget implementation, data redund-
ancy.

1. Dealing with database failures is critical, and having a backup database with all
of the data replicated from the main database reduces the risk of data loss. This
redundant database can be utilized to service data demands until the primary data-
base is ready to take on the load again. (geeksforgeeks (2022))

2. Fault tolerance mechanisms in distributed systems are used to sustain reliability and
availability in the interconnected systems. These mechanisms include replication,
redundancy, and high availability, and they help reduce the risks of human and
economic loss due to system failures. (Sari and Akkaya (2015))

6.4 Discussion

This section presents an in-depth discussion of the findings from the experiments and
case studies, offering insights and interpretations regarding the fault-tolerant flow, the
tools used, and the suggested microservices-based application.

6.4.1 Validation Approach and Metrics Utilized in the Art Gallery Applic-
ation

The art gallery application we created features CRUD operations using images and a like
button. The important metrics within the algorithm are the HTTP return codes 200 for
success and 400 for failure. These codes allowed us to check if the application is up and
running. As for the retry mechanism, We followed the Circuit Breaker design pattern,
with a retry every 30 milliseconds and exhaustion after reaching 30 minutes.

Generated a graph illustrating the recovery time from failure, depicting the time
it takes Docker to reestablish the service. Our code is deterministic, so there is not
much variability between runs. The graph illustrates the Request Volume Over Time
following a system failure, with Time in milliseconds on the y-axis and Request Volume
on the x-axis. Before the failure, requests were typically processed swiftly, with response
times ranging from 0.141 to 0.159 milliseconds. After the failure, there was a significant
disruption in system performance. During the recovery phase, marked by response times
exceeding 100 milliseconds, there was a notable surge in request volume, with response
times ranging between 103.396 and 171.727 milliseconds. Once the system stabilized,
response times returned to their pre-failure levels, with requests being efficiently processed
within milliseconds.

6.4.2 Measuring Data Integrity

This research addresses the identified gap of potential data loss in microservices architec-
ture by conducting a comprehensive analysis of case studies on the proposed implement-
ation. The study focuses on scenarios where users interact with microservices, simulating
sudden application failures. Notably, inputted data remains intact and is committed to
the main database upon application recovery, defining data integrity from a perspective
of data consistency. Two case studies are presented:

• Case Study 1 evaluates normal flow without failure, validating interaction between
Admin and Main microservices for product management and data consistency.
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Figure 8: Illustration of Sequence of tasks. Only tasks 4-8 were affected by the failure

• Case Study 2 explores fault-handling mechanisms employing 2PC, Saga Pattern,
and temporary databases, assessing the system’s ability to maintain data integrity
during microservice unavailability.

Results demonstrate the effectiveness of implemented fault-tolerant mechanisms, provid-
ing validation of hypotheses and highlighting the necessity for robust fault-tolerant mech-
anisms in distributed systems to ensure data consistency and system reliability.

6.4.3 Summary

Overall, the presented fault-tolerant mechanism for microservices provides a lightweight
solution for data consistency using a temporary database for fault recovery. The retry
mechanism is similar to other fault-tolerant approaches, but with far less overhead found
in the full 2PC and Saga pattern architectures. It was therefore said the proposed al-
gorithm is minimalist in that respect. These findings contribute to a deeper understanding
of what the essential features for fault-tolerant microservices are. The proposed algorithm
inherits the single-point of failure from 2PC, but extensions could be made to Paxos-like
progressions when the coordinator node fails.

7 Conclusion and Future Work

A lightweight failure management pattern for microservices is introduced, merging ele-
ments from the Two-Phase Commit (2PC) algorithm and the Saga pattern. This ap-
proach ensures reliable handling of database transaction failures by utilizing retry mech-
anisms and temporary databases. Data consistency and dependability are maintained
through RabbitMQ communication between Admin and Main microservices. Valida-
tion experiments confirm system functionality under various conditions, including fault
scenarios and service recovery. Leveraging the 2PC algorithm preserves data consistency
during service failures, safeguarding user experience with temporary database usage. The
proposed pattern offers significant contributions compared to existing literature, enhan-
cing fault tolerance with flexible recovery mechanisms and ensuring improved data con-
sistency. Minimized overhead and complexity make it suitable for microservices-based
applications, with adaptability to handle various failure scenarios and operational con-
ditions. These contributions advance fault-tolerant distributed transactions, providing a
lightweight, efficient, and adaptable solution tailored for microservices architectures, thus
improving robustness and reliability in distributed systems.
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The proposed research’s future scope includes several important areas. At the mo-
ment, the lightweight failure management pattern inherits a single point of failure from
2PC, but obvious extensions (Paxos) were left out for time constraints. Performance
optimization is another area of interest, requiring a thorough examination of bottlenecks
and architectural improvements to enhance system responsiveness. Integration of server-
less architecture, load balancing techniques, and additional containerization could address
scalability concerns. On the security side, integrating failure management with data en-
cryption and secure communication mechanisms remains an interesting aspect to explore
in distributed transactions.
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