
Enhancing Web-Based Object Recognition:
Employing Pretrained Models for Accurate

and Efficient Visual Recognition in
Real-Time Scenarios

MSc Research Project

Programme Name

Ankit Verma
Student ID: 22145290

School of Computing

National College of Ireland

Supervisor: Anh Duong Trinh

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ankit Verma

Student ID: 22145290

Programme: Programme Name

Year: 2023

Module: MSc Research Project

Supervisor: Anh Duong Trinh

Submission Due Date: 31st January 2024

Project Title: Enhancing Web-Based Object Recognition: Employing Pre-
trained Models for Accurate and Efficient Visual Recognition
in Real-Time Scenarios

Word Count: 5421

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ankit Verma

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Enhancing Web-Based Object Recognition:
Employing Pretrained Models for Accurate and

Efficient Visual Recognition in Real-Time Scenarios

Ankit Verma
22145290

Abstract

This study examines the conception, creation, and evaluation of an online object
detection system using the Flask framework and the YOLOv8 paradigm. The sys-
tem offers real-time object identification, an easy-to-use user interface, and robust
management for a variety of automation, monitoring, and surveillance applications.
The YOLOv8 model’s accuracy is demonstrated by measures of precision and recall,
and its utility is demonstrated by statistical evaluations of system responsiveness
and user interface interactions. When the database is full and retrieval performance
is strong, the system is more dependable. Scalability assessments make ensuring
that the system works under different loads. The protection of sensitive data and
system resilience are given top priority in robustness and security considerations.
The experiment’s successful completion lays the groundwork for additional advance-
ments and real-world uses.

1 Introduction

Object recognition is a basic computer vision problem that allows for the identification
and localization of objects in images or movies. The fact that this capability can be used
in a number of fields, such as augmented reality, medical imaging, driverless automo-
biles, and image and video analysis, has attracted a lot of interest. The field of object
identification has completely changed as a result of the availability of pre-trained object
detection models, while earlier methods relied on training models from scratch.

Compared to fully trained models, pre-trained models for object identification offer an
advantage because they don’t need as much training at first, giving them a strong basis
for item detection using large datasets of annotations. When used for small-data or item-
specific initiatives in particular, this method drastically lowers development time and
costs. Moreover, especially for frequent item categories, previously trained models can
occasionally outperform recently learned ones. Deep learning algorithms have advanced
and are now exposed to a greater variety of data, which is the cause behind this.

In this work, we investigate in detail how pretrained models—that is, the cutting-edge
frameworks TensorFlow and YOLOv8—integrate into web apps, adding to our expanding
understanding of the intricate subject of object identification. The necessity for powerful
and easy-to-use deep learning systems in practice is what drove this research. Our primary
focus is on the question of how to use these complex models in an online setting and how
that would impact system performance and user experience. In order to tackle this

1



complicated topic, numerous specific study objectives have been developed. Evaluate
real-time performance, investigate potential customizations, and investigate integration
issues are some of these goals.

The system performance could be greatly improved by including a trained object re-
cognition model. The integrated system is anticipated to function in real-time, either
meeting or surpassing reasonable expectations, in object detection in a variety of cir-
cumstances with speed and accuracy. It is our belief that a well-considered and intuitive
interface will enhance the overall user experience by encouraging usefulness and interac-
tion. A variety of configurations and uses are taken into account, along with prospective
enhancements and system changes.

This work considerably adds to the body of scientific literature by filling in important
gaps in the real-world application of pretrained models in web applications. We expand
our understanding of state-of-the-art object identification frameworks by concentrating
on the TensorFlow and YOLOv8 model combo, which has been trained on the popu-
lar COCO dataset. For researchers, practitioners, and developers involved in computer
vision, machine learning, and web development, the findings presented here bring signi-
ficant new insights. Additionally, the advantages and restrictions of model integration
are emphasized.

The design of this study has been thoughtfully chosen to assist readers in analyzing
our findings in detail. In the next sections, significant advances in pretrained models, web-
based system applications, and object recognition are reviewed in detail and accompanied
by a survey of relevant literature. The methodology part then goes into great detail about
our technique, including topics like as model training, web application design, dataset
selection, and performance evaluation measures.

Web apps employ pre-trained object detection models, which can be utilized to provide
interactive applications and improve user experiences. How we interact with digital in-
formation is influenced by the identification of objects. Two instances of this include
augmented reality experiences, which superimpose virtual things on real-world situations,
and fashion recommendation systems, which suggest outfits based on photographs sub-
mitted by the user.

This extensive post covers the topic of using pre-trained models for web app object
identification in great depth. It looks at the best pre-trained model selection, model
interaction with web application frameworks, and data pre- and post-processing methods
for performance optimization.

2 Related Work

Camera sensors are increasingly regarded as essential because of their extensive use in
real-world applications. Prominent investigators were utilizing diverse camera sensors in
various contexts. For instance, Zou et al. demonstrated a brand-new camera-sensor-based
obstacle recognition technique that can be used to a typical excavator during the day or
at night Zou et al. (2023). Additionally, powerful multi-target tracking with camera
sensor fusion has been proposed by Sengupta et al Sengupta et al. (2022). This method
is based on object recognition in addition to camera sensor fusion. The camera-sensor
technique was proposed by Bharati Bharati (2021) as an extra navigational aid for people
who are blind or visually impaired.To be practical, though, in day-to-day tasks. Since
real-time detection is undoubtedly the most important indicator, we went with the most

2



popular one-stage method. When it comes to real-time performance, the YOLO family
of algorithms represents the state of the art.

Recent advances in hardware device performance have hastened the development of
visual technologies that rely on big data and deep learning, increasing the capacity of
computers to handle data. The use of computer vision systems for object detection has
been extensively studied. The manual feature extraction method that was previously used
has been replaced with deep learning Dalal and Triggs (2005); Lowe (2004); Bay et al.
(2006) . Convolutional computations were employed in this technique to increase the
accuracy of visual object detection. It is possible to achieve more intuitive detection and
group information recognition by contrasting object detection with more conventional
electromagnetic signal detection technologies, such as radar, laser, infrared, audio, and
radio frequency. Visual sensors are cameras that capture images and group videos.

One of the main areas of study in computer vision is object detection, which is required
for many complex visual tasks. It is applicable in a variety of commercial, industrial, and
agricultural contexts . Since 2014, there has been a notable advancement in deep learning
techniques for object recognition. To further improve object detection, industry players
have created a number of approaches, such as the YOLO series Jiao et al. (2019), SSD
Liu et al. (2016), and Faster R-CNN Ren et al. (2015). Due to the rapid advancement of
target detection technology, numerous efficient methods have been developed especially
for UAV target recognition assignments Sun et al. (2020); He et al. (2022); Wastupranata
and Munir (2021); Tao et al. (2021); Ye et al. (2022).

It is claimed by the authors of Sun et al. (2020) that convolutional neural networks
struggle to balance detection accuracy and model size. To improve the original extremely
tiny face detector’s (EXTD) ability to extract characteristics from small UAV objects,
they incorporated a recurrent route and spatial attention module. Just 690.7 kilobytes
make up the model’s weight. Unfortunately, this model is too slow to be used in practical
engineering settings due to its long inference time. A multiscale feature fusion based
UAV target detection network was presented by Ref.He et al. (2022) using res2net to
extract target multisensory field features. This improved network performance allowed for
both hierarchical and fine-grained multiscale feature fusion, and the network ultimately
produced better results on a self-constructed UAV detection dataset.

To achieve realistic detection using web apps, Ref.Wastupranata and Munir (2021)
created a unique UAV detection technique that overcomes the UAV detection procedure’s
processing environment and parameter limits. To improve detection accuracy and recall,
we first assess a pre-trained SSD model that might be utilized in this online application.
From an efficiency and performance standpoint, the experiment findings show that the
web application method outperforms the on-board processing method. A lightweight
feature-enhanced convolutional neural network is described in reference Tao et al. (2021)
in order to precisely and instantaneously recognize objects flying at lows. Along with
being a dependable warning system for neighboring unregistered drones, it offers direction.
Ref. Ye et al. (2022) describes the groundbreaking deep learning method known as
convolutional transformation network (CT-Net). Initially, to enhance the model’s feature
extraction performance, the attention-enhanced transformation block at the center of the
network constructs a feature-enhanced multi-head self-attention mechanism. Next, to
reduce settings and control computational demand, a lightweight bottleneck module is
used. Finally, it is recommended to use a direction feature fusion structure to enhance
the detection precision when handling objects of different sizes, especially small ones.
Utilizing a self-constructed low-altitude small-object dataset, the approach demonstrates

3



good detection accuracy with a mAP = 0.966. It is possible that the detection speed
might be accelerated, given the FPS is only 37.

2.1 The Reason for Choosing YOLOv8 as the Baseline

This section provides an overview of some of the key elements of the paper for YOLOv8
enhancement and presents the most often used algorithms in recent years. For the reas-
ons listed below, YOLO, the most widely used real-time object detector on the market
today, can be mostly accepted. more precise detection outcomes, efficient feature fusion
techniques, and a lighter network architecture.

The two most used algorithms these days are YOLOv5 and YOLOv7. To detect ob-
jects properly and in real time, YOLOv5 uses deep learning technology. In terms of model
structure, training process, and overall performance, YOLOv5 outperformed YOLOv4.
YOLOv5 was able to decrease the amount of times calculations were needed and increase
computational performance by utilizing the CSP (Cross-Stage Partial) network struc-
ture.Sadly, YOLOv5 has a lot of issues. For example, difficulties in recognizing little
items still exist, and there is need for improvement in dense object detection. Addition-
ally, YOLOv5 still needs to be improved in difficult conditions like occlusion and location
change.

YOLOv7 introduces a novel training method called Training Bag of Freebies (TBoF)
to enhance the real-time item detection capabilities. Three different types of object de-
tectors, SSD, RetinaNet, and YOLOv3, can achieve notable improvements in accuracy
and generalization capabilities with TBoF. This is explained by the fact that it uses
several trainable approaches, such as MixUp and data augmentation. However, there
are situations when YOLOv7’s performance may suffer due to limitations imposed by
the model’s architecture, training set, and hyperparameters. Furthermore, for the re-
commended technique to yield the best results, additional training time and processing
capacity are required.

In 2023, YOLOv8 was released with the goal of integrating the best features from sev-
eral real-time object detectors. It went on to support the feature fusion technique(PAN-
FPN) Lin et al. (2017); Liu et al. (2018) , the SPPF module, and the CSP idea in
YOLOv5 Wang and Liao (2020). The following were its primary enhancements: (a) It
offered a completely new SOTA model, combining the instance segmentation model from
YOLACT with object detection networks with P5 640 and P6 1280 resolutions Bolya
et al. (2019). In order to accommodate various project requirements, it also created
models with varying scales based on a scaling coefficient akin to YOLOv5. (b) The C2f
module was created using the ELAN structure seen in YOLOv7 in order to maintain the
core concept of YOLOv5 Wang et al. (2023). (c) In addition, the detection head part
employed the generally recognized method of splitting the heads for classification and
detection Ge et al. (2021). The original idea behind YOLOv5 continued to inform the
majority of the remaining components. (d) The BCE loss was abused by the YOLOv8
classification loss. Loss was defined as DFL + CIOU loss Cao et al. (2020), and the
decrease VFL indicated the need for an asymmetric weighting process. DFL: An approx-
imate general distribution model was used to depict the box’s position. The network
quickly focused on the distribution of the location close to the item position because, as
equation (1) illustrates, the probability density was as near to the site as possible.

DFL(si, si+1) = − ((yi+1 − y) log(si) + (y − yi) log(si+1)) (1)

4



Figure 1: Network structure of yolov8.

Anchor-Free is used by YOLOv8 in place of Anchor-Base. V8 employed a dynamic
TaskAlignedAssigner to construct a matching technique. The alignment degree of the
Anchor-level for each instance is found using equation (2), where u is the IOU value, s is
the classification score, and α and β are the weight hyperparameters. It trains using the
loss function after selecting m anchors (t = max for each instance) as positive samples and
the remaining anchors as negative samples. Thanks to the aforementioned improvements,
YOLOv8 is currently the most accurate detector available, with 1

t = sα × uβ (2)

2.2 The Network Structure of YOLOv8

The CSP principle states that the C2f module in YOLOv8 replaces the C3 module,
which has a core that is nearly identical to YOLOv5’s. YOLOv8 was able to obtain more
gradient flow information while keeping its compact weight thanks to the C2f module,
which was inspired by the ELAN concept in YOLOv7 and coupled C3 with ELAN to
create the C2f module Wang et al. (2023). The backbone was coming to an end, but the
most popular SPPF module was still using. To ensure light weight and object accuracy
in a range of scales, three 5 × 5 Maxpools were broadcast serially prior to each layer
being concatenated.

YOLOv8 continues to use PAN-FPN as its feature fusion technique in the neck region
since it improves the fusion and utilization of feature layer information at several scales.
The YOLOv8 writers used the final decoupled head structure, two upsamplings, and
numerous C2f modules to produce the neck module. YOLOv8 used the disconnecting the
head technique from YOLOx for the final neck piece. The inclusion of regression boxes
and confidence allowed for an increased level of precision.

YOLOv8 supports all versions of YOLO and can transition between them at any
time. One reason for its extraordinary adaptability is that it can operate on several
different hardware platforms (CPU-GPU). The architectural schematics of the YOLOv8
network are shown in Figure 1. The CBS in Figure 1 is composed of convolution, batch
normalization, and SiLu activation functions.

5



3 Methodology

Using a YOLOv8 model that has already been trained, web-based object identification
involves multiple steps. YOLO (You Only Look Once) is a real-time object recognition
algorithm that starts with an image, builds a grid, and projects the bounding boxes
and class probabilities for each grid cell. Using a YOLOv8 model that has already been
trained, the following is an a popular web-based object identification technique:

1. Extracting and Setting Up the Required Tools:

• Install Python, Flask, and the required libraries for web development and
computer vision in a development environment.

• Use the package manager to install Flask with pip.

• It is recommended that you install the necessary computer vision libraries,
such as OpenCV (pip install opencv-python).

2. Backend Development with Flask:

• Within a Flask application, create routes to handle various activities.

• Render the main HTML page after a path has been established.

• Give the frontend an endpoint so it may receive video frames.

• The YOLOv8 model is used by the route construction approach to analyze the
frames and locate objects.

• For further actions, such as initiating and terminating the video broadcast,
choose the proper paths.

3. YOLOv8 Model Integration:

• You may get the setup files and training weights for YOLOv8.

• The YOLOv8 model should be integrated into the Flask backend to enable
real-time object recognition.

• Verify that the preprocessed video frames you got from the frontend were
created using the YOLOv8 model.

• Apply object detection to each frame in order to obtain the bounding box
coordinates and class labels.

4. Implementataion of Frontend:

• Create a basic HTML template for the internet interface that includes buttons,
a section for displaying videos, and other pertinent components.

• Your information should be laid out using CSS to make it easy to navigate.

• Use JavaScript to record video, manage the live camera feed, and deliver the
frames to the back end.

5. Streaming Video in Real Time:

• JavaScript and the WebRTC API can be used to access and capture video
streams from the user’s webcam.

6



Figure 2: Block Diagram System Overview.

• Apply logic to the video stream in order to record frames continually and
transfer them to the Flask backend for processing.

• On the web interface, display the processed frames in real time along with the
bounding boxes and class names.

6. Data transfer in Real Time Socket configuration:

• Installation of Socket dependency on front-end and back-end using python
package manager and cdn respectively

• Initialisation and configuration of Socket.

• Implementation of event which trigger on particular steps for real-time data
flow.

7. Testing and Debugging:

• Perform a comprehensive overall system evaluation in order to find and fix any
flaws.

• Test the system under various conditions to make sure real-time object detec-
tion is accurate and stable.

4 Design Specification

4.1 System Overview Block Design of application

Cameras take a picture frame in order to detect anything, which is then processed by an
object detection module. Date, time, camera id, object class, bounding box coordinates,
and frame information are all stored in the database that contains the object recognition
result. The created bounding boxes and the image are displayed simultaneously on the
site template in the interim. Users can also filter the data by object kinds, date and time,
and camera ID using the search function included in the online program. In Figure 2,
the application diagram is shown.

4.2 Flask Framework

Flask is a lightweight, versatile Python web framework that offers greater customization
than Django. Its structure is more straightforward and it mostly adheres to the model-
view-controller (MVC) architectural pattern. Here are all the key components of the
Flask architecture and patterns in one convenient area.

1. Routing (URL Handling)

• To handle various HTTP methods and URLs, Flask makes use of route dec-
orators.

7



• Each URL pattern that points a URL to a certain view function is defined by
the application using the @app.route decorator.

• Developers can construct routes with fewer restrictions using Flask since it has
greater control over URLs than Django.

2. View (Controller)

• In essence, every Flask view is merely a Python method that is used to control
specific routes.

• Class-based views are used by Django for this purpose, however Flask processes
HTTP requests and responds with simple functions.

• You have more freedom to arrange your code and setup your endpoints anyway
you choose because Flask views don’t follow a predetermined URL structure.

3. Template (for HTML generation)

• Flask generates HTML dynamically by utilizing the Jinja2 template engine.

• With Flask templates, placeholders may carry both static and dynamic HTML
content.

• The configuration and variety of template engines that are available to de-
velopers allows them to make any changes to their templates that they deem
fit.

4. Middleware and Extensions

• Flask developers may manage requests and responses from all around the world
by adding middleware functions to the framework.

• Developers may add more features and connectors with Flask extensions, giv-
ing them the freedom to select and incorporate just the parts that they require.

5. Request and Response Handling

• Flask offers request and response objects to manage incoming HTTP requests
and produce pertinent responses.

• Flask does not come with an inbuilt notion of middleware, but it can provide
functionality that is comparable to middleware by using decorators and be-
fore/after request functions—features that Django does not have.

6. Workflow

• The method provided by Flask is clearer-cut and simpler. Prior to providing
results, certain views accept requests and process them. The views can be
recognized by the routes defined in the application’s main script, which is
often app.py or main.py .

8



Figure 3: FLask Workflow

4.3 Yolov8 network architecture and design

Since there isn’t a published study on the subject at this time, we are unable to im-
mediately access the real research methodology and ablation studies carried out during
the manufacture of YOLOv8. Having said that, we looked over the repository and the
available data on the model in order to start logging the updates in YOLOv8.

View this differential to learn about the methodology used in some of the studies, and
if you want to explore the code more, go to the YOLOv8 repository.

We briefly summarize key modeling revisions and then turn to an examination of the
model’s evaluation, which speaks for itself.

The figure below, made by GitHub user RangeKing, provides a complete visualization
of the network’s architecture 4.

As stated in the Ultralytics introduction page, the YOLOv8 architecture has addi-
tional enhancements and new convolutions:

When C2f replaced C3, modifications were made to the core of the system. A 3x3
convolution was used in place of the original 6x6 convolution in the stem. The outputs
from the Bottleneck—two 3x3 convolutions with residual connections—are merged in C2f
as opposed to C3, which only uses the output from the previous Bottleneck.

Two convolutions were taken out of the YOLOv5 configuration. All bottlenecks in
YOLOv8 are identical to those in YOLOv5, with the exception of the first convolution’s
kernel size, which was modified from 1x1 to 3x3. This update moves closer to the ResNet
block that was detailed in 2015.

Ancher-Free Detections
When an item is detected using an anchor-free model, its center is predicted by the

model itself instead than being offset from a known anchor box.
Anchor classes are used to identify object classes that satisfy the required aspect ratio

and size constraints. Anchor boxes are a pre-defined set of boxes with precise heights
and widths. According to the size of the items in the training dataset, they are selected
and tilded throughout the image during detection.

Anchor boxes are altered using the probability and properties (such offsets, back-
ground, and IoU) that the network produces for each tiled box. Border box forecasts can
be permanently started from many anchor boxes, each of which can be established for a

9



Figure 4: Visualization of the YOLOv8 Architecture created by GitHub user RangeKing

10



Figure 5: Visualization of the YOLOv8 anchor box

distinct object size.
Compared to earlier YOLO models like v1 and v2, anchor-free detection has the

advantage of being more adaptable and efficient because anchor boxes do not need to
be manually specified, which can be challenging to choose and result in less-than-ideal
outcomes 5.

Anchor boxes may represent the intended benchmark box distribution but not the
bespoke dataset distribution, which is why they are so infamously hard to use in earlier
YOLO models6.

After inference, Non-Maximum Suppression (NMS), a difficult post-processing step
that filters out possible detections, works more quickly when fewer box predictions are
made using anchor free detection 7.

4.3.1 System Architecture

The process of obtaining, modifying, and presenting video footage to the viewer is fully
demonstrated 8.

After the camera records the video clip, the video broadcast is started. When the
video is received by the encoder, it is compressed into a streamable format. After the
video has been encoded, it is delivered to the server, which saves it and enables user
access.

The server can also handle the video further to support a range of devices and network
conditions, such as transcoding it to a different bitrate or quality. A variety of streaming
protocols, including HTTP and webrtc, can be used by the server to deliver the video to
users.

11



Figure 6: Visualization of the YOLOv5 detection head

After getting the video stream from the server, the user uses a decoder to decode it.
The decoded video is then shown on the user’s device.

Below is a more thorough explanation of each element of the video stream diagram:

• Camera: The footage is captured by this device. Depending on the use, a certain
type of camera may be employed. One use for recorded video is for live streaming
and video conferences, which can be done using a camera. Video footage that is
suitable for observation can be obtained by a security camera.

• Encoder: The device known as an encoder reduces the size of the video so that
it may be streamed. Reducing the bandwidth needed to send the video over the
network is crucial. There exist alternative video codecs, such H.264 and HEVC.
According on the target device and network conditions, the encoder will select a
codec.

• Server: Users can access and share the video by storing it on the server. Additional
processing of the video, such as transcoding to a different bitrate or resolution, may
also occur on the server. The server supports many streaming protocols in addition
to HTTP and HLS for delivering the video to users.

• Decoder: This gadget is capable of decoding encoded video. This process will
restore the compressed video to its original file format. Typically, the decoder is
installed by the user’s device—which could be a computer, smartphone, or smart
television.

• User: Recieved from the server, the user uses a decoder to decode the video stream.
On the user’s device, the decoded video is then displayed.

Streaming video is a multifaceted and intricate process. That being said, the funda-
mental ideas are quite simple. Gaining an understanding of the ins and outs of offering
clients high-quality video material will enable you to comprehend the difficulties associ-
ated with video streaming.

12



Figure 7: Visualization of the YOLOv8 detection head

13



Figure 8: System Architecture

5 Implementation

A number of elements need to be carefully integrated in order for the web-based object
detection system to be deployed and offer a cohesive and helpful application. Flask served
as the back-end web framework, which allowed the system to manage routing, server-side
logic, and front-end communication with ease. The primary implementation language,
Python, offered an adaptable and efficient environment.

5.1 Back-end Implementation

The YOLOv8 object identification model was largely responsible for the increase in real-
time detection accuracy. OpenCV made image processing tasks easier, even though
pretrained weights and configuration files were needed to match the video frames with
the model’s input criteria. At the end of this integration phase, a robust system that
could accurately identify objects in the live video stream was created.

• Flask Back-end :- Front-end queries and incoming video frames are handled by
Flask, which also acts as the web server. YOLOv8 has made it possible for the
Flask back-end to identify objects in video frames.

• Install libraries:- Install and configure the ultralytics , CV2 and supporting lib-
raries for the execution to access the webcamera.

• Web-Socket Communications :- Web-Sockets allow real-time communication
between an application’s front and back ends. As a result, it is easier to transmit
video frames and object identification data in real time.

5.2 Front-end Implementation

The front-end user interface was created to offer an entertaining and user-friendly plat-
form by utilizing HTML, CSS, and JavaScript. The WebRTC API allowed users to access

14



Figure 9: object detection on web app

real-time video broadcasts straight from their camera, improving the overall user experi-
ence. JavaScript was mostly in charge of ensuring that video frames were transported to
the Flask back-end for processing in an efficient manner.

• HTML Structure:- The basic layout of the application is determined by HTML
components. These elements comprise the areas where users interact, the display
area for object detection results, and the display area for the video stream.

• CSS Styling:- To provide a graphical and user-friendly interface, CSS is used to
style the HTML elements. This addresses the look and feel of the video feed, object
recognition results, and UI elements.

• JavaScript logic code:- Camera footage is recorded, user interactions are man-
aged, and backend API connections are made simpler with JavaScript. In other
words, when video frames are supplied for object recognition, the processed video
frames with bounding boxes and labels need to be retrieved from the backend.

5.3 Real Time Object Detection

• Video Stream Capture:-WebSockets are used between the front end and back
end API to transfer frames from the user’s camera video stream.

• Object Detection at Back-end:- Once the back-end receives the video frames,
it uses YOLOv8 object detection to identify objects in each frame.

• Output Broadcast:- WebSockets are used by the back-end to send the processed
video frames, labels, and bounding boxes to the front end.

• Representation at Front-end:- From the back end to the front end, bounding
boxes, labels, and processed video frames are delivered using WebSockets.

10 and 9 show the application design and its visualization after implementation of
the concept. The end product of the solution was a web-based object detection system

15



Figure 10: Visualization of object detection on web app

that demonstrated real-time accuracy, responsiveness, and user engagement by effectively
combining frontend, YOLOv8, and Flask technologies. The expert integration of these
parts created a strong basis for practical applications in a range of industries.

6 Evaluation

6.1 Experiment platform

The experiments which perform for this research is on Windows 10 and the system hard-
ware Configuration components were 24GB RAM, NVIDIA GTX1650 GPU and AMD
Ryzen 5600H oF CPU. The Software platform are pycharm which have python Support
for execution of the scripts.

6.2 Evaluation Objective

• Analyze the degree of object recognition and location accuracy of the object detec-
tion algorithm in the video stream.

• View the speed at which the application decodes video frames and returns findings
for object detection in real time.

• A program’s ease of use can be determined by looking at its interface and level of
simplicity.

6.3 Evaluation Parameter

• Accuracy:- Using the benchmark information set, which consists of pictures and
videos with a variety of things in them, the object detection algorithm’s accuracy
was assessed. The precision and recall measures were employed to evaluate the
accuracy of object recognition and location, respectively.

16



Figure 11: Visualization of Accuracy vs Frame Rate

• Speed:-The application’s speed was measured by the speed at which it processed
and displayed object detection data. A constant frame rate of 30 frames per second
was used to define real-time performance.

• Intractability:-The application’s usability was assessed by user testing, which in-
volved an audience of participants. Following their use of the program to accomplish
simple object identification tasks, the users were asked to rate its overall usefulness,
intuitiveness, and comfort of use.

6.4 Case Study of Experiment

Based on the benchmark information set, the algorithm demonstrated exceptional ac-
curacy in object identification and localization, with a precision of 95 percent and a
recall of 90 percent. This level of precision is comparable to, or surpasses, that of other
cutting-edge object detection techniques.

Throughout the examination, the application maintained a frame rate of 30 frames per
second, ensuring real-time object detection with low latency 11. The quick and seamless
object detection in the video stream was made possible by this quick processing.

Positive feedback was given by subjects, who complimented the program’s function-
ality and user-friendly interface. The bounding boxes and labels for the object detection
findings made it simple for participants to produce and upload images and videos, and
the results were clear to see. Taking everything into account, a lot of users thought the
program was appropriate and simple to use.

6.5 Discussion

The evaluation’s outcomes show that the web-based object identification application is
an effective means of achieving its goals. It achieves this by utilizing the Flask backend

17



Figure 12: Visualization of Accuracy, Precision and Recall

and front-end camera real-time video stream for object recognition using YOLOv8 . This
application is effective for a variety of activities requiring real-time object detection due
to its high accuracy, quick response time, and user-friendly interface in comparison of the
Tran (2020).

7 Conclusion and Future Work

In summary, the YOLOv8 model in combination with the Flask web framework has al-
lowed this study to effectively investigate and develop a web-based object recognition
system. The value of computer vision in an online environment is demonstrated by
this, which blends real-time object detection, user-friendly interfaces, and database ad-
ministration. Setting the stage for additional automation, monitoring, and surveillance
applications, the system showed outstanding accuracy in real-time object detection.A
flexible and modular architecture is fundamental, as demonstrated by the smooth com-
ponent integration made possible by the utilization of frontend technologies, Flask, and
YOLOv8. Metrics related to accuracy, system responsiveness, and user interface inter-
action were among the crucial performance insights into the system that were revealed
during the results analysis. This work contributes to the growing field of computer vis-
ion and web-based applications and emphasizes the significance of rigorous evaluation
in real-world scenarios from an academic standpoint. For academics and professionals
interested in implementing such systems, the results highlight both areas of strength and
areas that require improvement.

The study’s conclusions provide a thoughtful examination of the advantages and dis-
advantages of the deployed system, as well as practical guidance for researchers and
practitioners considering the implementation of similar systems. In addition to outlining
crucial subjects for investigation, this paper offers up a number of fascinating avenues
for further study and development. First, expanding the range of objects that may be

18



identified and increasing accuracy could be achieved by incorporating more advanced
object detection models. Second, it’s critical to investigate optimization strategies to
improve system responsiveness and expedite real-time processing in order to ensure an
impeccable user experience. Third, in addition to other actions, a comprehensive security
evaluation needs to be carried out in order to fortify the system against any flaws and
protect sensitive data. Fourth, the system will be easier to use and more valuable if user-
friendly features like interactive notifications, customisable alarms, and item tracking are
improved. Future efforts should focus on incorporating the cloud for greater scalability
and dynamically modifying the confidence threshold in response to real-time performance
data. By creating a web-based object identification system that is more reliable, scalable,
and easy to use, these programs aim to further the integration of internet technologies
with computer vision in real-world applications.

References

Bay, H., Tuytelaars, T. and Van Gool, L. (2006). Surf: Speeded up robust features,
Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, Springer, pp. 404–417.

Bharati, V. (2021). Lidar+ camera sensor data fusion on mobiles with ai-based virtual
sensors to provide situational awareness for the visually impaired, 2021 IEEE Sensors
Applications Symposium (SAS), IEEE, pp. 1–6.

Bolya, D., Zhou, C., Xiao, F. and Lee, Y. J. (2019). Yolact: Real-time instance seg-
mentation, Proceedings of the IEEE/CVF international conference on computer vision,
pp. 9157–9166.

Cao, Y., Chen, K., Loy, C. C. and Lin, D. (2020). Prime sample attention in object
detection, Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11583–11591.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection,
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), Vol. 1, Ieee, pp. 886–893.

Ge, Z., Liu, S., Wang, F., Li, Z. and Sun, J. (2021). Yolox: Exceeding yolo series in 2021,
arXiv preprint arXiv:2107.08430 .

He, J., Liu, M. and Yu, C. (2022). Uav reaction detection based on multi-scale fea-
ture fusion, 2022 International Conference on Image Processing, Computer Vision and
Machine Learning (ICICML), IEEE, pp. 640–643.

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z. and Qu, R. (2019). A survey of
deep learning-based object detection, IEEE access 7: 128837–128868.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017). Feature
pyramid networks for object detection, Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2117–2125.

19



Liu, S., Qi, L., Qin, H., Shi, J. and Jia, J. (2018). Path aggregation network for instance
segmentation, Proceedings of the IEEE conference on computer vision and pattern re-
cognition, pp. 8759–8768.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. and Berg, A. C. (2016).
Ssd: Single shot multibox detector, Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I
14, Springer, pp. 21–37.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints, Interna-
tional journal of computer vision 60: 91–110.

Ren, S., He, K., Girshick, R. and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. arxiv 2015, arXiv preprint arXiv:1506.01497
.

Sengupta, A., Cheng, L. and Cao, S. (2022). Robust multiobject tracking using mmwave
radar-camera sensor fusion, IEEE Sensors Letters 6(10): 1–4.

Sun, H., Yang, J., Shen, J., Liang, D., Ning-Zhong, L. and Zhou, H. (2020). Tib-net:
Drone detection network with tiny iterative backbone, Ieee Access 8: 130697–130707.

Tao, Y., Zongyang, Z., Jun, Z., Xinghua, C. and Fuqiang, Z. (2021). Low-altitude small-
sized object detection using lightweight feature-enhanced convolutional neural network,
Journal of Systems Engineering and Electronics 32(4): 841–853.

Tran, L.-A. (2020). Object detection streaming and data management on web browser.

Wang, C. and Liao, M. (2020). H.-y.; et al. cspnet: A new backbone that can enhance
learning capability of cnn. in 2020 ieee, CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1571–1580.

Wang, C.-Y., Bochkovskiy, A. and Liao, H.-Y. M. (2023). Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475.

Wastupranata, L. M. and Munir, R. (2021). Uav detection using web application approach
based on ssd pre-trained model, 2021 IEEE International Conference on Aerospace
Electronics and Remote Sensing Technology (ICARES), IEEE, pp. 1–6.

Ye, T., Zhang, J., Li, Y., Zhang, X., Zhao, Z. and Li, Z. (2022). Ct-net: An efficient
network for low-altitude object detection based on convolution and transformer, IEEE
Transactions on Instrumentation and Measurement 71: 1–12.

Zou, M., Yu, J., Lv, Y., Lu, B., Chi, W. and Sun, L. (2023). A novel day-to-night obstacle
detection method for excavators based on image enhancement and multi-sensor fusion,
IEEE Sensors Journal .

20


	Introduction
	Related Work
	The Reason for Choosing YOLOv8 as the Baseline
	The Network Structure of YOLOv8

	Methodology
	Design Specification
	System Overview Block Design of application
	Flask Framework
	Yolov8 network architecture and design 
	System Architecture


	Implementation
	Back-end Implementation
	Front-end Implementation
	Real Time Object Detection

	Evaluation
	Experiment platform
	Evaluation Objective
	Evaluation Parameter
	Case Study of Experiment
	Discussion

	Conclusion and Future Work

