
Analyzing Obfuscation Techniques for
Evasion: A Case Study on Machine
Learning-based Malware Detection

MSc Research Project

Artificial Intelligence

Tugrul Un
Student ID: 22181695

School of Computing

National College of Ireland

Supervisor: Anh Duong Trinh

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tugrul Un

Student ID: 22181695

Programme: Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Anh Duong Trinh

Submission Due Date: 05/01/2024

Project Title: Analyzing Obfuscation Techniques for Evasion: A Case Study
on Machine Learning-based Malware Detection

Word Count: 3140

Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Analyzing Obfuscation Techniques for Evasion: A
Case Study on Machine Learning-based Malware

Detection

Tugrul Un
22181695

Abstract

This research focuses on the intricate domain of malware obfuscation, a method
utilized by malicious people to conceal the actual characteristics and operations
of their code, thereby rendering its analysis and reverse engineering more difficult
and time-consuming. Consequently, this enhances the malware’s capacity to elude
detection and preventive methods. An area that is crucial but not thoroughly
examined is the effect of these obfuscation techniques on malware detectors that rely
on Machine Learning (ML). The primary objective of the research is to carry out a
thorough examination of several obfuscation techniques, such as encryption, code
obfuscation, and polymorphism, employed by attackers to conceal their malware.
Having this comprehension is crucial for evaluating the present and possible future
scenario of cyber risks. Additionally, the project aims to assess the impact of
different obfuscation approaches on Static ML-based malware detectors. This study
rigorously evaluates the impact of obscuring malware on the precision and efficiency
of machine learning-based detection algorithms. An assessment of this nature is
essential for uncovering the current capabilities and constraints of machine learning
detectors when faced with advanced obfuscation techniques. Finally, the study
aims to improve the identification and prevention methods in cybersecurity by
identifying the weaknesses of machine learning-based malware detectors when faced
with obfuscation attacks. The objective is to make a significant contribution to the
area by suggesting ways that can strengthen the resistance of machine learning-
based detectors against sophisticated and disguised malware threats. This would
enhance cybersecurity defenses against constantly emerging malware issues.

1 Introduction

The ever-evolving landscape of cyber threats has brought to the forefront the critical
issue of malware obfuscation. This method, employed by malicious entities, successfully
conceals dangerous software, rendering it progressively difficult to detect and analyze.
The necessity of tackling this problem is underscored by the increasing complexity of these
methods of obfuscation and their capacity to weaken existing cybersecurity safeguards.
This study aims to address a crucial inquiry: What is the influence of malware obfuscation
techniques on the efficacy of Machine Learning (ML)-based malware detectors, and how
can these systems be enhanced to mitigate such risks?

The objective of our research is to conduct an extensive examination of various meth-
ods used to obscure malware, encompassing encryption and code polymorphism among

1



others. This investigation is crucial for comprehending the developing strategies employed
by cyber assailants. Furthermore, our objective is to assess the durability of Static ML-
based malware detectors when confronted with these intricate obfuscation tactics. Gain-
ing a comprehensive understanding of the constraints and advantages of these detectors
will provide us with valuable insights to propose improvements to existing cybersecurity
defenses.

This study enhances the scientific community’s knowledge by providing a detailed un-
derstanding of how malware obfuscation and machine learning-based detection systems
interact with each other. This research contributes to the progress of cybersecurity de-
fenses by identifying and proposing enhancements for current vulnerabilities. The study
is organized as an introductory overview, which is then followed by a literature analysis
that places our results within the current landscape of cybersecurity and malware obfus-
cation. The next sections provide a comprehensive explanation of our study approach,
explain the discovered results, and analyze their significance within the wider context of
cybersecurity. Ultimately, the report finishes by providing a concise overview of our sig-
nificant contributions, acknowledging the constraints of the present study, and suggesting
potential avenues for future research in this crucial field.

2 Related Work

The pervasive problem posed by malicious software in the field of information techno-
logies requires advanced solutions. Over time, multiple methods have been developed
to identify such malware. However, repeated breaches and subsequent enhancements to
protection systems highlight the necessity for more flexible solutions. Although the tech-
nical feasibility of the iterative problem-solving cycle is evident, there is an urgent need
for systems that can quickly adapt. This has led to the incorporation of artificial intelli-
gence (AI). Artificial intelligence (AI) is becoming increasingly important and efficient in
identifying dangerous software. This judgment is achieved by using datasets that include
both harmful and benign software. Various AI models are trained on these datasets. The
combination of these endeavors enables AI to effectively recognize complex patterns, thus
improving its ability to identify potential dangers.

2.1 Machine Learning-based Malware Detectors and Datasets

2.1.1 Malware Detection by Eating a Whole EXE

”Malware Detection by Eating a Whole EXE” examines a new method for detecting
malware by consuming complete executable (EXE) files as raw byte sequences. Within
the domain of cybersecurity, the detection of malevolent software is of utmost importance,
considering the increasing risks to computer systems. In contrast to traditional antivirus
techniques that frequently fail to detect novel and advanced malware, the authors suggest
utilizing neural networks for static analysis, with a specific focus on the raw binary data
of EXE files. Detailed explanation is in Section 41

This is a architecture diagram of MalConv model in Figure 3

1MalConv: https://github.com/NeuromorphicComputationResearchProgram/MalConv2

2

https://github.com/NeuromorphicComputationResearchProgram/MalConv2


Figure 1: MalConv model Raff et al. (2018)

2.1.2 EMBER: An Open Dataset for Training Static PE Malware Machine
Learning Models

The EMBER dataset2, introduced in this study, holds significant value in the field of
machine learning for the purpose of detecting malware. The dataset comprises 1.1 million
Windows portable devices that have been tagged. It aims to tackle the issues faced
by the information security community and offers a substantial, accessible, and varied
dataset for training models. The authors include examples of application cases, such as
model comparison, concept analysis, interpretable machine learning, and trend analysis.
LightGBM is utilized as a benchmark model to showcase the efficacy of MalConv, a non-
spatial deep learning model. The primary objective of the EMBER dataset and code
is to propel the progress of machine learning research in the field of malware detection,
foster creativity, and provide a standard for future research endeavors.Anderson and Roth
(2018)

2.1.3 SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE De-
tection

The study introduces the SOREL-20M dataset3, which serves as a valuable tool for en-
hancing malware detection through the application of machine learning techniques. Con-
taining almost 20 million files, this dataset overcomes the constraints of earlier datasets
by offering an abundant number of training examples and neutralized malware for invest-
igation. The sample is equipped with high-quality features, metadata, and tags, together
with consumer search information, to enable a comprehensive evaluation. The system
comprises a foundational model that utilizes PyTorch and LightGBM, demonstrating ex-
ceptional performance while still allowing for further enhancements. The dataset and
distribution, along with the code and trained models, have the purpose of promoting a
more adaptable and consistent framework for research in malware detection and making
a substantial contribution to the area.Harang and Rudd (2020)

2.1.4 BODMAS: An Open Dataset for Learning based Temporal Analysis of
PE Malware

The authors introduced the BODMAS dataset4 as a solution to the shortcomings of
current open PE malware datasets. This collection offers recently collected malware
samples (from August 2019 to September 2020) that are time-stamped, together with

2EMBER: https://github.com/elastic/ember
3SOREL-20M: https://github.com/sophos/SOREL-20M
4BODMAS: https://github.com/whyisyoung/BODMAS

3

https://github.com/elastic/ember
https://github.com/sophos/SOREL-20M
https://github.com/whyisyoung/BODMAS


carefully organized information about 581 malware families. A preliminary research was
conducted to assess the influence of concept drift on both binary malware classifiers and
multiclass malware family classifiers. The findings revealed difficulties arising from the
ever-changing characteristics of malware, such as the emergence of novel families that
impact classifiers. Investigations have been conducted on mitigation techniques, such
as progressive retraining and training with new knowledge. The work emphasizes the
necessity for open-world classifiers to tackle previously unidentified families and outlines
unresolved issues for future research in malware analysis.

Information for the datasets is given in Table 1

Dataset Malware Time Family # Families # Samples # Benign # Malware Malware
Binaries

Feature
Vectors

Microsoft N/A (Before 2015) 9 10,868 0 10,868
https://www.overleaf.com/project/6584a312907ff108aef37cc4

Ember
01/2017-12/2018 N/A 2,050,000 750,000 800,000

UCSB-Packed 01/2017*-03/2018 N/A 341,445 109,030 232,415
SOREL-20M 01/2017-04/2019 N/A 19,724,997 9.762,177 9.962,820

BODMAS 08/2019-09/2020 581 134,435 77,142 57,293

Table 1: Public PE malware datasets. =“not available”; =“partially available”,
=“available”.Yang et al. (2021)

2.2 Obfuscation Techniques

Code obfuscation encompasses a wide range of approaches that aim to increase the com-
plexity of a program’s source code or binary code, making it more challenging to com-
prehend. This may encompass (alongside encryption and compression):

- Utilizing obscure or arbitrary names when renaming variables, functions, and classes.
- Introducing superfluous or redundant code (often referred to as ”dead code”) with

the intention of perplexing analyzers.
- Rearranging code instructions to intentionally interrupt the sequential logic.
- String encryption: Malevolent strings, such as URLs, API calls, or command-and-

control server addresses, can be encoded as code. These strings undergo decryption at
runtime, rendering it more challenging to ascertain their intended function during static
analysis.

Control Flow Obfuscation: Control flow obfuscation refers to the manipulation of
a program’s logical flow in order to disrupt the functioning of analysis tools. Possible
inclusions may encompass:

- Including superfluous conditional branches.
- Constructing intricate iterations.
- Employing opaque predicates, which are conditions that consistently provide either

true or false outcomes, although may seem intricate.
API Function Obfuscation: Malware use obfuscated or dynamically resolved API

function calls to evade detection. This refers to the utilization of indirect calls or the
resolution of function addresses at runtime.Srivastava et al. (2008)

Dynamic Loading: Malware has the capability to dynamically incorporate supple-
mentary code or modules from external sources, such as remote servers, while it is run-
ning. This can impede the static examination of the entire code.Cho et al. (2017)

Encoding and decoding: These approaches might be employed to obscure data or code.
Typical encodings consist of Base64 or personalized methods. The data is decrypted
dynamically when it is required.Fukushima et al. (2008)

4



2.2.1 Packing

Malicious software creators frequently utilize packing as a method of obfuscation to con-
ceal their harmful programs. This procedure entails utilizing an algorithm to condense
the initial malware code, resulting in a reduction in size. Additionally, it may include the
integration of rudimentary encryption, so introducing an additional level of intricacy. In
order to activate the compressed malware, a packing stub, which is a small and special-
ized piece of code, is generated to unpack the compressed payload. The stub is merged
with the compressed payload, creating a unified executable file. Upon activation of the
malware, the packing stub is programmed to automatically decrypt and decompress the
payload, thereby running the specified malicious code. Packing serves three main pur-
poses: firstly, it masks the true nature of the malware; secondly, it makes it difficult for
security analysts and antivirus programs to directly analyze the executable because it is
encrypted and compressed; and thirdly, it modifies the binary signature of the file, thus
avoiding detection based on known signatures. In order to address this issue, security
experts need to analyze the packing technique by executing the program in a controlled
and secure environment. This will enable the stub to expose the underlying code, which
can then be scrutinized for any malicious intentions.

List of well-known packers: UPX, Bobsoft, PECompact, Themida, ASPack, En-
igma Protector, Molebox, VMProtect, RAR Compression, MPress, Armadillo, BoxedApp
Packer

2,
01
0

2,
01
1

2,
01
2

2,
01
3

2,
01
4

2,
01
5

2,
01
6

2,
01
7

2,
01
8

2,
01
9

2,
02
0

2,
02
10

10

20

30

40

50

60

70

80

Year

%
P
ac
ke
d
F
il
es

Share of Packers Commonly Used to Pack Malicious Files

UPX
Bobsoft

PECpmpact
Themida

Figure 2: Share of packers commonly used to pack malicious files over the
years.Muralidharan et al. (2022)

2.2.2 Encryption

Within the field of cybersecurity, individuals that create malware often employ encryption
techniques to obscure their code, so effectively protecting the harmful payload from easy
detection and analysis. The obfuscation process involves encrypting specific sections of

5



the code or the full payload using methods such as AES for symmetric encryption or RSA
for asymmetric encryption. The essential elements necessary for deciphering the virus,
namely the encryption key and the decryption procedure, are cleverly incorporated into
the infection itself. When the virus is executed, it uses these pre-installed tools to decode
and execute the hidden code. Encryption is strategically employed for several reasons: it
conceals the code from security researchers and antivirus scans, evades detection systems
that rely on recognizing known signatures of malware, and adds a level of intricacy that
extends and complicates the analysis procedure. In order to understand this deliberate
confusion, security researchers are assigned the responsibility of reversing the encryption.
They do this by utilizing the malware’s own decryption routine and key to expose the
concealed code. This process allows them to uncover the actual behavior of the malware,
which can then be studied in more detail.Omachi and Murakami (2020)

Well-known crypters: PELock, EXECryptor, SecureEngine, EXEShield, SecureCode,
CodeLock

3 Methodology

This section describes the methodological framework designed for the investigation, out-
lining the systematic approach planned for assessing the impact of obfuscation techniques
on ML-based malware detectors.

3.1 Data Collection and Preprocessing

The initial phase of the project involves the meticulous collection of diverse malware
samples:

• The datasets, namely EMBER, SOREL-20M, and BODMAS, will be utilized to
ensure a comprehensive representation of malware varieties.

• Standardization protocols will be applied to harmonize the data formats, addressing
any discrepancies that may hinder the subsequent analysis.

• Preprocessing techniques such as normalization, encoding, and handling missing
data will be implemented to optimize the datasets for efficient algorithmic pro-
cessing.

3.2 Analysis of Malware Obfuscation Techniques

To dissect the obfuscation landscape, the following steps will be taken:

• Binary code and metadata from collected samples will be analyzed to identify pre-
valent obfuscation techniques.

• A framework will be established to classify these techniques based on complexity
and the degree of analytical challenge they present.

• This exploratory analysis aims to discern patterns and methods commonly employed
to evade detection.

6



3.3 Implementing Transfer Learning with MalConv

The project will adapt a pre-trained MalConv model to further our objectives:

• The MalConv model, proficient in capturing an extensive feature set from malware
samples, will be fine-tuned to our collected datasets.

• Transfer learning techniques will be employed to adjust the model’s parameters,
aiming to enhance its sensitivity to obfuscation.

• Specific focus will be given to the adaptability of the model’s final layers to our
detection goals.

3.4 Evaluating ML-based Malware Detectors

Upon the completion of model adaptation, the following evaluation strategy will be en-
acted:

• The modified MalConv model’s performance will be assessed against the processed
datasets, with a focus on the detection of obfuscated malware.

• Accuracy and other relevant metrics will be calculated to measure the model’s
detection capabilities.

• The effectiveness of the model in identifying various obfuscation techniques will be
thoroughly evaluated.

3.5 Anticipated Challenges and Proposed Solutions

In anticipation of potential challenges, the study will:

• Investigate and document the model’s areas of vulnerability, particularly in detect-
ing advanced obfuscation strategies.

• Develop a set of recommendations to overcome identified deficiencies, which may
include algorithmic improvements and expanded feature integration.

The outlined methodology sets the stage for a rigorous inquiry into the resilience of
ML-based malware detectors and their ability to cope with sophisticated evasion tech-
niques employed by contemporary malware.

4 Design Specification

The Malware Obfuscation Detection project primarily use the MalConv model to ana-
lyze malware obfuscation strategies and their effects on Machine Learning (ML)-based
detectors. MalConv is a specialized convolutional neural network used to classify raw
executable files. It plays a crucial role in discovering and categorizing malware. This
design specification provides a comprehensive overview of the structure, capabilities, and
prerequisites of the MalConv model in relation to this project.

MalConv is built upon a deep learning architecture optimized for processing one-
dimensional binary data. The model’s key components include:

7



Embedding Layer: Transforms the unprocessed byte values of the executable into
vectors of a specific size, making it easier to analyze byte-level patterns.

Convolutional Layers: Extract local patterns from the byte sequences that are em-
bedded. These layers employ filters to systematically analyze the input data, identifying
pertinent characteristics that are useful for categorization purposes.

Pooling Layer: Decreases the number of dimensions in the extracted features, improv-
ing the computational efficiency of the model.

Fully Connected Layers: Transform the combined characteristics into ultimate results
for categorization.

Output Layer: Employs a sigmoid function to provide a probability score, which
indicates the possibility of the input being malware.

5 Implementation

The MalConv model, which is a crucial element of the project ”Analyzing Obfuscation
Techniques for Evasion: A Case Study on Machine Learning-based Malware Detection,”
was implemented using the PyTorch module in the Python programming environment.
The selection of this approach was based on its resilience and adaptability in managing
intricate machine learning workflows.

The initial training phase of the model utilized the BODMAS dataset, which was
selected for its extensive compilation of executable files, covering a wide variety of malware
variants. The dataset played a crucial role in training the algorithm to identify different
patterns linked to malware.

The study centered on examining the scores produced by the trained MalConv model
using the sigmoid function3. The sigmoid function, which is crucial in binary classification
tasks, produces a numerical value ranging from 0 to 1. This value represents the chance
of an instance being assigned to a specific class.

Figure 3: Sigmoid Function

A classification criterion of 0.5 was utilized: scores beyond this threshold indicate
a greater probability of the file being harmful (malware), whilst scores below it indic-
ate benign software (goodware). To conduct a detailed analysis, we employed a dual
methodology to estimate the confidence ratios:

To get the confidence ratio for authentic goodware files, the sigmoid value was subtrac-
ted from 1. This offered a glimpse into the model’s confidence in accurately categorizing

8



files as non-malicious. On the other hand, when it came to files categorized as mal-
ware, the sigmoid score was utilized as a direct indicator of the model’s certainty in its
classification.

In order to replicate real-life situations and improve the resilience of the model, the im-
plementation incorporated several compression and packaging techniques, including RAR
Compression, Themida, and PECompact. These technologies are frequently employed in
the process of obscuring malware, hence creating a practical environment to assess the
model’s efficacy. In addition, the model underwent testing on files that were protected
using various encryption technologies, such as PELock and EXECryptor. This stage was
essential in assessing the model’s capacity to differentiate between really encrypted files
and those that employ encryption as a method of concealing information.

6 Evaluation

The main aim of this research was to assess the efficacy of various obfuscation tactics in
making the detection process more complex. Our objective was to investigate the im-
pact of compression and encryption algorithms, which are commonly used as obfuscation
techniques, on the effectiveness of machine learning-based malware detectors.

The accuracy of the previously trained MalConv model may vary due to relative
changes in the dataset and model parameters. The accuracy value of 0.94, as reported
in our primary article, is also corroborated by the findings of this investigation. These
results are presented in Table 2 below:

MalConv Byte n-grams

Test Set Accuracy AUC Accuracy AUC

Group A 94.0 98.1 82.6 93.4
Group B 90.9 98.2 91.6 97.0

Table 2: Performance comparison of MalConv and Byte n-grams models.

Our research has uncovered a crucial discovery: obfuscation techniques present sig-
nificant difficulties in identifying malware. However, there is a noticeable disparity in
the effectiveness of compression and encryption algorithms. Our research suggests that
encryption algorithms are more successful than compression algorithms in avoiding dis-
covery.

The utilized obfuscation strategies are listed below and the outcomes are shown:

6.1 Packing or Compression

6.1.1 UPX

UPX achieved superior performance in compressing both benign and harmful data com-
pared to other compression techniques. The accuracy ratio, obtained by comparing and
processing the sigmoid score results from our project with the genuine dataset values
(Malware: 1, Goodware: 2), is 0.90.

9



6.1.2 RAR Compression

RAR Compression has shown only moderate effectiveness in compressing both benign
and harmful data. The algorithm achieved an accuracy rate of 0.92, indicating that it
was less successful than UPX.

6.1.3 PECompact

While the compression algorithm created using PECompact has a slightly more detri-
mental impact on the success of hiding, specifically the accuracy rate, when compressing
larger files compared to other files, it still does not achieve a superior rate compared to
RAR in this algorithm. The accuracy value was determined to be 0.93 when applied to
high-dimensional data. However, it was generally noticed that this value had minimal
influence and was unable to decrease the accuracy.

6.1.4 Themida

While the application of the Themida method for compression had a slight detrimental
impact on the sigmoid score, it did not alter the accuracy rate in the test data.

6.2 Encryption

Regarding encryption algorithms, there is a distinct variation in the effectiveness of ob-
fuscation methods.

6.2.1 PELock

The impact of the PELock encryption technique on the accuracy of machine learning
models used to detect malware is noteworthy, as both malicious and benign software
encrypted using this algorithm have been found to have a substantial effect. Values that
closely approached the threshold value utilized for classifying the value on the sigmoid
score were noticed. Consequently, the algorithm successfully decreased the accuracy rate
to 0.82.

The sigmoid score values produced from the PELock encryption method are presented
in Figure 4 below.

6.2.2 EXECryptor

After encrypting the identical data using EXECryptor, it was noted that the accuracy
rate dropped to 0.85. A comparable outcome was achieved with PELock.

6.2.3 EXEShield

The accuracy rate achieved by encryption using EXEShield was comparable to that of
PELock and EXECryptor. The observed value was determined to be 0.86.

6.2.4 Final results with some graphs

Below are graphs illustrating certain results. Graph 4 illustrates the occurrence of mal-
ware scores in six distinct selected files. Graph 5 illustrates the disparities in accuracy
between the primary dataset and the model’s outcomes for UPX PELock and RAR.

10



Fi
le
1

Fi
le
2

Fi
le
3

Fi
le
4

Fi
le
5

Fi
le
6

0

0.2

0.4

0.6

0.8

1

Files

M
al
ic
io
u
s
S
co
re

Malicious Score Distribution

Malicious
Benign

Figure 4: Malicious Score Distribution for various files. Red: real malware, Green: real
goodware

M
ai
n
D
at
as
et

P
E
Lo
ck

R
A
R
C
om

pr
es
si
on

U
P
X

0

0.5

1 0.94
0.82

0.92 0.9

Dataset Type

M
a
li
ci
o
u
s
P
ro
x
im

it
y
S
co

re
s

Comparison of Malicious Proximity Scores

Figure 5: Comparison of Malicious Proximity Scores Across Datasets

6.3 Discussion

Due to the continuous development of genuine harmful software, security issues for per-
sonal computers frequently emerge as a consequence of these efforts. This presents other
complications, such as the operating system eradicating this data. To ensure the ad-
vancement of the study and achieve reliable and unambiguous outcomes, it is crucial
to utilize a larger dataset that closely aligns with the original data. It is necessary to
devote certain resources for this purpose, and the malicious program can be installed on
a machine that is both isolated and safe. The frequent deletion or alteration of data by
the defensive system enhances the subjectivity of the research findings.

7 Conclusion and Future Work

The primary research objective of this study was to assess the impact of malware ob-
fuscation strategies on the effectiveness of machine learning-based malware detectors.
We want to analyze the intricacies caused by obfuscation techniques and assess the re-

11



silience of static machine learning detectors against these obstacles. After conducting
thorough research, we found that obfuscation techniques indeed make it more difficult to
detect malware. However, encryption algorithms are far more effective than compression
strategies in avoiding detection.

Our research revealed that compression technologies like UPX and PECompact, while
somewhat effective, were not as successful as encryption methods in concealing malware.
The PELock encryption significantly reduced detection accuracy, highlighting its effect-
iveness as an obfuscation approach. These results emphasize the urgent requirement to
enhance machine learning-based malware detection capabilities in order to match the
complexity of obfuscation tactics.

The ramifications of our study have extensive reach in the field of cybersecurity. The
effectiveness of encryption, as opposed to compression, in disguising signals indicates
to both malware creators and cybersecurity experts the changing nature of malware
detection and prevention. It also emphasizes the need for ongoing improvements in
detection algorithms to overcome these tactics of concealment.

Although the study provides insights into important areas of malware obfuscation,
it does have several drawbacks. The dynamic nature of malware growth is a constantly
changing challenge, and the intervention of protective systems can occasionally distort
outcomes. Hence, conclusions drawn from a limited dataset may not comprehensively
represent real-life situations.

To enhance future research, an expansion of this study could incorporate a compre-
hensive approach that combines dynamic analysis with static machine learning-based
identification. Exploring the possibility to construct detection technologies that mimic
the behavioral characteristics of malware is worth considering. Additionally, partnering
with experts in the sector to obtain a wide range of malware samples could enhance the
accuracy of detection models and open up possibilities for commercialization. The find-
ings obtained from this research provide a promising opportunity for commercialization,
specifically in the development of sophisticated machine learning-based detection systems
that may be included into commercial cybersecurity products. The market consistently
requires real-time, adaptable solutions for detecting malware, and this study establishes
a basis for the development and commercialization of such solutions.

A subsequent research endeavor could shift its focus towards:

• Investigating adaptive machine learning algorithms that proactively adapt to emer-
ging obfuscation strategies.

• Creating hybrid detection systems that use static and dynamic analysis to achieve
thorough malware identification.

• Exploring the application of artificial intelligence in predictive cybersecurity, which
could result in the early identification and elimination of malware threats.

• Assessing the cost-effectiveness of different detection strategies to guide investment
choices in cybersecurity infrastructure.

The research has clearly identified the existing difficulties posed by malware obfusca-
tion and the potential methods for improving machine learning-based detection systems.
This paper establishes a foundation for future research focused on enhancing the robust-
ness of cybersecurity systems in an era characterized by growing digitalization.

12



References

Anderson, H. S. and Roth, P. (2018). Ember: an open dataset for training static pe
malware machine learning models, arXiv preprint arXiv:1804.04637 .

Cho, T., Kim, H. and Yi, J. H. (2017). Security assessment of code obfuscation based on
dynamic monitoring in android things, Ieee Access 5: 6361–6371.

Fukushima, K., Kiyomoto, S., Tanaka, T. and Sakurai, K. (2008). Analysis of program
obfuscation schemes with variable encoding technique, IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences 91(1): 316–329.

Harang, R. and Rudd, E. M. (2020). Sorel-20m: A large scale benchmark dataset for
malicious pe detection, arXiv preprint arXiv:2012.07634 .

Muralidharan, T., Cohen, A., Gerson, N. and Nissim, N. (2022). File packing from
the malware perspective: Techniques, analysis approaches, and directions for enhance-
ments, ACM Computing Surveys 55(5): 1–45.

Omachi, R. and Murakami, Y. (2020). Packer identification method for multi-layer ex-
ecutables with k-nearest neighbor of entropies, 2020 International Symposium on In-
formation Theory and Its Applications (ISITA), IEEE, pp. 504–508.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B. and Nicholas, C. K. (2018).
Malware detection by eating a whole exe, Workshops at the thirty-second AAAI con-
ference on artificial intelligence.

Srivastava, A., Lanzi, A. and Giffin, J. (2008). System call api obfuscation, Recent Ad-
vances in Intrusion Detection: 11th International Symposium, RAID 2008, Cambridge,
MA, USA, September 15-17, 2008. Proceedings 11, Springer, pp. 421–422.

Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A. and Wang, G. (2021). Bodmas: An
open dataset for learning based temporal analysis of pe malware, 2021 IEEE Security
and Privacy Workshops (SPW), IEEE, pp. 78–84.

13


	Introduction
	Related Work
	Machine Learning-based Malware Detectors and Datasets
	Malware Detection by Eating a Whole EXE
	EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
	SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE Detection
	BODMAS: An Open Dataset for Learning based Temporal Analysis of PE Malware

	Obfuscation Techniques
	Packing
	Encryption


	Methodology
	Data Collection and Preprocessing
	Analysis of Malware Obfuscation Techniques
	Implementing Transfer Learning with MalConv
	Evaluating ML-based Malware Detectors
	Anticipated Challenges and Proposed Solutions

	Design Specification
	Implementation
	Evaluation
	Packing or Compression
	UPX
	RAR Compression
	PECompact
	Themida

	Encryption
	PELock
	EXECryptor
	EXEShield
	Final results with some graphs

	Discussion

	Conclusion and Future Work

