-]

National
Collegeof

Ireland

Adversarial Resilience in Malware Detection: A
Two-Stage Structural Analysis Approach for Robust
Cybersecurity

Configuration Manual

MSc Research Project
Msc in Artificial Intelligence

Pavithrasri Udayakumar
Student ID: x22182730

School of Computing
National College of Ireland

Supervisor: Anh Duong Trinh

‘-
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Pavithrasri Udayakumar

Student ID: x22182730
Programme: MSc Artificial Intelligence
Year: 2023

Module: MSc Research Project
Supervisor: Anh Duong Trinh
Submission Due Date: 05/01/2023

Project Title: Configuration Manual
Word Count: 1110

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signhature: Pavithrasri Udayakumar
Date: 05" January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | U

copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | C
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Manoj Kumar Periyasamy
x22153209

1 Introduction

A Configuration Manual tells you in simple words how to perfectly set up and change the
settings of a certain system, program or hardware. Usually it involves what hardware you
need, how to put in software and the right setup. It also helps with problems and finding
answers for them when they come up. Setting up a manual is good for making a system work
the way you want it to by having its setup right. Moreover, these computer records are vital
helpers that can aid users who want to fix problems or change how the system works.

2 System Configuration

The models that spot when someone is tired work largely because of how the system inside it
operates. This includes physical parts and program bits. A strong system makes sure that data
is handled well and studied correctly. This helps to identify quickly if someone is tired or not,
in the right way with no mistakes. In this section, we outline the key elements of the system
configuration employed in our evaluation:

2.1 Hardware Requirments:

The parts of the computer setup include what makes it go and deal with lots of information.
This handles running machine learning methods on data load too. In our study, we utilized a
system with the following specifications:

@ Device specifications

Device name BOOK-V550PS276C

Processor 12th Gen Intel(R) Core(TM) i7-1260P 2.50 GHz
Installed RAM 16.0 GB (15.6 GB usable)

Device ID BD256CD3-FAFC-4196-BATE-FDAGBD086129
Product ID 00342-42323-72343-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

These hardware details were picked to have enough power. This makes sure the model can be
trained and tested. But higher version than this hardware specification would work more
efficient.

2.2 Software Requirments:

The software setting is also very important because it decides what tools, libraries and
frameworks are used to put machine learning methods into action. The software configuration
in our study included:

® \Windows 11

== Windows specifications

Edition Windows 11 Home Single Language
Version 22H2

Installed on 12/4/2022

OS build 22621.2861

e VS Code or Pycharm
e Python (Version 3.10)

These parts of the software were chosen very carefully to make a complete and helpful place
for creating fatigue detection models.

3 Installation and Environment Setup

e Python

For this project, we used a python package. It has many libraries that give plenty of help for
most deep learning and machine learning jobs. With many plans to pick from, it helps build
and later study the models. First of all, make sure you have the latest version of python
installed in your system. The package installer is capable of being downloaded through a web
browser from the website reference https: Python: depending on OS;
http://www.python.org/downloads/ . The picture below shows that by typing ‘python -
version' on the command line, you can check if python came from this website.

Python

& python’ . I (%

About Downloads Documentation Community Success Stories News Events

Functions Defined
- The core of extensible programming is defining functions.

Python allows mandatory and optional arguments, keyword

arguments, and even arbitrary argument lists. More about

defining functions in Python 3

91123581321 34 55 89 144 233 377 610 987
1 2 3 4 5

Python is a programming language that lets you work quickly
and integrate systems more effectively. »» Learn More

¢ Visual Studio Code (VSCode

Visual Studio Code, available for download at https://code.visualstudio.com/ is a helpful tool
that makes it easy to code and works well with all kinds of programming languages, so you
can write code smoothly wherever the website takes you. It helps a lot with different types of
code and add-ons, which makes it the best pick for creating Python programs. VSCode has a

2

http://www.python.org/downloads/
https://code.visualstudio.com/

simple interface with features like coloring of codes, help for finishing them and built-in use
of Git. This makes it easy to add extra features without much trouble. It lets us put in
important Python libraries such as transformers, Scikit-Learn, nltk (a natural language
toolkit), Numpy and Pandas for numbers stuffs. Other tools included are tensorflow used
with deep learning models like artificial brains but not limited to anyone just get them from
Google's platform.

Visual Studio Code Docs Updates Blog APl E FAQ Se oc ¥ Download

Code editing.
Redefined.

urce. Runs everywhere

Download for Windows
Stable Build

v

To enhance Python environment in VSCode, you can use the integrated terminal to execute
pip commands for library installations, such as:

Command: pip install ’LibraryName’

4 Dataset Details:

BODMAS is a collection of data about different harmful software called malware, which
helps researchers find new ways to spot and understand these internet dangers. With a big
group of 57,293 bad and 77,142 good files in it, this shows how malware threats keep
changing all the time. Starting from August 2019 to September 2020, the dataset covers a
time period of almost one year. It involves removing malware - or harmful software for short
- which numbers around at least five hundred and eighty-one different kinds. The CSV file is
really big because it has 2,381 finely tuned feature vectors that help figure Scientists use these
qualities to watch how malware actions change over time. This improves their knowledge of
growing virus families. The BODMAS list is a key tool we use for studying and improving
ways to spot computer viruses. This helps us stay safe in an always changing threat world.

But we picked up only 100 benign samples and 100 malicious sample for this
research.

Dataset Link: This Dataset was shared by the CeADAR team (Not supposed to be shared).

5 Implementation

5.1 Importing Libraries

The section about putting the project into action tells us how it was made using Python.
Please do what is said step by step. Before we start using the given data, we need to prepare it
first. The libraries needed for starting up are shown in the picture below.

3

import torch
import argparse
import os

import sys

from tqdm import tqdm

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file_), "..")))

import json

import numpy as np

from src.ml.ablation_schemes.dynamic_chunk_ablations_generator import SequentialDynamicChunkAblatedEnd2End

from src.ml.classifiers.smoothed_classifier import SmoothedClassifier
from src.ml.end2end_builders.malconv_builder import MalConvBuilder
from sklearn.linear_model import LogisticRegressi

from sklearn.model_selection import train_test_splf

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_recall_fscore_support

import torch.nn as nn

import torch.optim as optim

5.2 Data Collection:

if _ _name__ :
parser laliciousness Score')
parser.add_argument("model_checkpoint", type=str, help="Model weights checkpoint file")
parser.add_argument("hyperparameters_filepath", type=str, help="Path to the hyperparameters file")
parser.add_argument("input_directory”, type=str, help="Directory containing input executable files")
parser.add_argument("output_directory”, type=str, help="Directory to save the predicted scores")
parser.add_argument("--max_len", type=int, default=1eeeeee, help="Maximum length of input bytes™)
parser.add_argument("--padding_value", type=float, default=256.8, help="Padding value. Either 8.8 or 2
args = parser.parse_args()

Reading Inputs

5.3 Base detector Model calling:

builder = MalConvBuilder()
device = torch.device("cpu")
hyperparameters = load_hyperparameters(args.hyperparameters_filepath)
model, hyperparameters = builder.build(
args.hyperparameters_filepath,
model_checkpoint=args.model_checkpoint,
pretrained_emb=None,
device=device,
padding_idx=int(args.padding_value)

dynamic_chunk_generator = SequentialDynamicChunkAblatedEnd2EndGenerator(
train_mode=False,
file_portion=0.e5,
padding_value=args.padding_value

smoothed_model = SmoothedClassifier(model, dynamic_chunk_generator)

Calling Malconv model and SmoothedClassifier

5.4 Model building:

The build model part of the user guide shows how to make and change models in products or
systems. This part is very important for people who want to use the setup process and change
it as per their special needs.

5.4.1 Logistic Regression

ogistic_regression_model LogisticRegression()
ogistic_regression_model.fit(X_train, y_train)

Evaluate the model on the validation set
predictions_val = predict(X_val)

accuracy_val = accuracy_score(y_val, predictions_val)

precision_val, recall_val, f1 val, _ = precision_recall_fscore_support(y_val, predictions_val, average
print(f"Logistic Regression Model Validation Accuracy: {accuracy_val:.4f}")

print(f"Validation Precision: {precision_val:.4f}")

print(f"validation Recall: {recall_val:.4f}")

print(f"validation F1-Score: {fl_val:.4f}")

5.4.2 Random Forest

Train Random Forest Model
random_forest_model = RandomForestClassifier()
random_forest_model.fit(X_train, y_train)

Evaluate the Random Forest model on the validation set

predictions_val_rf = random_forest_model.predict(X_val)

accuracy_val_rf = accuracy_score(y_val, predictions_val_rf)

precision_val_rf, recall_val_rf, fl_val_rf, _ = precision_recall_fscore_support(y_val, predictions_val
print(f"Random Forest Model Validation Accuracy: {accuracy_val_rf:.4f}")

print(f"validation Precision: {precision_val_rf:.4f}")

print(f"validation Recall: {recall_val_rf:.4f}")

print(f"validation Fl-Score: {fl_val_rf:.4f}")

5.4.3 Decision Tress

Train Decision Tree Medel
decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(X_train, y_train)

Evaluate the Decision Tree model on the validation set

predictions_val_dt = decision_tree_model.predict(X_val)

accuracy_val_dt = accuracy_score(y_val, predictions_val_dt)

precision_val_dt, recall_val_dt, fl_val_dt, _ = precision_recall_fscore_support(y_val, predictions_val
print(f"Decision Tree Model Validation Accuracy: {accuracy_val_dt:.4f}")

print(f"validation Precision: {precision_val_dt:.4f}")

print(f"validation Recall: {recall_val_dt:.4f}")

print(f"Validation F1-Score: {fl1_val_dt:.4f}")

544 LSTM

LSTMModel(nn.Module):
def __init_ (self, input_size, hidden_size, output_size):

super(LSTMModel, self)._ _init_ ()

self.hidden_size = hidden_size

self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)

Lstm model Intalization

if classify_maliciousness(outputs) == "Goodware":
Perform LSTM process
input_tensor = input_tensor.unsqueeze(@).unsqueeze(@).float()
1stm_model = LSTMModel(input_size=input_tensor.size(-1), hidden_size=128, output_size=1)
1stm_model.to(device)
lstm_model.train()

criterion nn.MSELoss ()

optimizer = optim.Adam(lstm_model.parameters(), lr=0.001)

Train the LSTM model

num_epochs=1

for _ in range({num_epochs):
optimizer.zero_grad()

outputs = lstm_model(input_tensor)
loss = criterion(outputs, torch.tensor([[©.8]], dtype=torch.float32, device=device))

loss.backward()
optimizer.step()

Get the final output from the LSTM model
outputs = lstm_model(input_tensor).squeeze().detach().cpu().numpy()

LSTM Model calling and Traning

Evaluation

Machine Learning:

Processing Malicious Test Examples: 100%| | 10/10 [@@:15<@@:08, 1.53s/it]
Logistic Regression Model Validation Accuracy: ©.7006
Validation Precision: ©.6429

Validation Recall: ©.9eee

Validation F1-Score: ©.7500

Logistic Regression Model Test Accuracy: ©.7000

Test Precision: ©.6429

Test Recall: @.90ee

Test Fl-Score: ©.7500

Random Forest Model Validation Accuracy: ©.7000
Validation Precision: ©.6429

Validation Recall: @.9eee

Validation F1-Score: ©.7508

Random Forest Model Test Accuracy: ©.6500
Test Precision: ©.6154
Test Recall: ©.80e0

Test Fl-Score: 8.6957

Decision Tree Model Validation Accuracy: ©.7000
Validation Precision: ©.6429

Validation Recall: ©.98ee

Validation F1-Score: ©.7500

Decision Tree Model Test Accuracy: ©.6000

Test Precision: ©.5833

Test Recall: @.70ee

Test Fl-Score: ©.6364

