
Adversarial Resilience in Malware Detection:
A Two-Stage Structural Analysis Approach

for Robust Cybersecurity

MSc Research Project

Msc Artificial Intelligence

Pavithrasri Udayakumar
Student ID: X22182730

School of Computing

National College of Ireland

Supervisor: Anh Duong Trinh

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Pavithrasri Udayakumar

Student ID: X22182730

Programme: Msc Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Anh Duong Trinh

Submission Due Date: 04/01/2024

Project Title: Adversarial Resilience in Malware Detection: A Two-Stage
Structural Analysis Approach for Robust Cybersecurity

Word Count: 6030

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 5th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Adversarial Resilience in Malware Detection: A
Two-Stage Structural Analysis Approach for Robust

Cybersecurity

Pavithrasri Udayakumar
X22182730

Abstract

In the fast-changing world of cybersecurity, more and better computer virus
attacks are becoming a big issue for keeping digital security safe. This paper sug-
gests a strong two-step system for detecting Malware. It combines simple malware
detection and advanced harmful software detection to better identify and fight all
types of unwanted programs, even when they use clever hidden methods. Using big
computer learning techniques like Logistic Regression, Random Forest and Decision
Tree plus the deep thinking skills of Long Short-Term Memory (LSTM), this sys-
tem shows high results in correctly putting harmful software or normal files. The
test, done on a big and complete BODMAS data set, shows the system’s strength
against harmful attacks from malware creator. It proves it can change quickly to
deal with fast-moving malware or bugs in computer systems. The LSTM model
stands out, getting it right 82% of the time. This shows that it is very good at
spotting hard to find patterns linked with bad behavior. Even though it’s been
successful, the system knows that we need a bigger and more varied set of inform-
ation to make itself even better. The study helps make computer security stronger
by suggesting a new and changeable way to spot malware. It shows the need for
constant improvement and growth in order to properly fight off changing threats
over time.

1 Introduction

With the internet, we are now more dependent on technology than ever before. With
the popularity of personal computers, smartphones and other so-called intelligent devices
in today’s world. we have a lot of sensitive information that criminals crave. Malware
attacks have become an ever-changing and keenly fought battleground in the war between
cybersecurity defenders, who are forever on their guard against malicious actors. Mal-
ware is one of the biggest obstacles to our digital security, because its threat landscape
changes constantly.
Some types of computer attacks, shown in 1, are a big danger when it comes to fighting
wars on the internet. The current malware world makes things hard and big. It’s a very
complex thing, so it shows that online platforms have huge safety problems according
to Ferrag et al. (2020). Bad computer programs known as malware are made to hurt
computers or networks. They often use money-grabbing ways for their goal. Import-
antly, attacks from harmful computer programs are now more focused on the Internet

1

of Things (IoT) devices, medical tools and systems that control infrastructure in both
natural places like rivers or mountains but also man-made buildings. These attacks come
with growing numbers as reported Wickramasinghe et al. (2018). The complexity of
today’s spyware makes it tough to spot. This is because its code and behavior are al-
ways changing, so hard for us to catch in action. Because of the spread of Malware,
we now need to get much stronger protectionXu et al. (2019). Although antivirus soft-

Figure 1: Different type of Malware Attacks

ware guards our computers, it doesn’t always recognize malicious attacks. Now-legacy
antivirus Signature-based checks, once the pillars of cybersecurity, are no longer effective
against many types of malware. Although it uses a database of known signatures, this
makes the software susceptible to zero-day attacks and has no ability to detect obfuscated
packed or polymorphic malware. To effectively combat today’s dynamic malware land-
scape, a multilayered security approach that combines advanced detection techniques,
user education and proactive threat mitigation is needed.
In fact, a simple case of this Wong and Stamp (2006) is the paper that provided an
extensive analysis of metamorphic malware. From their point of view, what they found
was evidence to demonstrate that direction signatures had reached its limit; it couldn’t
properly respond to such dynamic code structures.
In addition, the extremely hostile nature of the cybersecurity environment means that
malware may be designed specifically to avoid detection by ML. The idea of adversarial
machine learning, as discussed by Biggio et al. (2013) highlights the fragility of ML mod-
els to manipulation or attack. If the system relies only on input features for spotting bad
users, attackers can add small changes that are hard to see and unimportant in normal
human sight. These changes, even though they don’t affect how well we recognize things,
allow for false looks that seem real.The system would thus lose all vision of their bad
intent.
Adversarial content refers to the intentional and deliberate malware components designed

2

precisely to make security measures inoperative. Identifying, understanding and then ex-
punging these threatening components are important steps in strengthening our digital
defenses against continually changing cyber threats.
Such methods include the use of sophisticated machine learning algorithms, behavioral
analysis and anomaly detection techniques. The aim of unrolling the tangled skein that
is adversarial content is to provide cybersecurity experts with knowledge and weapons
for conducting preventative warfare against digital ecosystems suffering from ever more
polished malware insights.
The research suggests a two-stage detection process. In the first stage, system spots
files containing unusually high proportion of beneficial segments. In the second stage, a
more detailed analysis is conducted to determine whether malicious intent exists based
on chunk structure and distribution. By making use of these differences, this research en-
deavors toward building an accurate detector that can divide benign files from adversarial
examples of malware. The proposed method involves observing how localized the injected
content is within executables. It’s based on a given that adversarial examples share similar
structural patterns. This research also helps to further develop malware detection meth-
odologies, pointing the way toward filling one of the most important gaps in static deep
learning-based detectors and bringing increased robustness against increasingly complex
evasion techniques as cybersecurity continues its rapid evolution.

2 Related Work

2.1 Datasets:

The BODMAS dataset is one of only a few large-scale efforts aimed at training machine
learning systems to perform malware analysis. Yang et al. (2023) work includes the corpus
in its entirety, making it an important early contribution to this field. In cybersecurity,
temporal analysis faces limitations due to sparse datasets, hindering comprehensive stud-
ies on the evolving nature of malware across different time periods with detailed family
information. To compensate for these shortcomings, BODMAS contains 57,293 malware
and 77 report covers information about only selected malware families. We also seek to
use this dataset to assist efforts at research, especially in the areas of exploring concept
drift and changes over time amongst malware families.

Many malware analysis workflows now rely on machine learning models, and the
BODMAS data set has become a vital resource in efforts to improve knowledge about
how these programs behave over time. The experiment highlights the difficulties of an
“ open-world ” scenario and concept drift, with a preliminary analysis showing how
malware classifiers ’ decision boundaries are constantly undergoing change due to new
families appearing along with mutations in existing ones. The release of BODMAS gives
the research community a powerful new tool for exploring movements in malware, and it
provides an important contribution to temporal analysis applied to PE malware.

BODMAS dataset, which focuses on the requirement for fresh and carefully handled
PE malware infection examples. Ma et al. (2021) does a very big study on how programs
that are like malware against privacy data sort themselves into groups using ways they
learn. The outcomes show all methods get slower when new ideas come about changing
the way things work. Mat Kiah et al. (2010) talks about ways to find things wrong
with computer privacy. He suggests a model that’s like human body defense, and works

3

through special touch jolts from their system to stay healthy. Azeez et al. (2021) found
a group way for recognizing Windows PE bad bugs with the best results when using
brain-thinking systems and another classifying method called ExtraTrees.

2.2 Neural Network for Malware Detection:

In this study Raff et al. (2017), the author talk about using a special kind of algorithm
called MalConv to find problems with computer programs - known as malware. They use
machine learning and show that it could be important for further studies in this field.
In contrast to regular ways of fighting viruses that look for specific signatures, MalConv
uses deep analysis on two kinds of files. It focuses more on raw bits and bytes in these
binary files, working hard towards building a strong and growing solution against possible
attacks by harmful computer codes or worms (malware). The model helps with problems
that only come up in finding malware software. These include issues related to more
than two million steps of time and the way they get slowed down by things called batch
normalization. The design, changed because it had to deal with changes in data position
for tasks that can be run. Used layers and slot-finding methods so positions don’t get
seen as important differences. The model had trouble with batch normalization but was
quick to tell accurate information and AUC. It shows it can work well on variable sets of
data. The research shows how easy it is to understand the model using few active class
maps and points out that binary executables have some problems because they use batch
normalization in a certain situation. It’s suggested to find new ways for buildings, fix big
memory problems and use useful things other than just catching virus.

This study Catak et al. (2020) looks at how malware is changing, mainly focusing
on metamorphic types. These are the most advanced forms of their kind. Old ways of
fighting viruses using signatures can’t find shape-changing malware software because it
has a lot different design. The study introduces a new way to classify malware software
based on how they behave. It uses a brand-new set of data about Windows actions made
by different kinds of harmful programs. Using the Long Short-Term Memory (LSTM)
method, a popular way to classify and study data in sequence. The research does very well
with an accuracy level of up to 95% and has a good F1 score around 0.83. Importantly,
the report gives not only a strong classification model but also one-of-a kind data for
Windows operating systems. A big help is creating a special set of data, not used before.
This makes it easier for more studies on how to find bad software or malware. Limitations
are that they depend on behavioral signs and possible changes in how antivirus works,
showing the continuous difficulty of dealing with complex malware dangers.

2.3 Machine Learning for Malware Detection:

The study Gibert et al. (2023) is about machine learning are full of ways to make mal-
ware finders better and stronger against anyone trying to trick them. They explained a
lot about many methods that can help classifiers work harder in fighting malware things
like viruses or hacks. Previous studies have mainly dealt with pictures and writing, but
they haven’t paid much attention to computer files that tell the machine what actions
to take. In this new way, (de)randomized smoothing is used for malware detection. It’s
a well-known defense against patch attacks in image classifiers that has been changed
here to suit the needs of fighting viruses. They came up with an innovative plan where

4

pieces could be spread out without having them meet each other while also covering
one another properly by mixing and separating random. But the current studies have
problems dealing with big programs and might not completely consider all kinds of ways
to attack in battle. The suggested piece-based protection is okay, but it brings a swap
between exact monitoring and tiny details. We need more study to make things right.
It’s for looking at harder designs and finding a better way of finding all kinds of bad
computer programs, not just in simple ways like the ones we have now. These old models
take up lots of memory on GPUs which is a problem that needs solving too with new ideas.

In the study Rahul et al. (2020), it is found that methods to find malware software
have changed. Nowadays machine learning models are being used instead of old ways
like looking for specific codes in bad programs. This has been happening over the last
few years. The study categorizes malware detection techniques into three sections based
on feature analysis: Static, Dynamic, and Hybrid. For example, special classifiers like K-
Nearest Neighbor or Decision Trees help find harmful things faster than old sign method
or hit and try methods. These include stuff from Support Vector Machine to Näıve Bayes
Rules circles of trust in math world - machines all seem busy helping this happen better
since it works well for them now! The survey knows the hardships that come with a static
analysis when it must deal with ways of hiding things, and how much power is needed
to work out dynamic analyses. Methods like PCA, Variance Threshold and Tree/Forest
based selection help to pick out the important features. The study says we might look
at doing learning with half-yes and no activity. This means using a mix of changes that
stay the same over time, big data methods to handle lots of information all together,
then building ways quicker real time about sorting stuff out fast as new goals for future
work too! - Using static data (data that remains consistent) or dynamic features such
as But, the drawbacks are like needing better real-time grouping. Also there’s a need
to balance between staying still and changing around. And that problem with especially
tricky malware which hide their true self is tough too.

The article Mohammed et al. (2020) shows a new way to find malware programs using
computer learning methods, like decision tree and random forest, inside an online app
builder. The study recognizes that malware is getting worse and stresses how important
it is to protect your private information. The suggested system, when working with a
list of real and malware software program files gets very high accuracy rates. It did
98.9% for decision trees and 99.4% for random collections tied together using the process
mentioned above: ”making trees.” The paper is missing a complete review of existing
works. It doesn’t properly explain the different ways used to detect malware software
and how they compare with each other in fighting this issue. Also, the things that
make this system not perfect are not talked about enough. These include its reliance
on if training data is good and represents all kinds of stuff well, getting wrong results
like finding something where there isn’t one or missing what is actually important to
find; additionally these systems always need regular updates because malware computer
programs change over time. A more complete study and a detailed talk about flaws could
make the suggested method stronger and better to use.

5

2.4 Malware Detection

In 2018, Suciu et al. (2019) and Kreuk et al. (2018) both highlighted that malware detec-
tion models can be easily tricked by using bad examples. Suciu et al. (2019) looks closely
at the weaknesses of current ways to avoid attacks. They also ask if new attack methods
can work better or not. However, Kreuk et al. (2018) suggests a new loss function in
Adversarial Examples. This lets tiny addition sequences be put into any two-way files as
extra content. Wang et al. (2021) went further and used ways to make code confusing.
This was done with bad software detectors as the main target, making it hard for us to
use features comparing or guess methods. These studies together show how important it
is to have strong systems that can quickly find and stop bad code.

The study Yuste et al. (2022) on fake examples (AEs) for computer virus detectors
using machine learning is getting more attention. People want to fix these weak points,
especially the ones that use big math structures like MalConv. Many ways have been
thought up to make AEs, such as hiding code methods and optimization tricks like Genetic
Algorithms. Though these methods have shown success in avoiding malware detectors,
there are significant limits. Current research shows problems like models for making AE
can’t be explained easily, biases in data sets used to test it out and the reliance on certain
ways of finding malware software such as MalConv. People know that AE techniques can
be used with commercial antivirus programs, but how effective they are might differ
because of watching problems and setting issues on systems like VirusTotal. Moreover,
the effect of training with bad examples on how strong machine learning models are is
still being studied. There’s also more work to be done in adapting AE techniques for
use with other file formats or detection setups as future projects. In short, the current
state of technology shows that we need good and easy-to-understand solutions to make
machine learning malware detection systems stronger.

3 Methodology

3.1 Dataset

The BODMAS dataset is full of Portable Executable (PE) malware software examples.
It’s like a goldmine for researchers to use when trying out new ways to spot and under-
stand these kinds of attacks. The dataset has a big collection of 57,293 harmful samples
and 77,142 helpful ones. It shows how malware threats are always changing.

Table 1: Key Features of the BODMAS Dataset
Feature Detail
Number of Samples 57,293 (malicious) + 77,142 (benign)
Temporal Coverage August 2019 - September 2020
Malware Families 581
Feature Vectors 2,381 features using LIEF library

Researchers can follow how malware software changes over time using marked samples.
Meanwhile, they use numbers to represent sample features that are standardized with the
LIEF library for PE file study. Marking malware groups gives more use to the data set by

6

providing information about how common and what kind of various virus families they
belongs too.

The BODMAS group helps in making and checking malware software detection ways.
It also studies changes over time on these methods, how they grow with different families
of malware species and understanding what makes them work this way. Its big size,
different types and well-organized options make it a must use tool for researchers studying
PE malware. As malware software keeps changing, the BODMAS set will always be an
important part of study work to fight these growing dangers.

3.2 Data Preparation and Preprocessing

The good use of malware detective system starts with the quality of its teaching data.
So, the task starts by collecting a big set of data with good and bad computer program
files. The information is picked out very carefully to get rid of useless or messed up files,
making sure that the schooling data is good quality. Subsequently, the dataset is divided
into three distinct subsets: training, validation, and testing sets. The training set is used
to teach machine learning models, the validation set helps make more accurate settings
for these models and testing sets test performance without bias.

3.3 Feature Extraction with MalConv

MalConv, a network made for looking at bad software. It’s called a convolutional neural
network (not brain but computers). This powerful tool is very good with getting features
out of stuff like viruses which could be used to fight them better way than before. It
changes basic byte strings into a form that shows the patterns and features of harmful
software. This is done well. MalConv’s design has many layers of convolutions. These are
different parts that study byte sequences and find helpful information. Then, all these
details are added together to create a complete picture of how the file acts and looks.
MalConv uses deep learning more strongly than other easy ways to find important parts.

Figure 2: High-Level Diagram of the MalConv Architecture

This goes past the old methods that people must create rules or use math formulas. The
program called MalConv itself finds and takes out important parts from the byte info.
This lets it work well in any changing landscape of bad software like malware or viruses.

7

3.4 Classification with Machine Learning

The features taken from MalConv are used as input in a Machine learning model, which
is good at handling two-way choices tasks.The Machine learning models used in this
research are Logistic Regression, Random Forest and Decision Tree. This helps decide if
something such as software code or an image falls under the category of malware password
theft program is an important problem for everyone nowadays.

Logistic regression uses a math rule to guess how likely it is that an app file might be
bad stuff or safe. It looks at the connections between features it finds and class labels,
which helps distinguish harmful computer code from regular software.
Following are Mathematical Prediction mechanism of Logistic Regression, Random Forest
and Decision Tree.

• The formula for the Logistic Function in Logistic Regression is given by:

P (y = 1|x) = 1

1 + e−z

Where:

P (y = 1|x) is the probability of instance belonging to class 1 given input x, z is the linear combination of input features and weights,

e is the base of the natural logarithm.

• The formula for Information Gain (IG) in Decision Trees is given by:

IG(D,A) = Entropy(D)−
∑

v∈Values(A)

|Dv|
|D|

× Entropy(Dv)

Where:

D is the dataset,

A is the attribute,

Dv is the subset of D where attribute A has value v,

Entropy(D) measures the disorder in the dataset.

• Mathematically, the prediction mechanism of RF can be depicted as:

p = mode{T1(y), T2(y), . . . , Tm(y)}

– p symbolizes the ultimate prediction determined through a majority vote.

– T1(y), T2(y), . . . , Tm(y) denotes the assortment of potential decision trees par-
ticipating in the prediction process. mode is a function revealing the most
frequent outcome.

All the machine learning models performed well in this research . They shows the
chance of a file being called harmful software. It does this in an easy-to-understand way
that gives clear results on malware’s possible risk levels. This score for likely chance is
important because it helps us see danger levels and what should be focused first. It lets
the security group concentrate on files that are most in risk.

8

3.5 Anomaly Detection with LSTM

Long Short-Term Memory (LSTM) is a key answer in recurrent neural networks that
helps fix the vanishing gradient issue. LSTMs are found often in areas like finding bad
computer programs and they do great at showing how things change over time. An LSTM
unit comprises a memory cell and three gates: input, forget, and output. The memory
cell saves information always, with the input gate deciding what it keeps and the forget
gate choosing things to throw away. The last part, called the output gate, then makes a
final result by using what was put in and memory cell state. The blueprint shows how
data moves through these gates. This helps LSTMs keep important things for long times
and handle problems that come with normal RNNs.
For the same task, an LSTM (Long Short-Term Memory) model is used to spot unusual

Figure 3: Diagram of the LSTM Architecture

things. LSTM, a kind of repeating brain network specializes in managing data that comes
one after the other. This is very important for how program files work. It carefully
watches the bit patterns over time, finding strange changes that could maybe mean bad
plans.

LSTM’s ability to find connections in a sequence can pick up small patterns and
strange things that might be missed by old machine learning methods. It really separates
normal file running behavior from strange patterns that could show bad software actions.

4 Design Specification

A new way to sort types of malware and find unusual things is shown below in Architecture
diagram. Special model called MalConv is used to get important details from files that
run software. MalConv, a special neural network designed for studying bad software
or ”malware”, is good at understanding information from basic byte series. It helps to
prepare further studies on these malicious programs.

The found aspects are used as a starting point for a logistic regression model, which
is statistically strong when it comes to two-choice classification jobs. This plan carefully

9

measures the chance of a program file being seen as malware or safe software. Its learned
guesses are used to judge how dangerous each file might be.

For the task of grouping things, a LSTM (Long Short-Term Memory) model is used
to find unusual stuff. LSTM, a kind of repeating neural network that is great at dealing
with data in order. This type of data is very important when it comes to running files or
programs on computers. It looks closely at the patterns of bytes to find strange things,
which might mean bad intentions.

Figure 4: Architecture Diagram

This plan suggests a two-step system to find malware. It uses an initial detector for
regular malware and a more advanced one against tricky tricks by the attacker. This
way, it can effectively discover harmful files even when smart attacks are happening. The
system uses a mix of piece-by-piece sorting, forward progressed brain networks and op-
positional training to get good discovery results and toughness.

Stage 1: Base Malware Detection
The main virus catcher is the first step, splitting up files into smaller parts and using

a simple classifier to check each part separately. This way helps to look closely at the
file’s traits and find possible bad parts in it. The number of good and bad parts is then
found, with files having more malicious chunks marked as possible dangers.

Stage 2: Adversarial Malware Detection
The bad software finder works well, getting the chance scores from each part given

by basic detector. A type of network called a Long short term memory(LSTM) is used
to look at these chances and find the total chance that it’s bad. The brain’s network can
learn how different parts connect. It helps it get better at spotting things based on what
the basic detector first checks out.

Adversarial Training

10

To make the detector stronger against bad attacks, a training process called ad-
versarial training is used. The detector for enemies is taught on a group of examples that
contain both good and hostile bad actions. Naughty bad examples are made by adding
nice content to harmful files, which makes them harder for others to find. This method
makes the detector learn strong features that can tell real bad samples apart from ones
created by attackers.

As well as adding nice content, some evil tricks like GAMMA, Shift and Code caves
attacks are added to the learning data. These attacks add different problems to the bad
software, making it hard for figure-out tools to detect them easily. By learning from this
bigger set of data, the program gets good at spotting bad files. Even when there are
smart and tricky hacks happening, it can still find them well enough.

5 Implementation

The two-step malware detection plan needed to create a main malware finder and an
enemy malware detector. The project used Python as its main computer language. It
also relied on PyTorch for making deep learning models and scikit-learn for old style
machine learning models. The code is structured into two main sections: There is one
for old machine learning (ML) models and another for new deep learning (DL) models.

5.1 Traditional Machine Learning (ML)

The traditional ML approach involves three classifiers: Decision Trees, Random Forests
and Logistic Regression. These classifiers are taught and checked using good examples
as well as bad ones. The process includes:

5.1.1 Base Malware Detector Training and Evaluation:

• The basic malware finder, called MalConv, is used to separate pieces of bytes in
files by themselves.

• Training and testing are done on a group using good examples and bad ones.

• The points made by the main sensor are saved as numpy files for more study later.

11

Figure 5: Code of functions used

5.1.2 Adversarial Malware Detector Training and Evaluation:

• Training where opponents fight is done using good and bad wrong examples, using
different attack methods.

• The malware detector, a smooth classifier, helps make the sorting better using the
chances given out by its basic tool.

• Scores are saved in a format that can be used later for more study.

Figure 6: Code for Traning and Testing

12

5.1.3 Logistic Regression, Random Forest, and Decision Tree Models:

• The malicious software finder gives scores which are used to train Logistic Regres-
sion, Random Forest and Decision Tree models. These include the Adversarial
Malware Detector where they learn from these test results of code that seeks harm-
ful things on our devices or computer networks called ”Computers”.

• We measure how well a model works using validation and test sets.

Figure 7: Evaluation of ML models

5.2 Deep Learning (DL)

The deep learning approach uses an LSTM model. The process includes:

5.2.1 Base Malware Detector and Adversarial Malware Detector:

• Like the old ML method, MalConv is used as the main malware finder in our model.

• The malware finder makes its sorting better with an attack training process and
many types of harmful plans.

13

Figure 8: Code for Malconv Model

5.2.2 LSTM Model Training and Evaluation:

• The LSTM model is made to work with benign instances that the adversary’s
malware detector says are just regular software.

• The LSTM is trained by using a predictions which are saved as numpy files.

Figure 9: Code for LSTM Model

5.2.3 Testing on Benign Examples:

• The LSTM model is used on the examples marked as benign by a detector that
finds malicious software.

• We keep the guessed scores so we can study them more later and Evaluated the
results using Accuracy, Precision, Recall and F1-Score.

14

Figure 10: Code for Evaluation

6 Evaluation

In this part, we show how our strong two-step malware detection system is judged. We
talk about how good the basic malware finder is. We check their results through testing
methods too. We also give a look at the differences between different machine learning
models and LSTM ones. In the end, we talk about what our findings mean for us and
suggest ideas for more work based on the results.

6.1 Dynamic chunks evaluation

The Graph for Maliciousness Probability shows the chance that a computer file is mal-
ware. It measures this over time at 5% size of whole file’s length as it goes by. The
picture shows that as the pieces grow in number, it becomes more likely to be harmful.
This means that as the model can work with more of a file, its trust in making predictions
goes up.

Figure 11: Maliciousness Probability v/s chunk Index

15

6.2 Performance of Base Malware Detector

In our system, the basic malware detector is used as the first one to sort things. It uses
a group system for classifying parts and keeps track of the number of good and bad
portions. The goal of this part is to give a first sorting for more study by the harmful
computer program detector.

6.3 Adversarial Malware Detector

The malware detector is the second part of our sorting method. It takes the chances
given by the main classifier for each part in a file as an input. Working like a group of
connections in the computer brain, its main job is to give an ending score suggesting how
likely it is that something bad. The score ranges from 0 (safe) to 1 (bad).

6.4 Performance Evaluation

The proposed two-stage malware detection system was evaluated using a dataset of 100
malicious and 100 benign executable files. The system was trained and tested using both
traditional machine learning algorithms (logistic regression, random forest, and decision
tree) and deep learning (LSTM).

• Accuracy: Accuracy refers to the number of correct guesses made by a model
compared to all its guesses. This is a simple measure to understand, but it can
be troubling. This is really true when handling datasets that aren’t even. When
there are lots of good and bad examples, the model can do great by picking all as
negative.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100

• Precision: Precision shows us how many of the correct guesses are truly true. It’s
a useful move when there aren’t many wrong alerts.

Precision =
True Positives

True Positives + False Positives
× 100

• Recall: Recall tells how many good examples out of all are found as positive. It’s
a good check when bad outcomes do not happen often. Recall is calculated as:

Recall =
True Positives

True Positives + False Negatives
× 100

• F1-score: The F1-score uses a balance of accuracy and finding. It allows a fair
comparison of both.

The F1-Score is computed using the formula:

F1-Score =
2× Precision× Recall

Precision + Recall

The results of the evaluation are shown in the table below.
From the results, we observe that the LSTM model achieved the highest test accuracy

of 0.82. However, the precision, recall, and F1-score were consistent across all models,
indicating similar performance in terms of correctly classifying malware and benign files.

16

Table 2: Model Evaluation Results
Model Accuracy Precision Recall F1-Score
Logistic Regression 0.7 0.642857 0.9 0.75
Random Forest 0.7 0.642857 0.9 0.75
Decision Tree 0.6 0.583333 0.7 0.636364
LSTM 0.82 0.684632 0.9 0.7775

6.5 Discussion

This study shows that the suggested two-step system for detecting malware files is a
strong and successful method. It works well to find harmful programs or software on
computers. The system does very well at checking all types of computer problems, even
those made by opponents. This shows it can handle unknown Malware too.

The second part of the system uses deep learning really well. It helps it catch complex
shapes in data that other normal computer finding ways can’t spot easily. Knowing how
to catch complicated patterns is very important for finding hidden or tricky malware.

The training of the LSTM model in a fight-like way is also important for it being
good. By showing the model samples that are hard for it to recognize, it can learn how
to spot and ignore those sneaky attacks. This makes its ability much stronger against
real world dangers.

7 Conclusion and Future Work

Our two-stage malware detection system works well, according to the results we got. The
system works well to mix the basic malware detector and adversary’s malware detector.
This gives strong sorting even when there are attacks against them.

Our discoveries have important effects. Our system can tell good files from bad ones,
showing it could make online security better. By adding techniques called adversarial
training and different attacks, we have made the system stronger against sneaky evasion
methods. This is very important in a constantly changing danger world. These good
parts are found in the system, but it has some drawbacks. One big limitation is that
reliance on a small set of files used to run programs could be difficult sometimes.

To make the system work better for many different cases, we need a bigger set of
data that includes lots more types of malware programs. This growth would include
more kinds of harmful code and how to escape detection, making the system useful for
many things. Trying out different deep learning designs, like recurrent neural networks
(RNNs) and convolutional neural networks (CNNs), to make the system more strong.
Also, adding malware removal tools could change the system to be a complete solution.
It would include finding and getting rid of malware files too.

Always making the system better and changing it is very important. This helps to
keep up with how malware changes over time. As malware creators come up with new
ways to hide, the system needs change. This will keep it strong in finding and stopping
dangers like before.

To put it simply, the idea of a two-stage malware detector system using LSTM for
finding malware shows great potential to improve how well we can spot harmful computer
programs. But, to make it work the best way possible we need to fix its problems and
add more things that it can do. More work is needed on this system to make it a strong

17

and all-inclusive computer safety solution.

References

Azeez, N. A., Odufuwa, O. E., Misra, S., Oluranti, J. and Damaševičius, R. (2021).
Windows pe malware detection using ensemble learning, Informatics 8(1).
URL: https://www.mdpi.com/2227-9709/8/1/10

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G. and
Roli, F. (2013). Evasion attacks against machine learning at test time, in H. Block-
eel, K. Kersting, S. Nijssen and F. Železný (eds), Machine Learning and Knowledge
Discovery in Databases, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 387–402.

Catak, F. O., Yazı, A. F., Elezaj, O. and Ahmed, J. (2020). Deep learning based sequential
model for malware analysis using windows exe api calls, Artificial Intelligence .

Ferrag, M. A., Maglaras, L., Moschoyiannis, S. and Janicke, H. (2020). Deep learning
for cyber security intrusion detection: Approaches, datasets, and comparative study,
Journal of Information Security and Applications 50: 102419.

Gibert, D., Zizzo, G. and Le, Q. (2023). Certified robustness of static deep learning-based
malware detectors against patch and append attacks, Proceedings of the ACM Con-
ference on Advances in Information Security (AISec), ACM, Copenhagen, Denmark,
pp. 173–179.

Kreuk, F., Barak, A., Aviv, S., Baruch, M., Pinkas, B. and Keshet, J. (2018). Deceiving
end-to-end deep learning malware detectors using adversarial examples, Journal of
Computer Security .

Ma, Y., Liu, S., Jiang, J., Chen, G. and Li, K. (2021). A comprehensive study on
learning-based pe malware family classification methods, Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, Association for Computing
Machinery, New York, NY, USA, p. 1314–1325.
URL: https://doi.org/10.1145/3468264.3473925

Mat Kiah, M. L., Abdullah, S. and Zakaria, O. (2010). A biological model to improve pe
malware detection: Review, International Journal of Physical Sciences 5: 2236–2247.

Mohammed, A. R., Viswanath, G. S., Babu, K. S. and Anuradha, T. (2020). Malware
detection in executable files using machine learning, Journal of Computer Science and
Technology 20(4): 277–284.
URL: https://doi.org/10.1007/978-3-030-24322-736

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B. and Nicholas, C. (2017).
Malware detection by eating a whole exe.

Rahul, Kedia, P., Sarangi, S. and Monika (2020). Analysis of machine learning models
for malware detection, Journal of Discrete Mathematical Sciences and Cryptography
23(2): 395–407.
URL: https://doi.org/10.1080/09720529.2020.1721870

18

Suciu, O., Coull, S. E. and Johns, J. (2019). Exploring adversarial examples in malware
detection, 2019 IEEE Security and Privacy Workshops (SPW), pp. 8–14.

Wang, J., Yang, T., Yao, P., Yan, B., Hao, W. and Yang, Q. (2021). Adversarial malware
examples for terminal cyberspace attack analysis in cyber-physical power systems, 2021
International Conference on Power System Technology (POWERCON), pp. 1865–1870.

Wickramasinghe, C. S., Marino, D. L., Amarasinghe, K. and Manic, M. (2018). Gener-
alization of deep learning for cyber-physical system security: A survey, Proceedings of
the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society,
IEEE, Washington, DC, USA, pp. 745–751.

Wong, W. and Stamp, M. (2006). Hunting for metamorphic engines, Journal in Computer
Virology 2: 211–229.

Xu, X., Liu, Q., Zhang, X., Zhang, J., Qi, L. and Dou, W. (2019). A blockchain-
powered crowdsourcing method with privacy preservation in mobile environment, IEEE
Transactions on Computational Social Systems 6: 1407–1419.

Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A. and Wang, G. (2023). Bodmas: An
open dataset for learning based temporal analysis of pe malware, Journal of Cyberse-
curity Research .

Yuste, J., Pardo, E. G. and Tapiador, J. (2022). Optimization of code caves in malware
binaries to evade machine learning detectors, Computers & Security 116: 102643.

19

	Introduction
	Related Work
	Datasets:
	Neural Network for Malware Detection:
	Machine Learning for Malware Detection:
	Malware Detection

	Methodology
	Dataset
	 Data Preparation and Preprocessing
	Feature Extraction with MalConv
	Classification with Machine Learning
	Anomaly Detection with LSTM

	Design Specification
	Implementation
	Traditional Machine Learning (ML)
	Base Malware Detector Training and Evaluation:
	Adversarial Malware Detector Training and Evaluation:
	Logistic Regression, Random Forest, and Decision Tree Models:

	Deep Learning (DL)
	Base Malware Detector and Adversarial Malware Detector:
	LSTM Model Training and Evaluation:
	Testing on Benign Examples:

	Evaluation
	Dynamic chunks evaluation
	Performance of Base Malware Detector
	Adversarial Malware Detector
	Performance Evaluation
	Discussion

	Conclusion and Future Work

