

# **Configuration Manual**

MSc Research Project Artificial Intelligence

Vikas Varma Malipeddi Student ID: 22143335

School of Computing National College of Ireland

Supervisor: Dr.Anh Duong Trinh (Senja)

#### National College of Ireland



#### **MSc Project Submission Sheet**

| Schoo | lof | Com   | nutina |
|-------|-----|-------|--------|
| 30100 | 101 | COIII | puting |

| Student Name:  | Vikas Varma Malipeddi                                                  |       |      |
|----------------|------------------------------------------------------------------------|-------|------|
| Student ID:    | 22143335                                                               |       |      |
| Programme:     | MSc in Artificial Intelligence                                         | Year: | 2023 |
| Module:        | MSc Research Method                                                    |       |      |
| Lecturer:      | Dr Anh Duong Trinh (Senja)                                             |       |      |
| Date:          | 31/01/2024                                                             |       |      |
| Project Title: | Optimizing Adversarial Attacks on ML-Powered Malware Detection Systems |       |      |

| Word Count: | 1009 | Page Count: | 12 |
|-------------|------|-------------|----|
|-------------|------|-------------|----|

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Vikas Varma Malipeddi

**Date:** 31/01/2024

#### PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

| Attach a completed copy of this sheet to each project (including multiple copies)                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).                                                                  |  |
| You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer. |  |

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

| Office Use Only                  |  |
|----------------------------------|--|
| Signature:                       |  |
| Date:                            |  |
| Penalty Applied (if applicable): |  |

## Configuration Manual: Optimizing Adversarial Attacks on ML-Powered Malware Detection Systems

Vikas Varma Malipeddi Student ID: 22143335

#### 1. Introduction

This manual provides detailed instructions for setting up and executing code related to the implementation of query-efficient adversarial attacks against machine learning models. The focus is on understanding and enhancing the robustness of machine learning models against adversarial attacks. The following sections guide you through the necessary configurations, requirements, and tools.

### 2. System Specification

The adversarial attack system has been developed on the following hardware configurations:

| File Edit View Help  |                             |                                                                         |  |
|----------------------|-----------------------------|-------------------------------------------------------------------------|--|
| System Summary       | Item                        | Value                                                                   |  |
| Hardware Resources   | OS Name                     | Microsoft Windows 11 Home Single Language                               |  |
| Components           | Version                     | 10.0.22621 Build 22621                                                  |  |
| Software Environment | Other OS Description        | Not Available                                                           |  |
|                      | OS Manufacturer             | Microsoft Corporation                                                   |  |
|                      | System Name                 | VIKASMALIPEDDI                                                          |  |
|                      | System Manufacturer         | HP                                                                      |  |
|                      | System Model                | HP Pavilion Gaming Laptop 15-ec2xxx                                     |  |
|                      | System Type                 | x64-based PC                                                            |  |
|                      | System SKU                  | 552W3PA#ACJ                                                             |  |
|                      | Processor                   | AMD Ryzen 7 5800H with Radeon Graphics, 3201 Mhz, 8 Core(s), 16 Logical |  |
|                      | BIOS Version/Date           | AMI F.24, 22-02-2023                                                    |  |
|                      | SMBIOS Version              | 3.3                                                                     |  |
|                      | Embedded Controller Version | 96.34                                                                   |  |
|                      | BIOS Mode                   | UEFI                                                                    |  |
|                      | BaseBoard Manufacturer      | HP                                                                      |  |
|                      | BaseBoard Product           | 88DE                                                                    |  |
|                      | BaseBoard Version           | 96.34                                                                   |  |
|                      | Platform Role               | Mobile                                                                  |  |
|                      | Secure Boot State           | On                                                                      |  |
|                      | PCR7 Configuration          | Elevation Required to View                                              |  |
|                      | Windows Directory           | C:\WINDOWS                                                              |  |
|                      | System Directory            | C:\WINDOWS\system32                                                     |  |
|                      | Boot Device                 | \Device\HarddiskVolume1                                                 |  |
|                      | Locale                      | United States                                                           |  |
|                      | Hardware Abstraction Layer  | Version = "10.0.22621.2506"                                             |  |
|                      | User Name                   | VIKASMALIPEDDI\vikas                                                    |  |

- Processor: Ryzen 7 5000 series
- Operating System: Windows 11
- Ram: 16 GB (DDR4)
- Storage Hard Drive: 1TB (SSD)

### 3. Software Used:

The following tools are required for the development and usage of the query-efficient adversarial attack system Pycharm Application below are the imported libraries to the required models to run:

- Torch
- TensorFlow and Keras
- Pandas
- NumPy
- Matplotlib
- Scikit-learn.

### 4. Installation of the Software:

Python Installation:

- Download and install Python 3.x from the official website: <u>Python</u>.
- Ensure that Python is added to the system PATH during installation.

Pycharm Installation:

Step 1: To download PyCharm, visit the official website of JetBrains: Download PyCharm

Step 2: After downloading the file, click on it

Step 3: When the following window appears, click on Next and the installation process will start



Step 3: After clicking on Next, first, a window for setting up the installation location will appear.

Note: You can either select a folder for the installation location or retain the default path.

| 😫 PyCharm Communit                                  | y Edition Setup                                                                |                                                  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|
| PC                                                  | Choose Install Location<br>Choose the folder in which to                       | o install PyCharm Community Edition.             |
| Setup will install PyCha<br>folder, dick Browse and | rm Community Edition in the followin<br>d select another folder. Click Next to | g folder. To install in a different<br>continue. |
| Destination Folder                                  | Brains\PyCharm Community Edition                                               | 2018.3.3 Browse                                  |
| Space available: 196.8                              | GB                                                                             |                                                  |
|                                                     | < Back                                                                         | Next > Cancel                                    |

Step 4: In the next step, you can set the Installation Options as per requirements, and then, click on the Next button to proceed.

| PyCharm Community Edition Setup                                                                                                                                                                 |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Configure your Py                                                                                                                                                                               | <b>ons</b><br>Charm Community Edition installation |
| Create Desktop Shortcut          32-bit launcher       Image: 64-bit launcher         Update context menu       Image: Add "Open Folder as Project"         Create Associations       Image: py | Update PATH variable (restart needed)              |
| Download and install JRE x86 by JetBrains                                                                                                                                                       |                                                    |
| (                                                                                                                                                                                               | < Back Next >                                      |

Step 5: Now, you have to select the Start Menu folder, or you can leave it as default

| yCharm Communi                                                                                                                   | y Edition Setup                                                          |                                 |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|
| PC                                                                                                                               | Choose Start Menu Folder<br>Choose a Start Menu folder for<br>shortcuts. | r the PyCharm Community Edition |
| Select the Start Menu<br>an also enter a name                                                                                    | folder in which you would like to creat<br>to create a new folder.       | e the program's shortcuts. You  |
| 7-Zip<br>Accessories<br>Administrative Tools<br>Anaconda3 (64-bit)<br>Android SDK Tools<br>Android Studio<br>Bluefish<br>Brother |                                                                          |                                 |
| Bullzip<br>calibre 64bit - E-book<br>CamStudio 2.7<br>Capture NX-D                                                               | Management                                                               | Ŧ                               |
| Brother<br>Bullzip<br>calibre 64bit - E-book<br>CamStudio 2.7<br>Capture NX-D                                                    | Management<br>Sack                                                       | Install Install Cancel          |

Step 6: After these steps, click on the Install button as above to start the installation process.

| 🖺 PyCharm Community     | Edition Setup                          |                |                |                  |
|-------------------------|----------------------------------------|----------------|----------------|------------------|
|                         | <b>Installing</b><br>Please wait while | PyCharm Commun | ity Edition is | being installed. |
| Extract: commons-lang-2 | .6.jar                                 |                |                |                  |
| Show details            |                                        |                |                |                  |
|                         |                                        |                |                |                  |
|                         |                                        |                |                |                  |
|                         |                                        | < Back         | Next >         | Cancel           |

Step 7: When you click on the Finish button, your PyCharm installation completes



Now, you have successfully installed PyCharm and Python both in your system.

Virtual Environment Setup:

- Create a new virtual environment for the application.
- Activate the virtual environment and install the required packages using pip.

### 5. Source Code and Models

Obtain the source code for query-efficient adversarial attacks against machine learning models. The repository may include pre-trained models and scenario scripts. Found on relevant repositories on platforms like GitHub.

### 6. Code Execution

Open Pycharm and then Python scripts to develop and execute the code. The workflow includes:

Execution Steps:

• Preprocess the Dataset File



• Perform the Prediction through the scenario 1

Scenario 1: Shared Training Data:

• In this scenario, both the target detection model and the surrogate model have access to the identical training dataset. They are trained on the same set of data samples, allowing for a direct comparison of their performance and vulnerability to adversarial attacks.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E scenario-1.py \vee 🔋 main 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Current File ∨ ▷ 🕸 🗄 🕹 Q 🕼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>ه</i> – و                   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---|
| Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ct Files 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 📌 one.py × 👼 scenario-2.py 👘 scenario-3.py 👘 scenario-4.py 👘 scenario-5.py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                              | Ċ |
| -∼<br>80<br>⊗<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>vikas</li> <li>vikas</li> <li>aloha.py</li> <li>lightgom.py</li> <li>malconv.py</li> <li>one.py</li> <li>output.csv.py</li> <li>opading.py</li> <li>scenario-1.py</li> <li>scenario-2.py</li> <li>scenario-2.py</li> <li>scenario-3.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>stergate_model.py</li> <li>target_model.py</li> <li>target_model.py</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>1 import numpy as np 2 import pandas as pd 3 import tensorflow as tf 4 from tensorflow as tf 5 from sklearn.neodel.selection import train_test_split 6 from sklearn.neodecessing import LabelEncoder 7 8 csv_path = r^C:\Users\Vikas\PycharmProjects\800MAS\evasion-attacks-against-ml-based-malware-detectors\data\benign_exampl 9 df = pd.read_csv(csv_path) 10 11 texts = df.iloc[:, 0].tolist() 12 labels = df.iloc[:, 1].tolist() 13 14 label_encoder = labelEncoder() 15 encoded_labels = label_encoder.fit_transform(labels) 16 17 18 csv_path = label_encoder.fit_transform(labels) 16 csv_path = label_encoder.fit_transform(labels) 17 csv_path = label_encoder.fit_transform(labels) 18 csv_path = label_encoder.fit_transform(labels) 19 csv_path = label_encoder.fit_transform(labels) 10 csv_path = label_encoder.fit_transform(labels) 11 csv_path = label_encoder.fit_transform(labels) 12 csv_path = label_encoder.fit_transform(labels) 13 csv_path = label_encoder.fit_transform(labels) 14 csv_path = label_encoder.fit_transform(labels) 15 csv_path = label_encoder.fit_transform(label_encoder.fit_transform(label_encoder.fit_transform(label_encoder.fit_transform(label_encoder.fit_transform(label_encoder.f</pre> | 4 ▲ 13 ⊻ 3 ∧ -<br>es\file.csv' |   |
| <ul> <li>×</li> <li>↓</li> <li>↓</li></ul> | ●, ♥, Ċ +,     ▷ ℑ =       Python     2/2 -       Ĉ Finished     2/2 -       ● one     2/2 -       Image: State of the stat | !:       0s 32ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         /5       0s 27ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         /5       0s 27ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         /5       0s 27ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         slvikas/PycharmProjects/B00M45/evasion-attacks-against-ml-based-malware-detectors/strc/vikas/one.py:62: SyntaxWarning: In loss ca         * tf.keras.losses.categorical_crossentropy(y, predictions)         0s 127ms/step - accuracy: 1.0000 - loss: 0.0000e+00         finished with exit code 0         ts > src > vikas > @onepy         11 CRLF_UTF-8_4 spaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tegorical_c                    |   |

• Perform the Prediction through scenario 2.

Scenario 2: Partially Shared Training Data:

• In this scenario, the target detection model and the surrogate model share only a portion of their training data. While some data samples are common between the two models, they also have distinct training data subsets. This introduces a degree of similarity and divergence in their training experiences.

|             | ≣ 🖪 scenario-1.py ∨ 🦻 main ∨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Current File - ▷ 🕸 : 옫 Q 🔞 - 이 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|             | Project Files $\lor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🔷 one.py 🛛 🔶 scenario-2.py × 🚔 scenario-3.py 🛛 👼 scenario-4.py 🚔 scenario-5.py 🗄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ļ |
|             | <ul> <li>Vikas</li> <li>vikas</li> <li>aloha py</li> <li>lightgbm.py</li> <li>malconv.py</li> <li>one.py</li> <li>output.csv.py</li> <li>padding.py</li> <li>scenario-1.py</li> <li>scenario-2.py</li> <li>scenario-4.py</li> <li>scenario-4.py</li> <li>scenario-4.py</li> <li>scenario-4.py</li> <li>starget_model.py</li> </ul> | <pre>1 import numpy as np<br/>2 import numpy as np<br/>3 import numpy as np<br/>4 frant ensorflow as tf<br/>4 frant ensorflow import kereas<br/>5 frant sklearn.model_selection import tabelEncoder<br/>7 csv_path = r'C:\Users\vikas\PychamProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\benign_examples\file.csv'<br/>8 df = pd.read_csv(csv_path)<br/>1 taxts = df.lloc[:, 0].tolist()<br/>1 labels = df.lloc[:, 0].tolist()<br/>1 labels = df.lloc[:, 1].tolist()<br/>1 labels = iabel_encoder .fit_transform(labels)<br/>3 texts_train, texts_test, labels_train, labels_test = train_test_split( *arrays: texts, encoded_labels, test_size=0.2, random_state=42)<br/>1 num_classes = len(np.unique(encoded_labels))</pre> |   |
| 4<br>4<br>9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0s 45ms/step - accuracy: 1.0000 - loss: 0.0000++00 - val_accuracy: 1.0000 - val_loss: 0.0000++00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

• Perform the Prediction through scenario 3.

Scenario 3: Non-Shared Training Data:

Here, the target detection model and the surrogate model do not share any training data. They are trained independently on entirely separate datasets. This scenario assesses the transferability of adversarial attacks between models that have no common training ground.

|                       | 📃 🧵 scenario-1.py 🗸 🕫 main 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Current File - D 🕆 🗄 ዿ Q 💰 - 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                       | Project Files $\lor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne.py 🕏 scenario-2.py × network scenario-3.py × network scenario-4.py network scenario-5.py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĺ    |
| + ≈ D ::              | <ul> <li>vikas</li> <li>vikas</li> <li>aloha py</li> <li>Bightgbm py</li> <li>malconv.py</li> <li>one.py</li> <li>output.csv.py</li> <li>pading.py</li> <li>scenario-1.py</li> <li>scenario-2.py</li> <li>scenario-3.py</li> <li>scenario-3.py</li> <li>scenario-3.py</li> <li>scenario-3.py</li> <li>scenario-3.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>scenario-5.py</li> <li>surgat_model.py</li> <li>Wikas tin</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>1 import numpy as np<br/>2 import pandes as pd<br/>3 import tensorflow as tf<br/>4 from tensorflow as tf<br/>5 from sklearn.neperocessing import train_test_split<br/>6 from sklearn.neperocessing import labelEncoder<br/>7<br/>8 # Load your CSV files for target and surrogate models<br/>6 csv_path_target = n'C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\ballcious_examples\file<br/>1 csv_path_target = n'C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\ballcious_examples\file<br/>1 df_target = pd.read_csv(csv_path_target)<br/>1 df_surrogate = pd.read_csv(csv_path_surrogate)<br/>1 fexts_terget = df_target.iloc[:, 0].tolist()</pre> | • 55 |
|                       | Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 4<br>9<br>9<br>9<br>9 | <ul> <li>         ♦ Python         ♥ C Finished         1/1 -         Epoch         1/1 -         Envision         Envision         1/1 -         Process         Ioss         1/1 -         Process         Envision         Envision&lt;</li></ul> | i:       0s 48ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         4/5       0s 45ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         5/5       0s 47ms/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00         rslvikas/PychamProiects/B00MAS/evasion_attacks-against-al-based-alkane-detectors/src/vikas/scenario-3.py:83: SyntaxWarning: In loss categor         = tf.keras.losses.categorical_crossentropy(y, predictions)         0s 120ms/step - accuracy: 1.0000 - loss: 0.0000e+00         s finished with exit code 0                                                                                     |      |

• Perform the Prediction through the scenario 4

Scenario 4: Identical Model Architectures:

• In this scenario, both the target detection model and the surrogate model have the same architectural design. They share the same model structure, making it a direct architecture-to-architecture comparison.

|                                              | 📃 🔳 scenario-1.py 🗸 🤔 main 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current File - ▷ : 온, Q 🔞 - @ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Project Files ${\scriptstyle \lor}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 📌 one.py 🔹 scenario-2.py 🔹 scenario-3.py 🔹 scenario-4.py × 🔹 scenario-5.py 🗄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ↔                                            | <ul> <li>∨ vikas</li> <li>∨ vikas</li> <li>≥ vikas</li> <li>≥ aloha.py</li> <li>≥ lightgbm.py</li> <li>≥ malconv.py</li> <li>≥ one.py</li> <li>⇒ output.csv.py</li> <li>⇒ output.csv.py</li> <li>⇒ output.csv.py</li> <li>⇒ scenario-1.py</li> <li>⇒ scenario-2.py</li> <li>⇒ scenario-2.py</li> <li>⇒ scenario-3.py</li> <li>⇒ scenario-4.py</li> <li>⇒ scenario-5.py</li> <li>⇒ scenario-5.py</li> <li>⇒ scenario-4.py</li> <li>⇒ scenario-4.p</li></ul> | <pre>1 import numpy as np<br/>2 import numpy as np<br/>2 import numsy as np<br/>3 import tensorflow as tf<br/>4 from tensorflow import keras<br/>5 from sklearn.neprocessing import LabelEncoder<br/>7 s Load your CSV files for target and surrogate models<br/>6 csv_path_target = n^C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\mallcious_examples\file.<br/>10 csv_path_surrogate = n^C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\mallcious_examples<br/>11 df_target = pd.read_csv(csv_path_target)<br/>12 df_target = pd.read_csv(csv_path_surrogate)<br/>13 sf_surrogate = pd.read_csv(csv_path_surrogate)<br/>14 f_target = dd_target.iloc[:, 0].tolist()</pre> |
| 4)<br>4)<br>4)<br>4)<br>4)<br>4)<br>4)<br>4) | X ●, Y, C +, D 3     Y     Python     C Finished     scenario-4     Scenario-4     J/1     C:\Users     J/1     C:\Users     J/1     Process     asion-attacks-asainst-mi-based-matware-detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

• Perform the Prediction through scenario 5.

Scenario 5: Different Model Architectures:

• This scenario involves target and surrogate models with distinct architectural designs. Examples of these architectures include MalConv. The comparison explores the impact of varying model structures on adversarial attack transferability and effectiveness.

| Project Files ∨     Import numpy as np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | scenario-1.py 🗸 😢 main 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | 🔲 : 옪오@                                                                                 |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|
| ->     > □ vikas     1     import numpy as np     ● 1 ▲ 4 ▲ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ⊻ 4 ∧ 16 ≥ 16 ∧ 16 × 16 ∧ 16 × 16 × 16 × 16 × 16 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project                                                             | Files ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 👌 one.py 🛛 🍦 scenario-2.py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🟓 scenario-3.py 🛛 🏓 scenario-                                                                                                                                                                                                                     | 4.py 🏓 scenario-5.py 🗵                                                                                                                                                                                                                                   |                                                                                         | : Д                                     |
| Image: scenario-3.py     12       Image: scenario-4.py     13       Image: scenario-5.py     14       Image: scenario-5.py     16       Image: scenari | Service                                                             | vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas<br>vikas | <pre>1 import numpy as np<br/>1 import pandes as pd<br/>3 import pandes as pd<br/>3 import transorflow as tf<br/>from tensorflow import keras<br/>5 from skitearn.neprocessing import LabelEncoder<br/>1 import metplotlib.pyplot as plt<br/># Load your CSV files for target and surrogate models<br/>1 csv_path_surrogate = n^C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\benign_examples\fil<br/>1 csv_path_surrogate = n^C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\benign_examples\fil<br/>1 csv_path_surrogate = n^C:\Users\vikas\PycharmProjects\BODMAS\evasion-attacks-against-ml-based-malware-detectors\data\ballcious_examples<br/>1 df_target = pd.read_csv(csv_path_surrogate)<br/>1 df_surrogate = pd.read_csv(csv_path_surrogate)<br/>1 df_surr</pre> |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 X                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                         |                                         |
| Python       Python         Renning       1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | ython         1/1           P scenario-5         Epoch 3/1           Line         Epoch 4/1           Line         Epoch 5/1           Line         Epoch 5/1  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05         47ms/step           /5         05         49ms/step           /5         06         45ms/step           /5         05         44ms/step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - accuracy: 1.0000 - loss: 0.000<br>- accuracy: 1.0000 - loss: 0.000<br>- accuracy: 1.0000 - loss: 0.000<br>- accuracy: 1.0000 - loss: 0.000<br>evasion_attacks_aaginst_ml_base<br>rossentropy(v, predictions)<br>- accuracy: 1.0000 - loss: 0.00 | 00+00 - val_accuracy: 1.0000 - val_loss: 0<br>100+00 - val_accuracy: 1.0000 - val_loss: 0<br>100+00 - val_accuracy: 1.0000 - val_loss: 0<br>300+00 - val_accuracy: 1.0000 - val_loss: 0<br><u>1-malware-detectors\src\vikas\scenario-5.py</u><br>3000+00 | .0000+00<br>J.0000+00<br>J.0000+00<br>J.0000+00<br><u>.522</u> : SyntaxWarning: In loss | ↑<br>↓<br>??<br>*<br>©<br>©<br>s catego |



#### • Perform the Model Evaluation for all the methods.

This manual serves as a comprehensive guide for configuring the installation of the required software/tools for implementing query-efficient adversarial attacks against machine learning models.

#### References

- Python: (<u>https://www.python.org/</u>)

-Pycharm community available at Download PyCharm: Python IDE for Professional Developers by JetBrains.

- TensorFlow: [TensorFlow Installation Guide](<u>https://www.tensorflow.org/install</u>)