
National College of Ireland
BSc (Honours) in Computing

BSCCYBE4

Academic Year 2023/2024

Fagner Nunes

19216718

x19216718@student.ncirl.ie

Concealed messaging app

Technical Report

Contents
Executive Summary... 2

1.0 Introduction...2

1.1. Background...2

1.2. Aims.. 3

1.3. Technology..3

2.0 System... 3

2.1.1. Functional Requirements...3

2.1.1.1. Use Case Diagram... 4

2.1.1.2. Requirement 1 User Registration ID: UC-001...4

2.1.1.3. Block and Unblock a User UC-002..7
2.1.2. Data Requirements.. 9

2.1.3. User Requirements.. 10

2.1.4. Environmental Requirements.. 12

2.1.5. Usability Requirements..14

2.2. Design & Architecture...15

2.3. Implementation.. 18

2.3.1. Backend Implementation.. 18
2.3.2. Front-end Implementation...19
2.4. Graphical User Interface (GUI)..21

3.0 Conclusions..21

4.0 Appendices.. 22

4.1. Project Proposal..22

Objectives... 24
Functionalities...24

Goals..24
Market Research...25
State Of The Art.. 26

Concealed Messaging:... 26
Discreet Communication:..26
Targeted User Base:...26
Emphasis on Privacy:... 27
Whatsapp:...27
Telegram...28

Technical Approach:.. 28
Milestones:..29

Project Plan...29
Week 1-2: Requirement Gathering and Design..29

1

Week 3-4: Frontend Development..29
Week 5-6: Backend Development and Integration... 29
Week 7: Testing and Refinement..30
Week 8: Deployment and Finalization.. 30

Objective... 30
Functionalities.. 30

Must have... 30
Should Have... 32
Could Have...32

Implementation Order.. 33
Before authentication..33
Post authentication... 34

Design..35
Wireframe for the dummy apps.. 35
Registration screens...35
2 steps verification screen.. 36
Chat screen.. 36
User search Screen..38
Profile Screen... 39
Contact list scree.. 40
1.1. Documentation... 40

AuthContext.. 42
Methods.. 42

Calculator.. 43
Methods.. 44

Camera.. 45
Methods.. 45

ChatComponent..47
Methods.. 47

ChatItem.. 49
Methods.. 49

ChatScreen..51
Methods.. 51

ContactItem...52
Methods.. 53

ContactsScreen.. 53
ProfileScreen.. 54
UpdatePassword.. 54

Methods.. 55
screens/ModalComp.. 55
screens/beforeLogin/EmailVerification.. 57

Methods.. 58
screens/beforeLogin/Login... 60

Methods.. 61

2

screens/beforeLogin/LoginOrRegister...62
Methods.. 63

screens/beforeLogin/Password.. 64
Methods.. 65

screens/beforeLogin/Register...66
Methods.. 67

backend... 69
Requires... 69
Methods.. 69
Methods.. 74

3

Executive Summary
This report details the development and functionalities of a messaging application with deep

integration between backend and frontend.

Purpose: The purpose of this report is to give a deep overview of the messaging application,

including how the backend server, frontend user interface, authentication mechanisms, and

messaging functionalities were configured.

Backend Overview:

● Uses Express.js for server setup.

● It implements JWT for user authentication and authorization.

● User-uploaded images are stored on AWS S3.

● Some key features will include user registration, login, image upload, updating a

profile, and blocking or unblocking a user.

● A detailed API documentation of endpoints such as /send-image, /user/block/

, /user/unblock/, and /contacts/get-contacts.

Frontend Overview

● Built in React Native and seamlessly integrated with the backend APIs.

● Provides screens for user registration, login, profile management, and messaging.

● Makes navigation using React Navigation and theming with React Native Paper

possible.

● It offers contact management, real-time messaging with the help of WebSocket, and

image handling.

Conclusions:

The messaging application is a good comprehensive solution to cover the key functions that

are required for a modern communication platform. It comes with detailed API and frontend

documentation, which means it can be developed and maintained in the future with ease.

1.0 Introduction
This report details the development of both backend and frontend components of a

messaging application. This is a project to create a platform for messaging that will be firm,

scalable, and user-friendly, built using cutting-edge technologies and best practices in

software development.

Background
The primary reasons behind the realization of this project include an increasing need for

safe and reliable communication tools rich in features for both personal life and business.

The messaging app will fill identified gaps with existing solutions, primarily in terms of user

experience, real-time communication, and multimedia support.

4

The most general purpose of the project was developing a messaging application able to

meet most of the common issues that occur within others: scalability, security, and ease of

use. The principal intention of this project is to be at the forefront in meeting the

requirements of customers today and being capable of servicing them in the future—a

platform offering reliable, intuitive communication tools.

Aims

The project will seek to achieve the following:

● Build a backend that is secure and scalable: Implement strong user authentication,

real-time messaging, and multimedia handling.

● Create a User-Friendly Frontend: Design an intuitive interface that facilitates easy

navigation and efficient communication.

● Ensure security and privacy of data: Adopt secure techniques pertaining to the

transmission and storage of data that also protect the user's information.

● Enable Seamless Integration: Guarantee there is smooth interaction between the

frontend and backend components, which results in a uniform user experience.

Technology

The technologies that the project is using to achieve its goals are as follows:

● Backend: Express.js with JWT for authorization and AWS S3 for image storage.

Real-time messaging is done via WebSocket.

● Frontend: Developed using React Native, which uses React Navigation for smooth

screen transitions and React Native Paper for styling with theme consistency.

● Database: It uses a relational database managed with an ORM in managing

user-related data and message history for quick retrievals.

● Security: Incorporates JWT to provide secure authentication and authorization, which

guarantees integrity and confidentiality of data.

2.0 System

2.1.1. Functional Requirements
● User Authentication

○ Users shall be able to register with a unique email and password.

○ The system shall validate the email during registration by sending a

confirmation code.

○ Users shall be able to log in using their registered email and password.

○ Authentication tokens (JWT) shall be used to manage user sessions

securely

● User Profile Management

5

○ Users shall be able to update their profile information, including their

name, description, and profile picture.

○ The profile picture shall be uploaded to an AWS S3 bucket, and the

URL shall be updated in the user’s profile.

● Contact Management

○ Users shall be able to add, delete, and search for contacts using their

email.

○ The system shall display a list of user contacts, including their name

and profile picture.

● Messaging

○ Users shall be able to send and receive text messages in real-time.

○ Users shall be able to send images along with text messages.

○ The system shall store message history and allow users to view past

conversations.

● Blocking Users

○ Users shall be able to block and unblock other users.

○ Messages from blocked users shall not be delivered.

● Notification Settings

○ Users shall be able to update their notification preferences, including

sound, vibration, and notifications.

● Password Management

○ Users shall be able to update their password.

○ The system shall enforce password strength criteria, such as a

minimum length of 8 characters, including at least one capital letter

and one number

The functiona outlined in this report so far ensure that the messaging application will be

secure, reliable, and user-friendly, providing a solid foundation for future enhancements.

2.1.1.1. Use Case Diagram

2.1.1.2. Requirement 1 User Registration ID: UC-001
User registration is of high priority for the messaging application. The feature allows new

users to register by entering their name and email address.

This use case will explain the process that a new user registers for the application, receives

the verification code in his/her email, and then verifies that email to complete their

registration process.

Use Case Diagram

Actors: User, System

6

7

Flow Description

Precondition

● The system is in an initialization state.

● A user on the registration screen of the mobile application.

Activation

The user inputs his/her name and email address from the registration page and

submits the registration form.

Main flow

1. Initially, the system presents the registration screen to the user.
2. The user inputs his/her name and email address and submits it.
3. The system verifies that the email format is correct.
4. The system checks if such an email is already registered.

a. If the email is registered, then an error message to the user (see E1)
5. The system creates a verification code and sends it to the user's email address.
6. The user receives the email and types in the verification code into the application.
7. The system authenticates the verification code.

a. In case of the code being invalid, the system shows an error message (see E2)
8. The user account status is activated, and registration is completed.
9. An authentication token is generated and the user is logged into the application.

Alternate flow

A1 : Email already registered
● An error message is displayed stating the email is already taken.
● the use case returns to step 2

Exceptional flow

E1 : <title of E1>
● The system signals the user that the format of the email is badly

formatted.
● The user corrects the email format and resubmits the form.
● The use case continues at step 3.

E2 : Anomaly in verification code
● The system signals to the user that the verification code he entered

doesn't match what has been sent.
● The user requests a new verification code and re-enters it.
● This use case follows step 7.

8

Termination

● The system displays the main application screen, where the user is logged in

and the application is ready to use.

Post condition

● The system will wait for the next registration workflow.

List further functional requirements here, using the same structure as for Requirement1.

2.1.1.3. Block and Unblock a User UC-002
The blocking and unblocking feature is significant in attaining a safe and

controlled environment within the messaging application. This will lead to

user control for the personal management of interaction, protection against

unwanted interactions, and security. Hence, the user experience and security

themselves have a high-priority level requirement .

Enable users to block or unblock any other user inside the application, so that

the blocked user is not allowed to send messages to or view the profile of the

blocking user.

Use Case Diagram

Actors: User, System

Precondition:

● The user is logged into the application and has a valid session.

9

● The user is on the contact or chat screen where they can select the contact to

block or unblock.

Activation:

● User decides to block/unblock a contact and from the blocked/unblocked

contact profile or chat screen, initiates the action of blocking or unblocking

that contact.

Main Flow:

1. System shows a contact list or chat screen

2. User chooses a contact to block

3. System sends a block request to Backend API (/user/block/

)

4. Backend validates the request and blocks the user.

5. The system will display an error message.

6. Update the contact status to "Blocked" and send a message to the user that

says "action successful"

Alternative Flow A1 Unblock a User

● Preconditions

○ The user has already blocked another contact.

○ The user selects a contact that has been blocked before and chooses

to unblock them.

○ The system sends an unblock request to the backend API

(/user/unblock/

).

○ The backend validates the request and unblocks the user.

○ It displays an error message if the request fails (E2).

○ The system updates the contact status to unblocked and notifies the

user of the successful action.

○ The use case continues from step 5 of the main flow.

Exceptional Flow: E1: Block Request Failure

● The system shows an error message, implying that the block request failed.

● The user can retry blocking the contact.

● UC resuming from Main Flow step 2

E2: Unblock request failure

● A system error message is shown: "An error occurred processing the unblock

request"

● The user is allowed to re-perform the action of unblock the contact.

10

● UC resuming from Alternate Flow step 2

End

● The new status for contact is shown, and it returns on the contact list or chat

screen.

Post-condition:

● System goes to the waiting state prepared to accept the next user action to be

related with blocking or unblocking contact.

2.1.2. Data Requirements

This part explains the data requirements for the messaging application, the necessary

data entities, their attributes, and the relationship that exists between them. The

data requirements ensure that all important information in the system is captured

and managed appropriately.

Data Entities and Attributes

● User

○ UserID: Unique identifier for the user (Primary Key)

○ Name: Full name of the user

○ Email: Email address of the user (Unique)

○ Password: Hashed password for authentication

○ ProfilePictureURL: URL of the user's profile picture stored in AWS S3

○ Description: User's profile description

○ Sound: Notification sound setting (Boolean)

○ Notification: Notification setting (Boolean)

○ Vibration: Vibration setting (Boolean)

○ AccountStatus: Status of the user's account (active, blocked, etc.)

○ Code: Email confirmation code

○ CodeTimestamp: Timestamp when the verification code is generated

○ LoginAttempts: Number of login attempts

○ LoginAttemptTimestamp: Timestamp of the last login attempt

● Contact

○ ContactID: Unique identifier for the contact (Primary Key)

○ UserID: Unique identifier for the user (Foreign Key)

○ ContactUserID: Unique identifier for the contact user (Foreign Key)

● Message

○ MessageID: Unique identifier for the message (Primary Key)

11

○ SenderID: Unique identifier for the sender (Foreign Key)

○ ReceiverID: Unique identifier for the receiver (Foreign Key)

○ MessageContent: Text content of the message

○ ImageLink: URL of the image associated with the message, if any

○ Timestamp: Time when the message is sent

○ Delivered: Status of the message (Boolean)

○ Read: Status of the message (Boolean)

● Chat

○ ChatID: Unique identifier for the chat (Primary Key)

○ UserID: Unique identifier for the user (Foreign Key)

○ Messages: List of messages associated with the chat

Relationships

● User-Contact: One-to-Many (A user can have several contacts)

● User-Message: One-to-Many (A user can send and receive multiple messages)

● Message-Chat: One-to-Many (Chat can contain many messages)

Data Management

● Storage: User profile pictures and the images related to the message are

stored in AWS S3. The URL is stored in the database.

● Security: Hash user passwords before storing them. Employ authenticated

tokens for secure session management, such as JWT.

● Backup and Recovery: Regular backup of databases to prevent data loss and

recover them in case of failure.

Data Validation

● User Registration: Make sure email addresses are unique, and the password

strength is ensured.

● Message Delivery: Ensure both the existence of the sender and receiver before

the message is sent.

● Profile Update: Before a profile picture is uploaded to S3, validate for the

format and size of the picture.

2.1.3. User Requirements

User Requirements

These are the functionalities and features which the messaging application is

supposed to have for users' expectations. These requirements are very important

since they validate that the application will be user-friendly, secure, and efficient for

the end user.

12

Registration and Login

● The user should be able to register with their email and a strong password.

● The system should then send a verification code to their email for account activation.

User Login

● Users must be allowed to log in with their registered email and password.

Profile Edit

● Users can modify their profile information, e.g. name, description, and profile

picture.

● The pictures need to be uploaded and stored securely in AWS S3.

Contact Search

● Users will be able to search other users by email and add them to contacts.

● Users should be able to see their contact list with profile pictures and status

information.

● Users should be able to delete contacts from the contact list of a user.

Messaging

● Users should send and receive text messages in real time.

● Users should send and receive images in association with sent text messages.

● The system should maintain history of messages and allow users to see

previous conversations.

Block and Unblock Users

● Users should be allowed to block each other in order to prevent unwanted

messages.

● Users should have the power to unblock previously blocked users.

● When a user is blocked, that user should be unable to message or view the

profile of the individual who had blocked them.

Notification Settings

● Users will be permitted to manage their preference settings for notifications

in sound, vibration, or just notifications.

Password Management

● A password change interface should be provided.

● The system should enforce a good password policy in terms of size,

composition, etc.

13

Usability

● The user interface shall be intuitive and user-friendly.

● An experienced user shall perform all available system functions with no more

than minimal training.

● The application shall provide error messages and indicate appropriate

corrections.

Security and Privacy

● User data should be transmitted over secure channels, HTTPS.

● Hash passwords of users and not save plain passwords.

● Use authentication tokens (JWT) for secure session management.

Performance

● Must be responsive and load fast.

● Handle up to 10,000 concurrent users without performance degradation.

Such user requirements assure that messaging applications meet the expectations and needs

of their users by delivering a secure, effective, and easy-to-use platform for communication.

2.1.4. Environmental Requirements

The environmental requirements of the messaging application are the multiple

factors that ensure the system works effectively, reliably, and securely within its

specified environment. These requirements are critical in maintaining high

performance, scalability, and usability to deliver a seamless user experience.

● Hardware and Software Environment

Amazon EC2 hosts the back-end server, providing a robust and highly scalable

environment for server-side operations. This assures that the server can support

heavy traffic and scale efficiently as the number of users grows. In the backend,

PostgreSQL is used for database management, guaranteeing safe and efficient

storage and retrieval of data. Using AWS S3 to store images uploaded by users

ensures efficiency in multimedia management; moreover, it offers high availability

and durability.

14

The frontend is developed using React Native, which provides cross-platform

compatibility between iOS and Android. Hence, the application will have huge

coverage without having to maintain separate codebases for different platforms. It

employs React Navigation for easy screen transitions and React Native Paper for

theming consistency, along with a huge number of UI components to make up a

captivating user interface.

● Network and Security

The application requires stable and very fast internet connectivity to support

real-time messaging and seamless interactions between the frontend and the

backend. WebSockets, in some way, require real-time communication, which

involves a reliable structure in the network so messages are properly and timely

delivered.

Security, being very important to this aspect, has various measures put in place by

the application to ensure user data is protected. Interchanges between frontend

and backend are over HTTPS; hence, data is already encrypted during transmission.

User passwords will be hashed prior to storage, while on the user side,

authentication tokens will be used in managing user sessions securely. This ensures

no unwanted access or probable breaches into users' data.

● Usability and Accessibility

The application is intuitive and user-friendly, thus allowing users to easily navigate

through the different features with a very minimal learning curve. It is consistent in

layout, color schemes, and typography, which changes the user experience into an

appealing and trouble-free experience with the applications. Responsive design

guarantees perfect performance of all operations on different screen sizes and

orientations, offering the same experience on all kinds of devices.

It has inbuilt accessibility features to make the application useable for differently

challenged people. This includes screen readers, high contrast modes, keyboard

navigation, and many more to list accessibilities according to guidelines including

WCAG. It also gives provision for customized settings against the notifications to be

received by the user for setting up their preferences of alerts based on

requirements and context.

15

● Performance and Scalability

The application should be capable of supporting 10,000 concurrent users without

any performance degradation. Herein, infrastructure resilience and scalability are

required; this would allowed to happen via cloud services like Amazon EC2 and AWS

S3. Regular monitoring and optimization have to be anticipated with respect to

server performance and the database in order for the servers and applications to

keep functioning in a quick and reliable way across all responses. The backups are

quite frequent, and there is a scheme on disaster recovery in case the system fails,

mover of all, to ensure the integrity and availability of data. Regular backups of

database systems and user-uploaded content are intended. In such a case, if an

outage occurs, measures are put in place to fast track the restoration of service. The

environmental needs of the messaging application are what make it efficiently and

securely operable in the very environment within which it is called to serve. Based

on robust infrastructure in the cloud, tight security measures, and adhering to best

practices in both usability and accessibility, the application takes solid first steps

toward delivery of a quality user experience. These requirements provide a sound

basis for attaining the long-term objectives of an application with respect to success

and scalability and, therefore, to cater effectively to the dynamic requirements of

the users.

2.1.5. Usability Requirements
Usability requirements explicitly deal with issues that guarantee making the messaging

application intuitive, efficient, and pleasant to the users, for it improves both user

experience and satisfaction.

The application should provide an intuitive interface, which would allow users to easily flow

through a variety of functionalities. Best practices in UI and UX design need to be followed,

whereby consistency in layout, color schemes, and typing is ensured. A responsive-design

technique should be implemented by the application, since it would scale out quite well at

different screen sizes and orientations of mobiles or other types of devices.

New users shall be able to sign up and start using the application with minimal instructions.

The processes for registration and login should be simple and intuitive, with step-by-step

instructions and clear hints. After that, a user shall be able to update his profile, add

contacts, send messages, and edit settings succinctly and with minimal training. Experienced

users shall be able to use all features of the system following less than two hours of training

in total. The average number of errors users make per day should not be more than two

after this training.

16

Such error messages and feedback should be informative and user-friendly, aiming to help

the user understand what has gone wrong and how to set things right. For example, when

one is registering and puts an incorrect email format, there should be a clear system

message of what the error is and how one can get the format right.

The application should provide accessibility features, from screen readers to high contrast

modes and keyboard navigation for users with disabilities. This will need to be compliant

with accessibility standards, including WCAG. Customize notification settings should also be

provided to allow the user to set preferences for alerts with a sound, vibration, or visible

display. In such a way, everyone could customize this according to personal requirements

and contexts.

In other words, the set of requirements for usability ensures a messaging application that is

accessible, effective, and easy to handle, synonymous with a good user experience for all.

Design & Architecture

Data Structure

● User Object

{
"userID": "unique_identifier",
"name": "user_name",
"email": "user_email",
"password": "hashed_password",
"profilePictureURL": "url_to_profile_picture",
"description": "user_description",
"sound": true,

17

"notification": true,
"vibration": true,
"accountStatus": "active",
"code": "verification_code",
"codeTimestamp": "timestamp",
"loginAttempts": 0,
"loginAttemptTimestamp": "timestamp"

}

● Message Object

{
"messageID": "unique_identifier",
"senderID": "sender_user_id",
"receiverID": "receiver_user_id",
"messageContent": "text_message",
"imageLink": "url_to_image",
"timestamp": "message_timestamp",
"delivered": true,
"read": false

}

● Contact Object

{
"contactID": "unique_identifier",
"userID": "user_id",
"contactUserID": "contact_user_id"

}

Server-client architecture is aimed to achieve modularity, scalability, and maintainability

in this messaging application. There are the involvement of two large sub-components of

the system: the backend server and the frontend client application. In this architecture,

there is a clear separation of concerns that requires every component to be developed,

maintained, and scaled independently.

It hosts the backend server on Amazon EC2 for a robust and highly scalable environment

of server-side operations. User data, contact lists, and message histories are stored in

Google Firebase to leverage its real-time database capabilities and seamless interaction

with the rest of Google Cloud services. Media files, such as images users upload, are kept

in Amazon S3 buckets for large file storage and retrieval efficiently and securely.

18

Real-time messaging is facilitated through WebSocket's ability to communicate instantly

between peers.

Finally, JSON Web Tokens are used to provide secure user authentication and session

management in the system; this is a robust and scalable security solution.

The frontend client is written using React Native, allowing for core fluency and native feel

across iOS and Android. It uses React Navigation to handle transitions between screens,

which assures really smooth transitions and a clear user interface. Finally, it makes use of

React Native Paper for having both consistent UI components and theming. On the other

hand, the components at the backend level contain user management, which handles

user registration, login, profile update, and JWT-based authentication. Contact

management provides for adding, deleting, and searching of contacts. Through

messaging service, it facilitates message sending and receiving, storing message history,

providing real-time communication by WebSocket. It provides a media storage

component. This component uploads the media to AWS S3 and retrieves URLs from

stored media, hence effectively managing the part related to the multimedia content of

this module.

It has multiple screens at the front-end, which help the app to perform various

functionalities. The authentication screens include login, registration, and e-mail

verification—giving a secure, easy means through which users can log in to your

application. It also has profile screens so that users are able to view and edit information,

thereby enhancing personalization.

Messaging screens offer full functionality to a user for communicating with contacts,

sending text messages, and sharing images. Contact screens detail all of a user's

contacts, with provisions for contact searching and management; settings screens could

update notification settings and preferences.

The algorithm of user authentication begins with the inputting of the user's e-mail and

password. The system checks the format of the email and whether the email is registered

or not. If the email exists and is registered, it matches the password with the hashed one

stored in Firebase. On success, a JWT is generated for the authenticated user, allowing

safe access to the application.

First, a WebSocket between the client and server has to be opened. On sending the

message by a user, the client sends it through the established WebSocket. The server

19

receives the message from the client, saves it in Firebase, and broadcasts it to the

receiver if he/she is online. The server further updates the status of the message

delivered/read based on what the receiver does. The algorithm to upload media is to

select a medial file for upload. At the front end-client, it compresses the media file and

sends it to the server at the back. Upon receiving the file, the back-end will upload the

same to AWS S3. Following this, store the URL of the uploaded media in Firebase. As

shown above, this URL will be used in the user's profile or message to efficiently handle

and retrieve multimedia.

On the aspect of data structures, class User has a number of attributes: unique identifier,

name, email, hashed password, profile picture URL description, notification settings,

account status, verification code, timestamps for generating code and logging. Class

Message contains unique identifier, senderID and receiverId, actual content of the

message, image link, timestamp, and delivery/readability status fields to. The Contact

object shall hold a unique identifier, user ID and contact user ID to associate users with

their contacts. It is through this detailed design and architecture that the messaging

application would be robust, scalable, and easy for maintenance. Assisted by the use of

Google Firebase in data storage, Amazon EC2 for hosting in the backend, and AWS S3 for

media storage, it would make sure of high performance with good scalability. Adopting

modern frameworks and technologies provides a smooth and reliable user experience.

Implementation
The messaging mobile application is primarily composed of two elements: the server

backend and the frontend mobile application. These two components have been done

such that each takes care of particular elements of application functionality, making the

experience by the user smooth.

2.1.6. Backend Implementation

The back-end is done in Node.js, while the web framework is Express.js. It

exposes multiple endpoints for user registration, authentication, messaging, and

image upload functionality. Listed below are principal components alongside their

implementation:

● User Registration and Authentication:

The backend uses JSON Web Tokens to manage authentication tokens. Upon

registration and login, the user will receive a JWT token from the server.

20

The createUser and signIn functions handle user registration and login,

respectively. It is calling functions imported via db.js that interface with a

PostgreSQL database for storing and retrieving user information.

● Messaging Functionality:

It uses WebSockets to enable real-time messaging. A WebSocket server would

listen for new connections and handle user messaging.

When a user sends a message, the WebSocket server will capture this message,

process it, and forward it to the target recipient. Messages are also saved in the

database for persistence using the saveMessage function from db.js. Image

Upload:

The application provides support for image upload by handling file uploads via

Multer and image storage via AWS S3. At the send-image endpoint, it will handle

an upload of images to an S3 bucket and return the URL of the image to the

client.

The file upload is handled by the middleware upload.single('photo') from multer,

and the AWS.S3 service is configured to interact with the S3 bucket. User Profile

Management: Exposed endpoints update user profiles, including their profile

pictures and settings. It ensures consistency in maintaining a user's preferences

through functions like UpdateUserProfilePicture, updateToggles, and

updateDescription, which manage these updates.

21

2.1.7. Front-end Implementation
It has a React Native frontend for the cross-platform mobile application. Some of the

major features are user authentication, real-time messaging, and profile

management. Following is the list of high-level components and their respective

implementation:

● Messaging Functionality:

Navigation across different screens of the app is managed with the help of

react-navigation. It comprises stack and tab navigators for navigation among

authentication, chat, contacts, user profile info screens.

● User Authentication:

Authentication context is handled via React's Context API. It keeps track of the state

related to whether a user is logged in or not, and also user information via the

AuthContext.

It uses AsyncStorage to persist user tokens and session data on the device, for

seamless user experiences across app launches.

● Chat functionality

22

The chat component establishes a connection with the backend with a WebSocket for

real-time messaging. Messages are sent using the sendMessage function on the

opened WebSocket connection, and the chat history is fetched through a

getChatsAndMessages function from the backend server. It keeps updating the chat

UI based on new messages received, ensuring that a new user has an up-to-date

conversation history.

● Profile Management

Finally, this allows users to update information such as the username and description

in profiles and even profile pictures. Functions updateUsername and

updateDescription are responsible for sending a request with the new username and

description back to the backend server. ImagePicker and ImageManipulator are used

to handle image selection and processing before uploading the profile picture.

23

Graphical User Interface (GUI)

24

25

26

27

3.0 Conclusions
This report has presented in detail the full development and implementation of a messaging

mobile application using seamless integration of its back-end with its front-end. Given these

views, the project had been able to achieve its aims of building a secure, scalable,

user-friendly platform that employs modern technologies and best practices in the

development of software.

The Node.js and Express.js-developed backend provides a robust framework that enables

swift and efficient user authentication, real-time messaging, and multimedia management.

With JSON Web Tokens provided for secure user sessions and AWS S3 for reliable image

storage, this backend ensures data security and scalability. Detailed API documentation

supports future development and maintenance, thereby making the backend strong enough

to withstand changes by users.

It has a user-friendly and responsive user interface, developed with React Native at the

frontend. This facilitates smooth transitions with React Navigation and React Native Paper

for clean and consistent theming. Further enhanced with WebSocket integration, it provided

28

real-time messaging capabilities that made it possible for users to communicate without any

glitches. It also had comprehensive features on profile management, ensuring that users can

easily personalize their experience.

The messaging application thus addresses the common pitfalls that most modern

communication platforms face: scalability, security, and usability. It provides a robust base

for any improvements later on so that it will be able to serve its users by their dynamic

demands. Security to data validation is highly observed in the application to ensure the

privacy and integrity of the user's information are kept intact.

The overall success of this very project is an encouragement, then, to provide the landscape

of messaging applications with complex yet reliable communication tools. This application

will surely withstand further evolution in technology and scale up to the challenge, providing

a dependable and people-oriented, clear communication solution for both personal and

professional applications.

4.0 Appendices

Project Proposal

29

StealthComms
06.04.2024

─

Fagner Nunes
Computing Project (BSCCYBE4)

x19216718

30

Objectives

The principal objective of the project is to implement a secret messaging application
that provides high security for inter-user communication. In view of this, since it is able
to masquerade as other apparently innocuous applications, such as a calculator, a tetris
game, or even a snake game, this tool will enable the sending and receiving of messages
without raising eyebrows or some other undesirable interest. Thus, this prototype is
envisioned to yield a discreet communication tool while ensuring privacy and
confidentiality for its users.

The protection of user confidentiality is one of the major objectives, which shall be
attained by robust security features. This will include end-to-end encryption, two-factor
authentication, and secure data storage and transmission protocols. It applies
encryption methods that make conversations private and out of reach for any unwanted
entity, hence reducing surveillance, interception, or even breaches in data.

Functionalities

● End-to-end encryption for messages.

● Two-factor authentication for user login.

● Secure password management.

● Safe file sharing with encryption.

● Self-destruct message self-destruction option.

● Secure data storage and transmission.

● Regular security audits and updates applied.

● Secure login sessions and session management

31

Goals

I decided to take up this project in consideration of the dire need for encrypted and
confidential communication channels in today's digital environment. The world really
needs innovative solutions that ensure people and groups communicate safely without
putting their privacy into jeopardy or, at worst, sensitive information into jeopardy at a
time when there are rising concerns about privacy breaches or surveillance. I will create
a hidden messaging application, all self-contained within something as mundane as a
calculator or even a game, and give it to the people as a discreet and safe platform for
messaging.

Looking forward to achieving the objectives prescribed in Section 1.0, I intend to develop
strong features of security and usability. Implementing technologies like React Native
and Node.js, along with a host of libraries in both, for security measures, I will ensure
that there is a smooth user experience but at the same time not turn a blind eye
towards the erstwhile prerequisite of privacy and confidentiality guarantee.

Key highlights include end-to-end message encryption, two-factor authentication, secure
management for passwords, and encrypted file sharing that ensure the protection of
user data. Moreover, add-ons such as self-destroyed messages and the possibility of
verifying the identity of contacts aim to further improve security and reliability.

率 Such a secretive messaging app will provide reliable and secure communication
across many contexts by catering to journalists, activists, government officials, law
enforcement agencies, and sensitive citizens. In the process of implementing safety
measures and updating them from time to time, I see myself instilling confidence in my
users to communicate as they want in an increasingly digital world.

Market Research

Therefore, conducting market research was one of the steps in deciding what features
and functions would be required for an chatting app to potentially gain space in the
market. Up to now, WhatsApp, Facebook Messenger, and Telegram have been the most
frequently used apps. There can be plenty of reasons: one might choose a chat app over
the other. Nevertheless, some users will go for Telegram or WhatsApp due to their
safety and privacy aspects, whereas others may want integration with social media,

32

including Facebook Messenger. In developing my application, my focus and priority were
on security and privacy.

State Of The Art

What it has differs from WhatsApp, Facebook Messenger, and even Telegram with its
standout feature of concealed messaging. While such mainstream messaging apps
focus on the convenience and social connectivity dimensions, my app looks toward
privacy and confidentiality above all.

Concealed Messaging:
● Unlike WhatsApp and other messaging apps, be it Facebook Messenger or

Telegram, my app disguises itself as innocuous everyday applications like a
calculator, Tetris, or even a snake game. A feature that would make it rather
especial to the user in a way that they were able to converse without giving away
what actually the conversation is about.

Discreet Communication:
● WhatsApp, Facebook Messenger, and even Telegram are rather well-known

services for messaging. All of their interfaces are so familiar. My app provides
private lanes of communication that don't look like anything identifiably special
at a glance, therefore creating a further layer of privacy and security.

33

Targeted User Base:
● While WhatsApp, Facebook Messenger, and Telegram cater to a broad user base

for general messaging and social networking, my app targets specific user groups
who prioritize privacy and confidentiality in their communication. This includes
journalists, activists, government officials, law enforcement agencies, and
privacy-conscious individuals.

Emphasis on Privacy:
● While WhatsApp, Facebook Messenger, and Telegram have faced scrutiny over

privacy concerns and data sharing practices, my app prioritizes user privacy
above all else.

Whatsapp:
● The encryption takes place at the front-end side of the application or on the

user's device. The application makes use of the signal protocol so as to be able to
encrypt the messages. The signal protocol is one of the popular protocols used
by WhatsApp, Facebook, Skype, and at one stage, Google, which also comes with
a good level of trust.

○ Signal protocol The Signal Protocol depends on three mechanisms to
achieve this secure messaging. A theorem, the Double Ratchet Algorithm,
continuously generates new encryption keys for each message; this
ensures that if an attacker steals an old key, it will not be able to decrypt
any conversation from before. Prekeys, stored on your device, enable the
establishment of a secure connection while the user's device is offline.
The triple Diffie-Hellman handshake keeps your communication private by
protecting the exchange of keys between devices without any central
authority.

● FrontEnd: The frontend of the app is developed in React Native. It is a framework
developed by Facebook, whose main goal is to let developers who know and love
React to become native app developers for mobile applications using JavaScript.
Websocket was used for state management. It enables bi-directional
communication channel between a client and a server so that either party can
send data to the other at any time. SqLite is locally installed on the device so that
it can store data locally on the user's device.

○ React Native eases mobile app development by taking leverage from
JavaScript. Once written, the code can be launched on both Android and
iOS. This framework builds apps with the look and feel of being genuinely

34

native. Since it bridges the gap between web development and native
mobile app creation, you are at liberty to leverage your knowledge of
JavaScript in developing mobile apps that don themselves in a familiar
look and feel.

○ SQLite is a small, fast, and self-contained database system that runs
without a separate server; thus, it is embedded directly into an
application. This implies that it helps in managing databases from
applications without any resource constraints, like in the case of mobile
applications.

○ WebSockets enable a full-duplex, real-time communication channel
between the browser and the server. That is, unlike classical web
interaction, in which a browser requests something from the server and
then waits for the server's response, WebSockets hold a persistent, open
connection. Information can flow constantly in both directions, making it
the perfect solution for applications that need constant updates, such as a
chat feature, multi-player games, or live dashboards.

● Backend The Whatsapp back-end uses the Erlang programming language on its
servers. It is a language that supports real-time communication and hence serves
well the building of messaging apps. Cassandra NoSQL database is used for
storage, thus offering incredible scalability.

○ Erlang is a really powerful language for software development of large,
complex, and fault-tolerant systems. The language was conceptualized to
allow many executions to take place simultaneously. That basically means
that Erlang has grown very adept at concurrency, making it just perfect for
applications that need continuous availability, such as messaging services
or online banking.

Telegram
● Encryption and decryption take place on the user's device. Telegram makes use

of MTProto, otherwise known as the Telegram protocol; this is a
custom-developed protocol for end-to-end encryption, very efficient and highly
secure.

● Front-end: Telegram uses Java for their android app, Swift for the IOs version of
their app, and C++ for their desktop application.

● Back-end: Very little information is shared by Telegram about their back-end
stack. Not much information is found.

35

Technical Approach:

I. Use Case Analysis: Identify key use cases for the concealed chatting app, such as
sending encrypted messages, verifying contact identities, and securely sharing
files.

II. Design Phase: Create wireframes and prototypes to visualize the app's user
interface and functionality, ensuring it effectively disguises as a calculator, tetris
game, or snake game while providing seamless access to the hidden messaging
features.

III. Development: Utilize React Native for frontend development, implementing
features such as end-to-end encryption, two-factor authentication, secure
password management, self-destructing messages, functional calculator,
functional tetris game, functional snake game, an option for the user to select
how they would like to conceal the messaging app.

IV. Backend Development: Build the backend server using Node.js and Express.js,
integrating Socket.io for real-time communication and MongoDB or PostgreSQL
for secure data storage. Implement JWT for authentication and session
management, and bcrypt for password hashing. Implement 2 factor
authentication using google authenticator.

V. Testing: Perform extensive testing, including unit testing, integration testing, and
security testing, to ensure the app functions correctly and securely across
different platforms and devices.

VI. Deployment: Deploy the app to app stores while ensuring compliance with their
guidelines and regulations. Implement regular security audits and updates to
address any vulnerabilities and ensure ongoing protection of user data

Milestones:

● Requirement Gathering and Analysis
● Design and Prototyping
● Frontend and Backend Development
● Integration and Testing

36

● Deployment
● Security Audits and Updates

Project Plan

Week 1-2: Requirement Gathering and Design
● Analyze use cases and prioritize features.
● Create wireframes and prototypes for the app's UI and functionality.

Week 3-4: Frontend Development
● Set up the project environment using React Native.
● Implement the disguised UI elements (calculator, tetris game, snake game).
● Develop the messaging interface with end-to-end encryption and self-destructing messages.
● Integrate React Navigation for seamless navigation within the app.

Week 5-6: Backend Development and Integration
● Build the backend server using Node.js and Express.js.
● Implement user authentication with two-factor authentication and JWT.
● Set up secure data storage with MongoDB or PostgreSQL.
● Integrate Socket.io for real-time communication between clients and the server.

Week 7: Testing and Refinement
● Conduct unit testing and integration testing to ensure functionality.
● Perform security testing to identify and address vulnerabilities.
● Gather feedback from users for further refinement.
● Address any bugs or issues discovered during testing.

Week 8: Deployment and Finalization
● Prepare the app for deployment to app stores.
● Create documentation and training materials for users.
● Deploy the app to app stores while ensuring compliance with guidelines.
● Perform a final security audit and implement any necessary updates.
● Provide ongoing support and maintenance as needed.

Objective

Use Case Analysis: The main use cases of the hidden chatting application will deal with
sending encrypted messages, checking contacts' identity, and sharing files over a secure
network.

37

Design Phase: Wireframe and prototype the user interface for this app, which should act
like a working calculator, Tetris game, or snake game but give access through seamless
interactions to the hidden messaging features.

Development will be done in React Native, adding the next set of features: end-to-end
encryption, two-factor authentication, secure password management, self-destructing
messages, a functional calculator, a functional Tetris game, a snake game that works,
and an option for the user to select how they would like to conceal the messaging app.

Backend Development: Create a backend server using Node.js and Express.js. Add
Socket.io for real-time communication and MongoDB or PostgreSQL for secure data
storage. Further, include JWT since authentication is going to be required for session
management and bcrypt for password hashing. 2-factor authentication will be
implemented using Google Authenticator.

Testing involves running thorough tests for appropriateness, integration, and security to
make sure the app performs its functions properly and with utter security on different
platforms and devices.

Deploy: Make the app ready after compliance guidelines and regulations of app stores,
then make a publication. Run security audits every now and then for fixing
vulnerabilities so that users' data may remain safe.

Functionalities

Must have
● Authentication using 2-factor authentication Must have In progress

○ The purpose of this functionality is to add another security layer to the
application. The 2-factor-authentication process requires the user to
provide something he knows (Password) and something he processes (his
phone). The app is going to a service provided by google which sends the
user a code in order to verify the user is logging from his own device.

● Registration (ideally should be done via SMS message, but it will be done using

email) Must have Completed

38

○ This functionality allows users to register for an account. While the ideal
method is through SMS messages for convenience and immediacy,
registration will be processed by identifying the user via email instead.

● Secure local data storage Must have In progress

○ Secure local data storage refers to the practice of storing sensitive or
private data on a device or system in a manner that protects it from
unauthorized access or tampering. The objective is to store the users
private and public keys safely on the users device.

● Secure session management Must have Completed

○ The purpose of this feature is to prevent unauthorized users from sending
requests pretending to be an authentic user. Key aspects include
implementing strong authentication methods, encrypting session data,
regularly expiring sessions, and guarding against common threats such as
session hijacking and fixation.

● End-to-end encryption Must have Completed

○ End-to-end encryption is the key aspect of this application. The messages
are encrypted in the sender's device and decrypted in the receiver's
device. The public and private keys or the decrypted messages are not
stored in the servers. Thus, if the servers are compromised, no sensitive
information will be lost.

● Secure notifications (notify new messages without creating suspicion)

Must have Completed

○ This feature is important as the purpose of the application is to be
disguised as a regular app. By sending disguised notifications and not as
regular as a messaging app, only the device owner should understand
they have a new message.

● real time messaging Must have Completed

● Secure Image sharing, taking photo Must have Not started

○ "Image sharing, taking photo" functionality enables users to capture
photos using their device's camera and share them seamlessly with
others.

● Adding new contacts Must have Completed

○ The user should be able to find a user by their email or username and add
them to their contacts.

● Deleting messages Must have Obsoleted

○ A user should be able to delete a specific message or several messages
from his device.

● Blocking user Must have Obsoleted

39

○ This feature allows a user to block unwanted users from messaging them
or finding their profile.

● Option for user to select which app should be used as disguise Must have

Completed

○ The messaging app can disguise itself as several other apps. The user can
select in the settings screen which disguise they would prefer.

● Secret Mechanism for users to switch into messaging apps. Must have

Not started

○ Once the user opens the primary app i.e. Calculator, the user should use a
secret mechanism to open the messaging app i.e. pressing the screen
with three fingers for 3 seconds.

● Profile editing (Name, description, Picture) Must have Completed

● Functionalities of a calculator (disguise) Must have Completed

● Users should be able to see if message was delivered and/or read Must have

Completed

● Functionalities of a tetris game (Disguise) Must have Not started

Should Have
● Functionalities of a Reminder app for drinking water (Disguise) Should have

Obsoleted

Could Have
● Users should be able react to messages (emoji) Could have Obsoleted

○ This feature should allow one user to react to another user's message
using an emoji.

● Secure File sharing Could have Obsoleted

○ This feature allows a user to send files such as .pdf, .docx, .mp3, .mp4,
.wav.

○ Every file will be encrypted and decrypted on users devices.

● Option for self destructing messages Could have Completed

○ This feature allows for messages to be deleted after they have been read
by the receiver.

● Giphy sharing via (giphy api) Could have Obsoleted

○ This feature allows users to send animated images to each other.

40

Implementation Order

In the implementation process, I am going to start by implementing the screens and
functionalities on the "before authentication" Stage. The stage entails registration,
login, 2 steps verification, setting up email verification database and its appropriate
tables, dummy apps. After the UI and the back end for these features have been
properly implemented, we are going to move to the next stage, the "post
authentication" stage.

It is during this process that I am going to follow the interactive incremental
development model. In stubbing out a feature, testing it, fixing any bugs related to it,
and re-testing is how I would implement following this model. We follow this workflow
until the feature works as per plan.

Before authentication

41

Post authentication

42

Design

Wireframe for the dummy apps

Registration screens

43

2 steps verification screen

Chat screen

44

45

User search Screen

46

Profile Screen

47

Contact list scree

1.1. Documentation

(inner) InsideApp() → {React.Element}

Description:

​ This is the inside app component. It is the main component of the app. It
contains the navigation container and the main navigation component.

Source:

​ App.js, line 125

Returns:

Rendered component.

Type React.Element

48

(inner) MainNavigation() → {React.Element}

Description:

​ This is the main navigation component. It contains the tabs for the app. It is
only rendered when the user is logged in.

Source:

​ App.js, line 43

Returns:

Rendered component.

Type React.Element

(inner) ProfileRoute() → {React.Element}

Description:

​ This is the route component for the Profile screen.
Source:

​ App.js, line 101

Returns:

Rendered component.

Type React.Element

(inner) StackTest() → {React.Element}

Description:

​ This is the stack navigator component for the app.
Source:

​ App.js, line 108

Returns:

Rendered component.

Type React.Element

(inner) checkLoggedInStatus() → {void}

Description:

49

​ This function checks if the user is logged in by fetching the value from
AsyncStorage. It also sets the loading state to false after checking.

Source:

​ App.js, line 136

Throws:

If there is an error fetching the logged-in status.

Type Error

Returns:

Type void

AuthContext
Provides authentication context and WebSocket connection management.

Description:

​ Provides authentication context and WebSocket connection management.
Source:

​ AuthContext.js, line 6

Methods

(inner) AuthProvider(children) → {JSX.Element}

Description:

​ Provides authentication context to its children.
Source:

​ AuthContext.js, line 17

Parameters:

Name Type Description

50

children Object The child components that will consume the context.

Returns:

The AuthContext provider with its value.

Type JSX.Element

(inner) connectWebSocket()

Description:

​ Establishes a WebSocket connection and handles events.
Source:

​ AuthContext.js, line 87

(inner) getChatsAndMessages()

Description:

​ Fetches chats and messages from the backend.
Source:

​ AuthContext.js, line 122

Throws:

Will throw an error if the network request fails.

(inner) getuserData()

Description:

​ Fetches user data from the backend.
Source:

​ AuthContext.js, line 33

Throws:

Will throw an error if the network request fails.

Calculator
51

A simple calculator component for React Native.

Description:

​ A simple calculator component for React Native.
Source:

​ screens/beforeLogin/Calculator.js, line 6

Methods

(inner) handleCalculate() → {void}

Description:

​ Calculates the result of the input expression.
Source:

​ screens/beforeLogin/Calculator.js, line 59

Throws:

Will throw an error if the input expression is invalid.

Returns:

Type void

(inner) handleClear() → {void}

Description:

​ Clears the input and result
Source:

​ screens/beforeLogin/Calculator.js, line 38

Returns:

Type void

(inner) handleDelete() → {void}

Description:

​ Deletes the last character from the input.
Source:

52

​ screens/beforeLogin/Calculator.js, line 49

Returns:

Type void

(inner) handlePress(value) → {void}

Description:

​ Handles button press events.
Source:

​ screens/beforeLogin/Calculator.js, line 18

Parameters:

Name Type Description

value string The value of the button pressed.

Returns:

Type void

Camera
Camera component for taking and uploading photos.

Description:

​ Camera component for taking and uploading photos.
Source:

​ screens/Camera.js, line 15

Methods

(inner) pickImage()

Description:

53

​ Pick an image from the gallery.
Source:

​ screens/Camera.js, line 156

Throws:

Will throw an error if the image picking fails.

(inner) sendMessage(imgUlr)

Description:

​ Send a message with an image link.
Source:

​ screens/Camera.js, line 90

Parameters:

Name Type Description

imgUlr string The URL of the image to send.

Throws:

Will throw an error if the message fails to send.

(inner) takePhoto()

Description:

​ Take a photo using the camera.
Source:

​ screens/Camera.js, line 59

Throws:

Will throw an error if the camera fails to take a photo.

(inner) toggleCameraFacing()

Description:

​ Toggle the camera facing direction.

54

Source:

​ screens/Camera.js, line 51

(inner) uploadImage(uri)

Description:

​ Upload the image to the server.
Source:

​ screens/Camera.js, line 116

Parameters:

Name Type Description

uri string The URI of the image to upload.

Throws:

Will throw an error if the image upload fails.

ChatComponent
This module handles the chat functionality including sending, receiving, and
displaying messages.

Description:

​ This module handles the chat functionality including sending, receiving, and
displaying messages.

Source:

​ screens/afterLogin/ChatStack/ChatComponent.js, line 13

Methods

(inner) blockUser()

Description:

55

​ Blocks the user by making an API call.
Source:

​ screens/afterLogin/ChatStack/ChatComponent.js, line 113

Throws:

Will throw an error if the API call fails.

(inner) findChatByOtherUserId() → {Object|null}

Description:

​ Finds the chat by the other user's ID.
Source:

​ screens/afterLogin/ChatStack/ChatComponent.js, line 188

Returns:

The chat object if found, otherwise null.

Type Object | null

(inner) sendMessage(imgUlr)

Description:

​ Sends a message through the socket.
Source:

​ screens/afterLogin/ChatStack/ChatComponent.js, line 161

Parameters:

Name Type Description

imgUlr string The URL of the image to send.

Throws:

Will throw an error if the socket is not available.

(inner) unblockUser()

56

Description:

​ Unblocks the user by making an API call.
Source:

​ screens/afterLogin/ChatStack/ChatComponent.js, line 137

Throws:

Will throw an error if the API call fails.

ChatItem
A component that displays a chat item with user information, last message, and
unread message count.

Description:

​ A component that displays a chat item with user information, last message,
and unread message count.

Source:

​ screens/afterLogin/ChatStack/ChatItem.js, line 5
Author:

​ Fagner Nunes

Methods

(inner) convertTimeStamp(timestamp) → {string}

Description:

​ Converts a timestamp to a human-readable format. The function calculates
the difference between the current date and the message date and returns a
string with the time difference.

Source:

​ screens/afterLogin/ChatStack/ChatItem.js, line 14

Parameters:

Name Type Description

57

timestamp number The timestamp to convert.

Throws:

● Throws an error if the timestamp is invalid.

Type Error

Returns:

● The formatted time difference.

Type string

(inner) countUnreadMessages(messages) → {number}

Description:

​ Counts the number of unread messages. The function iterates over the
messages array and counts the number of messages that are unread.

Source:

​ screens/afterLogin/ChatStack/ChatItem.js, line 40

Parameters:

Name Type Description

messages Array The array of message objects.

Throws:

● Throws an error if the messages array is invalid.

Type Error

Returns:

● The count of unread messages.

Type number

(inner) workWithMsg(msg) → {string}

58

Description:

​ Processes the message to ensure it is displayed correctly. The function
checks the length of the message and truncates it if it is too long.

Source:

​ screens/afterLogin/ChatStack/ChatItem.js, line 57

Parameters:

Name Type Description

msg string The message to process.

Throws:

● Throws an error if the message is invalid.

Type Error

Returns:

● The processed message.

Type string

ChatScreen
This module represents the chat screen of the application. It displays the chat
messages and allows the user to search for messages.

Description:

​ This module represents the chat screen of the application. It displays the chat
messages and allows the user to search for messages.

Source:

​ screens/afterLogin/ChatStack/ChatScreen.js, line 20
Author:

​ Fagner Nunes

Methods

59

(inner) getuserData()

Description:

​ Fetches user data from the backend and sets it in the context. It sends a
request to the backend to get the user data.

Source:

​ screens/afterLogin/ChatStack/ChatScreen.js, line 36

Throws:

Will throw an error if the network request fails.

(inner) search(name)

Description:

​ Filters the messages based on the search query. It filters the messages based
on the name of the contact.

Source:

​ screens/afterLogin/ChatStack/ChatScreen.js, line 90

Parameters:

Name Type Description

name string The name to search for.

ContactItem
Component to display a contact item with options to add or remove a friend.

Description:

​ Component to display a contact item with options to add or remove a friend.
Source:

​ screens/afterLogin/ContactsStack/ContactItem.js, line 1
Author:

60

​ Fagner Nunes

Methods

(inner) addFriend() → {Promise.<void>}

Description:

​ Adds a friend to the contact list. It sends a request to the backend to add the
contact to the user's contact list.

Source:

​ screens/afterLogin/ContactsStack/ContactItem.js, line 54

Throws:

Will throw an error if the contact cannot be added.

Returns:

Type Promise.<void>

(inner) removeFriend() → {Promise.<void>}

Description:

​ Removes a friend from the contact list. It sends a request to the backend to
remove the contact from the user's contact list.

Source:

​ screens/afterLogin/ContactsStack/ContactItem.js, line 23

Throws:

Will throw an error if the contact cannot be removed.

Returns:

Type Promise.<void>

ContactsScreen

61

Screen component for displaying and searching contacts. The user can search for
contacts by name or email.

Description:

​ Screen component for displaying and searching contacts. The user can
search for contacts by name or email.

Source:

​ screens/afterLogin/ContactsStack/ContactsScreen.js, line 1
Author:

​ Fagner Nunes
​

ProfileScreen
Screen component for displaying and updating user profile information.

Description:

​ Screen component for displaying and updating user profile information.
Source:

​ screens/afterLogin/ProfileStack/ProfileScreen.js, line 1
Author:

​ Fagner Nunes

UpdatePassword
This module handles the password update functionality. It validates the password
based on certain criteria and updates the user's password.

Description:

​ This module handles the password update functionality. It validates the
password based on certain criteria and updates the user's password.

Source:

​ screens/afterLogin/ProfileStack/UpdatePassword.js, line 1
Author:

62

​ Fagner Nunes

Methods

(inner) UpdatePassword() → {void}

Description:

​ Updates the user's password. It sends a request to the backend to update the
user's password.

Source:

​ screens/afterLogin/ProfileStack/UpdatePassword.js, line 33

Throws:

Will throw an error if the password update fails.

Returns:

Type void

(inner) passwordSanity(text) → {void}

Description:

​ Validates the password based on certain criteria. It checks if the password
has at least 1 number, 1 capital letter and is at least 8 characters long.

Source:

​ screens/afterLogin/ProfileStack/UpdatePassword.js, line 65

Parameters:

Name Type Description

text string The password text to validate.

Returns:

Type void

screens/ModalComp
63

This is the ModalComp component. It is the component that shows the modal. It is
used to show messages to the user.

Description:

​ This is the ModalComp component. It is the component that shows the modal.
It is used to show messages to the user.

Source:

​ screens/ModalComp.js, line 4
Author:

​ Fagner Nunes

Parameters:

T
y
p
e

Description

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Title string The title of the modal.

Message string The message of the modal.

64

getVisible functio
n

The function that returns the visible state of the
modal.

onHide functio
n

The function to call to hide the modal.

Throws:

Will throw an error if the required props are not provided.

Returns:

Rendered component.

Type React.Element

screens/beforeLogin/E
mailVerification

This is the EmailVerification component. It is the screen where the user can verify the
email by entering the code. It is only rendered when the user is not logged in and
selects the register option.

Description:

​ This is the EmailVerification component. It is the screen where the user can
verify the email by entering the code. It is only rendered when the user is not
logged in and selects the register option.

Source:

​ screens/beforeLogin/EmailVerification.js, line 11
Author:

​ Fagner Nunes

65

Parameters:

N
a
m
e

T
y
p
e

Description

p
r
o
p
s

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Returns:

Rendered component.

Type React.Element

Methods

(inner) enterCode(input, numb) → {void}

Description:

​ This function is used to enter the code. It is used to set the number1,
number2, number3 and number4 states.

Source:

​ screens/beforeLogin/EmailVerification.js, line 39

Parameters:

66

Name Type Description

input number The input number.

numb string The number that the user typed.

Returns:

This function does not return anything.

Type void

(inner) resendcode() → {void}

Description:

​ This function is used to resend the code. It is used to resend the code to the
user's email.

Source:

​ screens/beforeLogin/EmailVerification.js, line 119

Throws:

Will throw an error if the network request fails.

Returns:

This function does not return anything.

Type void

(inner) verifyCode() → {void}

Description:

​ After user enters his email, an email containing a 4-digit code is sent to the
user. This function is used to verify the code.

Source:

​ screens/beforeLogin/EmailVerification.js, line 71

Throws:

67

Will throw an error if the network request fails.

Returns:

This function does not return anything.

Type void

screens/beforeLogin/L
ogin

This is the Login component. It is the screen where the user can login into the app. It
is only rendered when the user is not logged in and selects the login option.

Description:

​ This is the Login component. It is the screen where the user can login into the
app. It is only rendered when the user is not logged in and selects the login
option.

Source:

​ screens/beforeLogin/Login.js, line 13
Author:

​ Fagner Nunes

Parameters:

T
y
p
e

Description

68

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Returns:

Rendered component.

Type React.Element

Methods

(inner) getContacts() → {void}

Description:

​ This function is used to get the contacts from the server.
Source:

​ screens/beforeLogin/Login.js, line 47

Throws:

Will throw an error if the network request fails.

Returns:

This function does not return anything.

Type void

69

(inner) login() → {void}

Description:

​ This function is used to login the user. It sends a request to the server to login
the user. It also saves the token in the AsyncStorage.

Source:

​ screens/beforeLogin/Login.js, line 83

Throws:

Will throw an error if the network request fails.

Returns:

This function does not return anything.

Type void

screens/beforeLogin/L
oginOrRegister

This is the LoginOrRegister component. It is the screen where the user can choose
to login or register.

Description:

​ This is the LoginOrRegister component. It is the screen where the user can
choose to login or register.

Source:

​ screens/beforeLogin/LoginOrRegister.js, line 6

Parameters:

T
y
p
e

Description

70

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Throws:

Will throw an error if the navigation fails.

Returns:

Rendered component.

Type React.Element

Methods

(inner) navigateToLogin() → {void}

Description:

​ This function navigates the user to the Login screen.
Source:

​ screens/beforeLogin/LoginOrRegister.js, line 28

Throws:

Will throw an error if the navigation fails.

Returns:

This function does not return anything.

71

Type void

(inner) navigateToRegister() → {void}

Description:

​ This function navigates the user to the Register screen.
Source:

​ screens/beforeLogin/LoginOrRegister.js, line 17

Throws:

Will throw an error if the navigation fails.

Returns:

This function does not return anything.

Type void

screens/beforeLogin/P
assword

This is the Password component. It is the screen where the user can enter a
password that follows the secure password guideline. It is only rendered when the
user is not logged in and selects the register option.

Description:

​ This is the Password component. It is the screen where the user can enter a
password that follows the secure password guideline. It is only rendered when
the user is not logged in and selects the register option.

Source:

​ screens/beforeLogin/Password.js, line 13
Author:

​ Fagner Nunes

Parameters:

72

T
y
p
e

Description

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Throws:

Will throw an error if the navigation fails.

Returns:

Rendered component.

Type React.Element

Methods

(inner) passwordSanity(text) → {void}

Description:

​ This function is used to check the password. It is used to check if the
password has at least 1 number, 1 capital letter and is at least 8 chars long.

Source:

​ screens/beforeLogin/Password.js, line 53

Parameters:

73

Name Type Description

text string The text that the user typed.

Returns:

This function does not return anything.

Type void

(inner) setPassword() → {void}

Description:

​ This function is used to set the password. It sends a request to the server to
set the password. It also saves the token in the AsyncStorage.

Source:

​ screens/beforeLogin/Password.js, line 84

Throws:

Will throw an error if the network request fails.

Returns:

This function does not return anything.

Type void

screens/beforeLogin/R
egister

This is the Register component. It is the screen where the user begin the registration
flow into the app.

Description:

74

​ This is the Register component. It is the screen where the user begin the
registration flow into the app.

Source:

​ screens/beforeLogin/Register.js, line 13
Author:

​ Fagner Nunes

Parameters:

T
y
p
e

Description

O
b
j
e
c
t

Component props.

Properties

Name Type Description

navigation Object Navigation object from react-navigation.

Returns:

Rendered component.

Type React.Element

Methods

(inner) handleEmailChange(email) → {void}

Description:

​ This function is used to handle the email change.

75

Source:

​ screens/beforeLogin/Register.js, line 62

Parameters:

Name Type Description

email string The email to be updated.

Returns:

This function does not return anything.

Type void

(inner) handleNameChange(name) → {void}

Description:

​ This function is used to handle the name change.
Source:

​ screens/beforeLogin/Register.js, line 52

Parameters:

Name Type Description

name string The name to be updated.

Returns:

This function does not return anything.

Type void

(inner) submitNameEmail() → {void}

Description:

​ This function is used to submit the name and email to the server and navigate
to the code screen. It also validates the name and email.

76

Source:

​ screens/beforeLogin/Register.js, line 73

Returns:

This function does not return anything.

Type void

backend
This is the backend module for the messaging app. It includes the endpoints for user
registration, login, and messaging between users using WebSockets. It also includes
the endpoints for uploading images to an S3 bucket, updating user profile pictures,
and updating user settings.

Description:

​ This is the backend module for the messaging app. It includes the endpoints
for user registration, login, and messaging between users using WebSockets.
It also includes the endpoints for uploading images to an S3 bucket, updating
user profile pictures, and updating user settings.

Source:

​ index.js, line 31
Version:

​ 1.0
Author:

​ Fagner Nunes

Requires
● module:express
● module:db

Methods

77

(inner) authenticateToken(req, res, next)

Description:

​ This function authenticates the token sent by the user in the Authorization
header. If the token is not present, it sends a 401 status code. If the token is
not valid, it sends a 403 status code.

Source:

​ index.js, line 159

Parameters:

Name Type Description

req * // The request object from Express

res * // The response object from Express

next * // The next function to be called

Returns:

// The next function to be called or a status code if the token is not present or not
valid.

(inner) authenticateTokenWebsocket(token) → {Object}

Description:

​ Verifies the provided token and returns the user data if the token is valid.
Source:

​ index.js, line 181

Parameters:

Name Type Description

token string The JWT token to be verified.

78

Throws:

If the token is invalid or verification fails.

Type Error

Returns:

The decoded user data from the token.

Type Object

(inner) generateToken(data) → {string}

Description:

​ This function generates a token using the JWT library and a secret key. The
token expires in 1 hour.

Source:

​ index.js, line 149

Parameters:

Name Type Description

data * // The data to be stored in the token

Returns:

// The generated token

Type string

(inner) getDataFromToken(req)

Description:

​ This function gets the data from the JWT token sent by the user in the
Authorization header.

Source:

​ index.js, line 287

Parameters:

79

Name Type Description

req * // The request object from Express

Returns:

// The data from the JWT token

(inner) markMessageDeliveredTouser(messageId) →
{Promise.<Object>}

Description:

​ Marks a message as delivered based on the provided message ID.
Source:

​ index.js, line 999

Parameters:

Name Type Description

messageId string The ID of the message to mark as delivered.

Throws:

If the message delivery status could not be updated.

Type Error

Returns:

A promise that resolves with the message delivery status.

Type Promise.<Object>

(inner) savemessage(delivered, read, message, sender,
receiver, imageLink, msgTimestamp) → {Promise.<Object>}

Description:

​ Saves a message with the provided details to the database.

80

Source:

​ index.js, line 966

Parameters:

Name Type Description

delivered boolean Indicates if the message was delivered.

read boolean Indicates if the message was read.

message string The content of the message.

sender string The ID of the sender.

receiver string The ID of the receiver.

imageLink string The link to the image associated with the message.

msgTimestamp number The timestamp of the message.

Throws:

If the message could not be saved.

Type Error

Returns:

A promise that resolves with the saved message details.

Type Promise.<Object>

81

Methods

(async) addChatsFieldToUsers() → {Promise.<void>}

Description:

​ This function checks each user document in the users collection and adds a
'chats' field if it doesn't already exist.

Source:

​ db.js, line 829

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves when the operation is complete.

Type Promise.<void>

addContact(userId, contactId) → {Promise.<Object>}

Description:

​ This function fetches the user's document by userId, retrieves the current
contacts array, and adds the contactId to the array if it doesn't already exist. It
then updates the user's document with the new contacts array.

Source:

​ db.js, line 98

Parameters:

Name Type Description

userId string The ID of the user to whom the contact will be added.

contactId string The ID of the contact to be added.

Throws:

82

Will throw an error if the user is not found or if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the contact was successfully added.

Type Promise.<Object>

addMessage(senderId, receiverId, message, imageLink) →
{Promise.<void>}

Description:

​ This function creates a new message object and adds it to the messages
collection.

Source:

​ db.js, line 738

Parameters:

Name Type Description

senderId string The ID of the user sending the message.

receiverId string The ID of the user receiving the message.

message string The content of the message.

imageLink string The URL of the image associated with the message.

Throws:

Will throw an error if adding the message fails.

Type Error

Returns:

83

A promise that resolves when the message is added.

Type Promise.<void>

blockUser(userId, blockedUserId) → {Promise.<Object>}

Description:

​ This function fetches the user's document by userId, retrieves the current
blocked array, and adds the blockedUserId to the array if it doesn't already
exist. It then updates the user's document with the new blocked array.
Additionally, it updates the blockedUser's document by adding the userId to
their blockedUser array.

Source:

​ db.js, line 582

Parameters:

Name Type Description

userId string The ID of the user who is blocking another user.

blockedUserId string The ID of the user to be blocked.

Throws:

Will throw an error if fetching or updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the user was successfully blocked.
● message (string): A message indicating the result of the operation.

Type Promise.<Object>

clearUsersTable() → {Promise.<void>}

Description:

​ This function deletes all documents in the users collection.

84

Source:

​ db.js, line 533

Throws:

Will throw an error if clearing the users table fails.

Type Error

Returns:

A promise that resolves when the users table is cleared.

Type Promise.<void>

createUser(name, email, password, avatarUrl, code,
code_timestamp, active, logginAttempt,
logginAttempt_timestamp, description, vibration, sound,
notification) → {Promise.<void>}

Description:

​ This function creates a new user object with the provided parameters and
adds it to the users collection in the database. It initializes various user
properties such as name, email, password, avatar URL, code, timestamps,
and settings.

Source:

​ db.js, line 8

Parameters:

Name Type Description

name string The name of the user.

email string The email of the user.

password string The password of the user.

avatarUrl string The URL of the user's avatar.

85

code string The code associated with the user.

code_timestamp Date The timestamp of the code.

active boolean The active status of the user.

logginAttempt number The number of login attempts.

logginAttempt_timestamp Date The timestamp of the last login attempt.

description string The description of the user.

vibration boolean The vibration setting of the user.

sound boolean The sound setting of the user.

notification boolean The notification setting of the user.

Throws:

Will throw an error if adding the user fails.

Type Error

Returns:

A promise that resolves when the user is added.

Type Promise.<void>

deleteContact(userId, contactId) → {Promise.<Object>}

Description:

86

​ This function fetches the user's document by userId, retrieves the current
contacts array, and removes the contactId from the array if it exists. It then
updates the user's document with the new contacts array.

Source:

​ db.js, line 142

Parameters:

Name Type Description

userId string The ID of the user from whom the contact will be deleted.

contactId string The ID of the contact to be deleted.

Throws:

Will throw an error if the user is not found or if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the contact was successfully deleted.

Type Promise.<Object>

(async) getChatsByUserId(userId) → {Promise.<Object>}

Description:

​ This function retrieves chats from the chats collection by user ID.
Source:

​ db.js, line 1010

Parameters:

Name Type Description

userId string The ID of the user whose chats are to be retrieved.

87

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves to an object containing the success status and an array of
chats.

Type Promise.<Object>

getCodeById(id) → {Promise.<Object>}

Description:

​ This function fetches the user's document by their ID and retrieves the code
and code timestamp.

Source:

​ db.js, line 433

Parameters:

Name Type Description

id string The ID of the user whose code is to be retrieved.

Throws:

Will throw an error if fetching the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● code (string): The code of the user.
● code_timestamp (Date): The timestamp of the code.

Type Promise.<Object>

getContacts(userId) → {Promise.<Object>}

Description:

88

​ This function fetches the user's document by userId, retrieves the current
contacts array, and filters out any contacts that are in the blockedUser array. It
returns the filtered contacts.

Source:

​ db.js, line 183

Parameters:

Name Type Description

userId string The ID of the user whose contacts are to be retrieved.

Throws:

Will throw an error if fetching the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the contacts were successfully retrieved.
● contacts (Array): The filtered list of contact IDs.
● message (string): An error message if the operation fails.

Type Promise.<Object>

(async) getMessagesBetweenUsers(userId1, userId2,
limitopt, lastMessageTimestampopt) → {Promise.<Object>}

Description:

​ This function retrieves messages from the messages collection between two
users.

Source:

​ db.js, line 975

Parameters:

Name Type Attribute
s

Defa
ult

Description

89

userId1 stri
ng

The ID of the first user.

userId2 stri
ng

The ID of the second user.

limit numb
er

<option
al>

20 The maximum number of messages to
retrieve.

lastMessageTimes
tamp

numb
er

<option
al>

nul
l

The timestamp of the last message to
start after.

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves to an object containing the success status and an array of
messages.

Type Promise.<Object>

(async) getMessagesByChatId(chatId, limitopt,
lastMessageTimestampopt) → {Promise.<Object>}

Description:

​ This function retrieves messages from the messages collection by chat ID.
Source:

​ db.js, line 1076

Parameters:

Name Type Attribute
s

Defa
ult

Description

chatId stri
ng

The ID of the chat to retrieve
messages from.

90

limit numb
er

<option
al>

20 The maximum number of messages to
retrieve.

lastMessageTimes
tamp

numb
er

<option
al>

nul
l

The timestamp of the last message to
start after.

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves to an object containing the success status and an array of
messages.

Type Promise.<Object>

isEmailAlreadyRegistered(email) → {Promise.<Object>}

Description:

​ This function queries the users collection to check if a user with the specified
email already exists. It returns an object indicating whether the email is
registered, along with the user's ID and account status if applicable.

Source:

​ db.js, line 62

Parameters:

Name Type Description

email string The email to check for registration.

Throws:

Will throw an error if the query fails.

Type Error

Returns:

A promise that resolves to an object containing:

91

● email_registered (boolean): Indicates if the email is registered.
● id (string|null): The ID of the user if the email is registered, otherwise null.
● AccountStatus (string): The account status of the user if the email is

registered, otherwise "pending".

Type Promise.<Object>

(async) markMessageDelivered(messageId) →
{Promise.<Object>}

Description:

​ This function updates the 'delivered' field of a message document in the
messages collection to true.

Source:

​ db.js, line 956

Parameters:

Name Type Description

messageId string The ID of the message to mark as delivered.

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves to an object containing the success status.

Type Promise.<Object>

(async) saveMessage(delivered, read, message, sender,
receiver, imageLink, msgTimestamp) → {Promise.<Object>}

Description:

​ This function saves a message to the messages collection and updates the
relevant chat and user documents.

Source:

​ db.js, line 858

Parameters:

92

Name Type Description

delivered boolean Indicates if the message was delivered.

read boolean Indicates if the message was read.

message string The content of the message.

sender string The ID of the sender.

receiver string The ID of the receiver.

imageLink string A link to an image associated with the message.

msgTimestamp number The timestamp of the message.

Throws:

Will throw an error if there is an issue with the database operation.

Returns:

A promise that resolves to an object containing the success status and the message ID if
successful.

Type Promise.<Object>

searchUserByEmail(userId, email) → {Promise.<Object>}

Description:

​ This function searches the users collection for users with the specified email.
It excludes the requesting user (identified by userId) and any users that are in
the requesting user's blockedUser array.

Source:

93

​ db.js, line 221

Parameters:

Name Type Description

userId string The ID of the user making the request.

email string The email to search for.

Throws:

Will throw an error if the search operation fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the search was successful.
● users (Array): An array of user objects that match the search criteria.
● message (string): An error message if the operation fails.
● Type Promise.<Object>

selectAllUsers() → {Promise.<Array.<Object>>}

Description:

​ This function fetches all user documents from the users collection and returns
an array of user data.

Source:

​ db.js, line 488

Throws:

Will throw an error if fetching the users fails.

Type Error

Returns:

A promise that resolves to an array of user objects.

Type Promise.<Array.<Object>>

94

selectUserById(id) → {Promise.<Object>}

Description:

​ This function fetches the user's document by their ID from the users
collection. It returns an object containing the user's details if found.

Source:

​ db.js, line 264

Parameters:

Name Type Description

id string The ID of the user to retrieve.

Throws:

Will throw an error if fetching the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the user was successfully retrieved.
● id (string): The ID of the user.
● name (string): The name of the user.
● email (string): The email of the user.
● avatarUrl (string): The URL of the user's avatar.
● AccountStatus (string): The account status of the user.
● description (string): The description of the user.
● vibration (boolean): The vibration setting of the user.
● sound (boolean): The sound setting of the user.
● notification (boolean): The notification setting of the user.
● message (string): An error message if the operation fails.

Type Promise.<Object>

setAccountStatus(id, status) → {Promise.<Object>}

Description:

​ This function updates the user's document with the new account status.

95

Source:

​ db.js, line 508

Parameters:

Name Type Description

id string The ID of the user whose account status is to be updated.

status string The new account status for the user.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the account status was successfully updated.

Type Promise.<Object>

setPassword(id, password) → {Promise.<Object>}

Description:

​ This function updates the user's document with the new password.
Source:

​ db.js, line 461

Parameters:

Name Type Description

id string The ID of the user whose password is to be updated.

96

password string The new password for the user.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the password was successfully updated.

Type Promise.<Object>

unblockUser(userId, blockedUserId) → {Promise.<Object>}

Description:

​ This function fetches the user's document by userId, retrieves the current
blocked array, and removes the blockedUserId from the array if it exists. It
then updates the user's document with the new blocked array. Additionally, it
updates the blockedUser's document by removing the userId from their
blockedUser array.

Source:

​ db.js, line 641

Parameters:

Name Type Description

userId string The ID of the user who is unblocking another user.

blockedUserId string The ID of the user to be unblocked.

Throws:

Will throw an error if fetching or updating the user's document fails.

Type Error

97

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the user was successfully unblocked.
● message (string): A message indicating the result of the operation.

Type Promise.<Object>

updateCode(id, code, code_timestamp) →
{Promise.<Object>}

Description:

​ This function updates the user's document with the new code and code
timestamp.

Source:

​ db.js, line 406

Parameters:

Name Type Description

id string The ID of the user whose code is to be updated.

code string The new code for the user.

code_timestamp Date The new timestamp for the code.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the code was successfully updated.

Type Promise.<Object>

98

updateDescription(id, description) → {Promise.<Object>}

Description:

​ This function updates the user's document with the new description.
Source:

​ db.js, line 698

Parameters:

Name Type Description

id string The ID of the user whose description is to be updated.

description string The new description for the user.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the description was successfully updated.

Type Promise.<Object>

(async) updateExistingUsers() → {Promise.<void>}

Description:

​ This function fetches all user documents from the users collection and
updates them with default values for the description, vibration, sound, and
notification fields.

Source:

​ db.js, line 1113

Throws:

Will throw an error if there is an issue with the database operation.

99

Returns:

A promise that resolves when the operation is complete.

Type Promise.<void>

updateName(id, name) → {Promise.<Object>}

Description:

​ This function updates the user's document with the new name.
Source:

​ db.js, line 556

Parameters:

Name Type Description

id string The ID of the user whose name is to be updated.

name string The new name for the user.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the name was successfully updated.

Type Promise.<Object>

updateToggles(id, sound, notification, vibration) →
{Promise.<Object>}

Description:

​ This function updates the user's document with the new toggle settings for
sound, notification, and vibration.

100

Source:

​ db.js, line 349

Parameters:

Name Type Description

id string The ID of the user whose toggle settings are to be
updated.

sound boolea
n

The new sound setting for the user.

notification boolea
n

The new notification setting for the user.

vibration boolea
n

The new vibration setting for the user.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the toggles were successfully updated.

Type Promise.<Object>

updateUserProfilePicture(id, avatarUrl) →
{Promise.<Object>}

Description:

​ This function updates the user's document with the new profile picture URL.
Source:

101

​ db.js, line 379

Parameters:

Name Type Description

id strin
g

The ID of the user whose profile picture is to be updated.

avatarUrl strin
g

The new URL of the user's profile picture.

Throws:

Will throw an error if updating the user's document fails.

Type Error

Returns:

A promise that resolves to an object containing:

● success (boolean): Indicates if the profile picture was successfully updated.

Type Promise.<Object>

userNameEmailStep(name, email, code, code_timestamp,
AccountStatus) → {Promise.<Object>}

Description:

​ This function creates a new user object with the provided parameters and
adds it to the users collection in the database. It initializes various user
properties such as name, email, code, timestamps, and settings.

Source:

​ db.js, line 303

Parameters:

Name Type Description

102

name string The name of the user.

email string The email of the user.

code string The code associated with the user.

code_timestamp Date The timestamp of the code.

AccountStatus string The account status of the user.

Throws:

Will throw an error if adding the user fails.

Type Error

Returns:

A promise that resolves to an object containing:

● id (string|null): The ID of the newly created user if successful, otherwise null.
● success (boolean): Indicates if the user was successfully created.

Type Promise.<Object>

103

