

National College of Ireland

Technical Report

Title: BiggerPhish: An Interactive Cybersecurity Training Platform
Due: 04/8/2024

Programme Name: BSc in Computing
Specialisation: Cybersecurity
Academic Year: 2023/2024
Student Name: Padraig McCauley
Student Number: 20123744
Student Email: x20123744@student.ncirl.ie

mailto:x20123744@student.ncirl.ie

1

Table of Contents
1. Executive Summary ... 2

2. Introduction ... 2

2.1 Background .. 2

2.2 Aims .. 3

2.3 Technology ... 3

2.4 Structure .. 4

3. System .. 5

3.1 Requirements .. 5

3.1.1 Functional Requirements ... 5

3.1.2 Data Requirements .. 12

3.1.3 User Requirements .. 12

3.1.4 Environmental Requirements ... 13

3.1.5 Usability Requirements ... 13

3.2 Design & Architecture ... 13

3.3 Implementation ... 19

3.4 Graphical User Interface (GUI) .. 29

3.5 Testing .. 37

Unit Testing .. 37

Security Testing ... 38

Functional Testing ... 39

3.6 Evaluation .. 41

4. Conclusions ... 42

5. Further Development or Research .. 42

6. References ... 43

7. Appendices .. 44

Project Proposal .. 44

Reflective Journals .. 49

2

1. Executive Summary

This report details the BiggerPhish educational platform’s conception, implementation
and points of note in relation to the techniques and technologies used to create the
platform. The report lists the eight major functional requirements gathered through
research and how these requirements are significant to the platform’s implementation
– ensuring it works as expected and also serves its purpose as an education platform
effectively. Security was considered through every stage of the implementation and is
detailed in both the functional requirements (example encryption specifications) as
well as the testing of the platform itself – the platform must be an example of secure
programming. The report describes the key components of the application with image
examples as well as descriptions of the code when needed to better illustrate the flow
of the system. The report describes the testing processes for each of the categories of
testing types needed (unit, system, security etc.) and evaluates the system based on
these results. The conclusion gives insight into both the personal and technical
accomplishments of the project and later the report elaborates on where the project
could potentially go if continued outside of the time constraints set. The appendix gives
some insight into the project’s progression through the original project proposal and
the monthly reflective journals. To reiterate the conclusion of the project, the
implementation was a success, based on personal metrics yet with the knowledge
gained throughout the course of the project it is felt that a more robust solution could
be built if reimplemented. The experience was worthwhile, and much was learned
about the technologies, the topics and management of times and projects as a whole.

The platform is available at https://www.padraigmccauley.online:3000/ and note it has
a self-signed certificate so the warning must be bypassed.

Login details:
adminUser@test.com

Boat-Throw-Wing-Robbery-5

standardUser@user.com

Lazy-Beg-Report-Cruel-4

2. Introduction

2.1 Background

The initial idea for the platform was to offer some form of education for cybersecurity in
a way that is novel but also technically challenging enough to satisfy my personal goals
and the brief of the project. Inspiration was taken from WebGoat by OAWSP as this
offers modular lessons that users interact with to complete. Having a way to ‘show’

https://www.padraigmccauley.online:3000/

3

users a real-life phishing attack seems like an achievable goal and a way to offer a
gamified method of education that is accessible.

The project idea was also inspired by the PC game “Papers, Please” which has users
make decisions on whether a person is allowed to pass a security checkpoint based on
a review of their documentation (passport, letters etc). The game has a time element
which means there is a limited window to assess all materials before making a
decision, so this was an interesting mechanic I wanted to incorporate as it would match
a real-world scenario in the event of a phishing attack.

By mixing the practical approach of cybersecurity training from WebGoat with the time-
based decision-making aspects of "Papers, Please", the platform should give a unique
and novel way for users to learn about phishing attacks in a lasting way. In addition to
the above I have also set a personal challenge to attempt to incorporate two database
technologies – SQL and NoSQL. I am doing this to challenge my technical abilities as
well as gain knowledge in an area I have wanted to improve for some time.

2.2 Aims

The key aim of BiggerPhish is to create an engaging educational platform, inspired by
applications like WebGoat by OWASP and the game "Papers, Please”. The project aims
to achieve the following goals:

– To offer cybersecurity education in an interactive way.
– To gamify learning in order to appeal to a wide range of students.
– To track progress of content completed.
– To ensure a smooth user experience.
– To implement a platform with full administrative capabilities for platform

management.
– To achieve personal goal of implementing two database types.

2.3 Technology

In developing BiggerPhish, my approach began with a comprehensive requirement
identification phase. I researched similar products/materials (WebGoat, for example)
to capture all the necessary functional and non-functional requirements.

Once I had enough information to determine my requirements, I adopted an agile
methodology, breaking down the project into two-week sprints. This iterative approach
ensured the project adapted to changes in a timely manner.

I chose Express.js (node.js) for the backend to leverage its efficiency and because it
was a technology I had always wanted to improve on for professional reasons. The
frontend uses HTML5, CSS3, and JavaScript to provide the interactive user experience. I
also incorporated Bootstrap for its responsive design capabilities and ease of use for
building the UI grids etc.

4

Microsoft SQL server and Mongo DB were the two database technologies used to hold
data persistently and support the functionality’s storage needs.

I also used GitHub for version controlling. Security is paramount in cybersecurity
application, so express middleware such as Helmet and csurf were incorporated to
adhere to secure coding standards.

For deployment, I set up a CI/CD pipeline using Circle CI (coupled with GitHub), which
enabled me to maintain a consistent delivery of features while ensuring the application
is stable and secure.

2.4 Structure

The structure of this report is organised as follows:

Introduction

This section provides a background to the project, giving context to decisions made
throughout the project and detailing the technical decisions made to accomplish
the objectives.

System

The system section details the functional requirements of the platform, examining
each of the use cases used as key components of the application.

It explains the architecture of the solutions for these use cases, how they are
implemented and how testing and evaluation has been carried out to confirm their
completeness.

Conclusion

The conclusion summarises and evaluates the project, considering the successes
and failures of the implementation. The further development or research section
discusses the potential road map for further development of the project and
suggests improvements if more time and resources are available.

Appendices

This section includes the original project proposal and reflective journals which
were written throughout the course of the project, broken into months

5

3. System

3.1 Requirements

3.1.1 Functional Requirements

3.1.1.1 Interactive Cybersecurity Education

Use Case Diagram

Description & Priority

The platform will provide users with practical, interactive lessons allowing learners to
participate in simulated phishing attacks.

Priority: High

Use Case

Scope: The scope of this use case includes interactive cybersecurity lessons on
phishing attacks.

Flow Description:

– Precondition: Users log in.
– Activation: This use case starts when a user selects an interactive lesson on

phishing attacks.
– Main Flow:

– The system presents the user with a simulated phishing attack scenario.

6

– The user analyses the scenario and decides whether the email is real or fake.
– The system provides feedback on the user's decision after five emails have been

flagged.
– The user proceeds to the next lesson or repeats the scenario for better

understanding.

3.1.1.2 Gamification of Learning

Use Case Diagram

Description & Priority

Include game-like elements to the module activities such as time-based decision-
making and a countdown timer. This involves users identifying phishing and malicious
emails under time constraints, simulating real-world pressure

Priority: High

Use Case

Scope: Gamification aspects within training modules.

Flow Description

– Precondition: User has begun a gamified module.
– Activation: This use case starts when the module presents the user with a series of

emails.
– Main Flow:

7

– The system offers a mixed set of phishing and legitimate emails.
– The user must quickly identify and sort the emails.
– The system assesses the user's performance and provides feedback in the form

of a score out of five.
– The difficulty level increases as the user progresses, in the form of more subtle

phishing attempts.

3.1.1.3 Dual Database System

Use Case Diagram

Description & Priority

Implement both a SQL and NoSQL database within the system. The SQL will store user
and course information while the NoSQL will contain email content for the modules.

Priority: Medium

Use Case

Scope: Handling of data through a dual database system.

Flow Description

– Precondition: The system is operational with initialised databases.
– Activation: This use case starts when a user interacts with the platform, requiring

data retrieval or storage.
– Main Flow:

– The system retrieves user profiles and progress from the SQL database.

8

– Dynamic content for the modules is served from the NoSQL database.
– User interactions, such as completing modules or updating profiles, trigger data

updates across both databases.
– The system ensures data consistency and integrity between the databases.

3.1.1.4 Credential Management System

Use Case Diagram

Description & Priority

System credentials used by this system to access databases, SMTP Server, SSH access
and more stored securely.

Priority: High

Use Case

Scope: Security of system access credentials.

Flow Description

– Precondition: Credentials stored as environmental variables.
– Activation: The system accesses the environmental variables if/when access is

needed to any of the components.
– Main Flow:

– Credentials are stored as environment variables, not hardcoded.
– The application accesses these credentials securely when connecting to any of

the mentioned components.

User

9

3.1.1.5 Password Encryption

Use Case Diagram

Description & Priority

Uses bcrypt to encrypt passwords when stored in the database. In doing so, this
prevents unauthorised access in the event of a data breach as passwords are not
stored in plaintext.

Priority: High

Use Case

Scope: Security of user authentication data.

Flow Description

– Precondition: A user registers or changes their password.
– Activation: The user submits a password through the registration or password

change form.
– Main Flow:

– The system captures the plaintext password input by the user.
– Bcrypt is used to hash the password before storage.
– The encrypted password is stored in the database, ensuring that it cannot be

easily read even if accessed.

10

3.1.1.6 Admin Workflow Implementation

Use Case Diagram

Description & Priority

Incorporate administrative functionality for admin level users to allow them to manage
users, courses etc.

Priority: Medium

Use Case

Scope: Administration of platform.

Flow Description:

– Precondition: Admin needs to manage users or content.
– Activation: Admin logs into the admin panel.
– Main Flow:

– Admin uses the panel to remove or modify user profiles and/or add, remove or
modify courses and content.

– Content can be uploaded, removed, or updated through the panel.
– Changes are logged.

3.1.1.7 Content Upload Mechanism

Use Case Diagram

11

Description & Priority

Implement a system for uploading educational content in PDF or XLSX formats.

Priority: Medium

Use Case

Scope: Content uploading.

Flow Description

– Precondition: New content needs to be added or existing content updated.
– Activation: An admin uploads new materials.
– Main Flow:

– Files are uploaded through a secure interface to the server. XLSX file is parsed
and sent to the Mongo DB with associated values to link to lesson.

– Content is made available to users based on their enrolment status with the
course in question.

– Relevant database fields are updated.

3.1.1.8 Password Reset Functionality

Use Case Diagram

Description & Priority

Incorporate password reset functionality via a dedicated reset page. Temporary
password is emailed to the email address associated with the user.

Priority: Medium

12

Use Case

Scope: Password reset process.

Flow Description:

– Precondition: A standard or admin level admin requests a password reset.
– Activation: The user selects the ‘Forgot Password’ option and enters their email

address.
– Main Flow:

– A password reset email is sent to the user’s email address.
– The user uses the new password emailed to them.
– The new password is encrypted using bcrypt and updated in the database.

3.1.2 Data Requirements

The data requirements are as follows:

User profile data

- Name, email, password

Course data

- Name and description of the course

Content data

- Content name and description
- Linked course ID
- Content materials (in two forms: PDF and XLSX)

Mock email data

- Data used to populate mock emails to users in the email portal
- Held in MongoDB and parsed from XLSX to JSON

Content for five modules has been uploaded – this is in the form of PDF files and email
collections in the MongoDB database. An XLSX template is supplied for email uploads
(via a download button).

3.1.3 User Requirements

Users should be able to:

13

- Register and create profiles with secure authentication.
- Access a variety of interactive cybersecurity lessons.
- Participate in gamified modules with progressive difficulty levels (through

content complexity).
- Track their progress and revisit completed lessons.

3.1.4 Environmental Requirements

The platform is designed as a web application so users will need web access and a
browser to access the functionality. As it is web based, it is operating system agnostic
so will run on any web enabled device, however, it is not designed to be accessed from
mobile (although it is accessible, the styling will not appear as clean/optimised as the
desktop browser version).

From a hosting perspective (as well as security) https is required so the app has been
updated to use https and a self-signed certificate – in a real-life scenario a cname
record would be added to the servers DNs records to accompany a third-party
certificate. Both MSSQL and mongo have been installed locally on the server so there
are less security considerations around the transport of data across distributed
servers.

3.1.5 Usability Requirements

– Smooth user interface.
– Engaging content.
– Clear feedback with each user interaction.

3.2 Design & Architecture

The backend consists of node.js (express.js). The frontend consists of HTML, CSS,
JavaScript and Bootstrap.

Database:

- Microsoft SQL server
- MongoDB

Middleware:

- Winston (logging)
- Helmet (security)
- csurf (security)
- bcrypt (security)

Below are screenshots and images of the relevant designs and architecture of the
system:

14

Database structure:
MSSQL

The database has the following schema:

All calls (with input values) are made to stored procedures from the backend to the
database to increase security and have a central place to update queries/returned
values etc.

15

Example of a stored procedure that updates several tables based on certain criteria (if a
user is registers for a course and new content is added – they should then be auto

16

enrolled):

An example of the delete stored procedure – if there are tables with records linked to
the content, a soft delete is performed (set to inactive instead):

17

MongoDB

The mongo is titled emailDB and inside this database there are collections linked to the
contentID and course ID from the MSSQL database. Each collection entry has the same
structure:

Users upload collection content via an xlsx file with a fixed structure so that the correct
field is mapped to the corresponding key for the collection i.e. column 1 links to the
sender key, column 2 to the snippet key etc.

Node server endpoints

The frontend of the application calls the backend through its endpoints (depending on
the request type – GET, POST, PUT or DELETE – a different endpoint is called with the
required request content). If the request is successful a success request is sent to the

18

frontend to pass this to the user, and likewise if unsuccessful a negative response is
sent to inform the user. Each endpoint has middleware protecting access and
redirecting based on the results of the middleware checks (as already detailed in the
Implementation section).

File structure

The root directory holds the express.js/node server file and the certificate information.
There are also two log files generated to this area – error.log and combined.log. Both
hold information generated by the logger object and this same information is also
logged into the log table of the MSSQL database, so these are treated as backup logs.
An env file holds the credentials for each interface/module that requires authentication
(such as the DBs).

Inside the cricleCi folder my circle yml file holds the instructions for deploying to the
cloud server after each push to the main branch on GitHub.

Inside the public folder the HTML, CSS and JS files for the frontend are held. Inside the
public folder there are two folders – assets and coursecontent. Assets holds logos and
coursecontent holds uploaded PDF files that are stored there after upload for retrieval.

Frontend

Each page of the application has a corresponding JavaScript and HTML file. The css file
is shared amongst all pages as well as a common.js file which handles logout requests.
Many of the pages have html elements that are served via the js file as there is dynamic
content – tables in particular:

19

The html:

3.3 Implementation

Core functionalities are implemented using various algorithms and classes, such as:

Authentication and authorisation mechanisms to secure user data.

A middleware suite has been added to the node server to check for certain criteria to
protect unauthorised access:

isAdmin checks the user record in the MSSQL database for the admin flag. If the user is
an admin the access is allowed. This middleware is applied to admin-level
pages/functionality. This functionality is also used to help the system server the correct
user-level pages as the system differs depending on the user’s privilege level.

20

isAuthenticated checks that the user has logged into the system before allowing them
access to any page outside of the login and register page. This is applied to most
endpoints.

21

isEnrolled:
This blocks a user from accessing any course material they have not yet signed up for
(the imagined scenario being someone manually changing the url of the site to redirect

22

to a different course):

csurf (an express middleware) has been used across the system to protect against
unauthorised access or session spoofing by enforcing tokenised endpoint calls. Every
frontend call to an endpoint (outside of a GET request) must carry a token.:

23

Algorithms to simulate phishing attacks and gamified learning modules.

The js file get the emails from the email endpoint (that gets it from the mongo db):

The emails are then delivered in set intervals to give the user time to process each:

24

Based on the userLevel value (a randmoise number) the delivery ratio changes

Data management classes to interface with SQL and NoSQL databases efficiently.

Each database has its own individual endpoints for CRUD operations but the link
between them (in particular content creation) has the following flow and depends on

25

each step to be a successful creation of emails:
Emails are uploaded in xlsx format to the frontend which pares them into JSON format

26

and posts this to the content creation endpoint:

27

The endpoint creates the entry in the MSSQL database which generates a contentID
which is then used as the key for creating the MongoDb entry:

28

29

Note the returned values which are then sent to the uploadEmails function

When retrieving the emails the Email field of the Coursecontent table is referenced to
get the correct collection name for the MongoDB database:

3.4 Graphical User Interface (GUI)

The standard platform (non-admin users) features a welcome dashboard, a menu bar
with links for easy access to different modules, a progress tracking section, and
courses designed with a lifelike email portal, a user settings page and (if an admin)
there is both a user and course management section. The email portal was modelled on
Gmail.

30

Below are the relevant screenshots and images from each section:

Email portal:

Gmail:

User home page

31

User courses page:

User progress page:

32

Admin or User Settings page:

Admin course management page:

33

Clicking the buttons will either trigger functionality for deletion or open a new page or
modal:

Admin user management page:

34

Home page:

35

Login page:

36

Register page:

37

Forgot password page:

3.5 Testing

Unit Testing

Jest is used to perform unit testing on the server.js file endpoints in an automated
fashion (server.test.js). An example of the output from the tests:

38

From these I can determine if individual endpoints are functioning as expected, in
particular after any changes are made. An example of a more granular log message on a
failed test:

Security Testing

Spider attacks were used to test the security aspects of the functionality via OWASP
ZAP. Credentials were added to the parameters of ZAP along with contexts to show a
logged in or logged out state for the site. With these in place automated attacks could
be run and amendments then made to the security aspects of the site based on the
alerts – an example of the alerts flagged by the attacks:

39

As a result of the ZAP security tests, the following aspects were added to the platform:

– Content headers
– Returned values cleaned up
– Console logs cleaned up
– Tokenised calls to the frontend
– HTTPS enabled and configured
– Cookies enabled and configured

Functional Testing

Requirement Action Expected Result Result

Participation in
simulated Phishing
attacks

Present user with five
simulated phishing
attack scenarios. User
identifies each as
attack or safe.

System displays the
user's score and
allows the user to
proceed or repeat the
scenario.

Pass

Time Bound Emails
Validation

Present user with a
mixture of emails to
categorize within an
allocated time. Level

User successfully
categorizes emails
within the time limit,
and difficulty

Pass

40

progresses from easy
to hard.

increases with each
level.

User Profile Handling Save user profile data
from the database.

User profile data is
accurately stored
without errors.

Pass

User Profile Handling
Update user profile
data from the
database.

User profile data is
accurately updated
without errors.

Pass

User Profile Handling
Retrieve user profile
data from the
database.

User profile data is
accurately retrieved
without errors.

Pass

User Profile Handling
Delete user profile
data from the
database.

User profile data is
accurately deleted
without errors.

Pass

Admin Workflow
Provide admin with
permissions for user
management.

Admin can manage
users without error. Pass

Admin Workflow
Provide admin with
permissions for
content management.

Admin can manage
content without error. Pass

Efficient Content
Management

Upload files securely
to the server, parse
files appropriately,
and update database
fields.

Files are uploaded
securely, parsed
correctly, and
database is updated.

Pass

Credentials
Management

Store credentials in
environment
variables. Securely
access credentials
while connecting to
the database.

Credentials are
securely stored and
accessed.

Pass

Security of User
Authentication Data

Encrypt passwords
using Bcrypt and store
them in the database.

Passwords are
securely encrypted
and stored in the
database.

Pass

DB Content
Management

Upload new content
in xlsx or PDF formats.

New content is
uploaded, databases
are updated, and
content is accessible
to enrolled users.

Pass

Reset Password
Functionality

Send reset password
email to users.

Users receive reset
password emails, and
new passwords are
successfully saved.

Pass

41

Usability Testing

Navigate the
application as both a
standard and admin
user.

Users can navigate the
application easily
without confusion.

Pass

Content Testing

Create and upload
content that is
accurate and
progressively difficult.

Content is relevant
and has a progressive
difficulty curve.

Pass

3.6 Evaluation

The evaluation assessed the performance, security and overall functional
completeness of the platform. Google Lighthouse was used to evaluate the
performance, ZAP was used to evaluate the security (along with the results of the
testing suite performed as mentioned above), and the defined functional requirements
as specified by the use cases dictated the functional completeness of the
implementation (assessed through manual testing).

Performance

Google Lighthouse was used to assess the platform’s performance. The key metrics
and results are as follows:

– Overall Performance Score: 100
– First contentful paint: 0.6 seconds
– Largest contentful paint: 0.6 seconds
– Total blocking time: 0 ms
– Cumulative layout shift: 0
– Speed index: 0.6 seconds

The above results indicate that the platform performs at above average speed.
Multimedia, expensive animation and styling etc. were kept to a minimum to ensure
site speeds were as high as possible.

Security

Security was evaluated with ZAP to gather an overall sense of the secureness of the
platform. Through spider attacks, the number of alerts returned (and their severity as
defined by the vulnerabilities CVE record) was used as the guiding metric to evaluate
the security. Alerts were dealt with based on their severity.

Currently the testing returns two ‘level medium’ alerts and seven ‘low level’ alerts, all of
which are connected to components unrelated to sensitive data (and as such deemed
acceptable).

System Functionality

42

The system functionality was tested using the methods outlined in the testing section
above.

The results from the testing provided guidance on the completeness of the
implementation. The results were gathered from the number of expected outcomes
against the number of tests in comparison with the number of unexpected outcomes.

Adjustments were made based on the results to mitigate unexpected results.

4. Conclusions

In conclusion, the project’s experience has been one of great personal growth. A lot has
been learned about the languages used – node.js in particular. The project has given me
confidence to approach a new project with a node.js application with an assurance that
the results would be good, and the workload would be manageable.

In assessing the implementation of this project, the strengths are:

– The dual database implementation works effectively.
– The link to SMTP server for emailing is simple and works reliably.
– The parsing of the xlsx files to create the JSON format for creating email database

collections is consistent.
– The algorithm for selecting and delivering the mock emails to users was a personal

highlight that I believe is well implemented.

In contrast, I believe the limitations are:

– A plain/no frills front end that could have been given more vibrant and animated
styling.

– A simplified content delivery system – more multimedia content would have
improved the thoroughness of the platform as a learning tool.

The overall completeness of the implementation is in line with the functional
requirements as set out in the above report section, however the limitation detailed
above is in comparison to a real world application of a similar type. Overall, I think the
platform is effective as a simple learning tool for phishing attack education – it is
focused on a singular purpose. The next section details how further amendments could
be made to improve the platform.

5. Further Development or Research

Given how much I learned over the course of the project, I envision a great deal of
refactoring of code and reimplementing of functionality. I would separate my server.js
into distinct files for better management of each component. I would like to explore a
more refined method of templating html so that there is a single point for updating that
would carry across all pages based on their class/category (user vs admin user being
one example). I would explore more interactive media types such as video and video

43

game type lessons – the main reason I avoided using video for this project was for
storage reasons, I did not want hosting costs to grow, else a video player would have
been implemented also with videos stored on an S3 bucket and retrieved that way.

I believe I would enhance the user interface to have more smooth animations and
reactive elements, as well as incorporating a sound library to the email portal for more
instant feedback on interactions with the emails.

Finally, I would research more learning science elements to deliver more effective
content and ensure it is being served the correct manner for maximum retention for the
users.

6. References

– Mozilla (2023) 'PDF.js Examples', [online] Available at:
https://mozilla.github.io/pdf.js/examples/ (Accessed: 10 March 2024).

– Stack Overflow (2023) 'Bootstrap Modal Interaction Issue', [online] Available at:
https://stackoverflow.com/questions/41292673/bootstrap-modal-opens-but-
stays-in-gray-background-and-cannot-close-or-interact (Accessed: 25 April
2024).

– Syed, B. (2014) Beginning Node.js. Apress.
– Powers, S. (2016) Learning Node: Moving to the Server-Side. 2nd edn. O'Reilly

Media, Inc.
– Hahn, E. (2016) Express in Action: Writing, building, and testing Node.js

applications. Simon and Schuster.
– Oakley, B., Sejnowski, T., & McConville, A. (2024) Learning How to Learn.

Bentang Pustaka.
– Oles, N. (2023) 'How to Catch a Phish', in Phishing Tactics and Techniques.

Springer Nature.
– Hoffman, A. (2020) Web Application Security: Exploitation and

Countermeasures for Modern Web Applications. O'Reilly Media, Inc.
– Zalewski, M. (2011) The Tangled Web: A Guide to Securing Modern Web

Applications. No Starch Press.
– Crockford, D. (2008) JavaScript: The Good Parts. O'Reilly Media, Inc.
– MetaCompliance (2023) 'Ultimate Guide to Phishing', [online] Available at:

https://www.metacompliance.com/lp/ultimate-guide-phishing (Accessed: 2
February 2024).

– DigitalOcean (2023) 'SSH Essentials: Working with SSH Servers, Clients, and
Keys', [online] Available at:
https://www.digitalocean.com/community/tutorials/ssh-essentials-working-
with-ssh-servers-clients-and-keys (Accessed: 7 May 2024).

– CircleCI (2023) 'Deploy Over SSH', [online] Available at:
https://circleci.com/docs/deploy-over-ssh/ (Accessed: 30 June 2024).

– Baeldung (2023) 'OpenSSL Self-Signed Cert', [online] Available at:
https://www.baeldung.com/openssl-self-signed-cert (Accessed: 15 January
2024).

https://mozilla.github.io/pdf.js/examples/
https://stackoverflow.com/questions/41292673/bootstrap-modal-opens-but-stays-in-gray-background-and-cannot-close-or-interact
https://stackoverflow.com/questions/41292673/bootstrap-modal-opens-but-stays-in-gray-background-and-cannot-close-or-interact
https://www.metacompliance.com/lp/ultimate-guide-phishing
https://www.digitalocean.com/community/tutorials/ssh-essentials-working-with-ssh-servers-clients-and-keys
https://www.digitalocean.com/community/tutorials/ssh-essentials-working-with-ssh-servers-clients-and-keys
https://circleci.com/docs/deploy-over-ssh/
https://www.baeldung.com/openssl-self-signed-cert

44

– MongoDB (2023) 'Develop Applications with MongoDB', [online] Available at:
https://www.mongodb.com/docs/develop-applications/ (Accessed: 4 April
2024).

– Noah (2023) 'Bcrypt: A Beginner's Guide', Medium. [online] Available at:
https://medium.com/@CodeNameNoah/bcrypt-a-beginners-guide-
e2293cc1eeb6 (Accessed: 1 July 2024).

– Express.js (2023) 'CSURF Middleware', [online] Available at:
https://www.expressjs.com.cn/resources/middleware/csurf.html (Accessed: 15
May 2024).

– Codino (2023) 'Secure Your Express.js App with Helmet.js', Medium. [online]
Available at: https://codino.medium.com/secure-your-express-js-app-with-
helmet-js-a-step-by-step-guide-632b7d94da78 (Accessed: 20 February 2024).

– LogRocket (2023) 'Using Helmet in Node.js to Secure Your Application', [online]
Available at: https://blog.logrocket.com/using-helmet-node-js-secure-
application/ (Accessed: 28 March 2024).

– Jest (2023) 'Getting Started with Jest', [online] Available at:
https://jestjs.io/docs/getting-started (Accessed: 12 April 2024).

– SheetJS (2023) 'SheetJS Utilities', [online] Available at:
https://docs.sheetjs.com/docs/api/utilities/ (Accessed: 5 June 2024).

– NPM (2023) 'Express File Upload', [online] Available at:
https://www.npmjs.com/package/express-fileupload (Accessed: 18 January
2024).

– NPM (2023) 'UUID v4 Package', [online] Available at:
https://www.npmjs.com/package/uuidv4 (Accessed: 10 February 2024).

7. Appendices

Project Proposal

https://www.mongodb.com/docs/develop-applications/
https://medium.com/@CodeNameNoah/bcrypt-a-beginners-guide-e2293cc1eeb6
https://medium.com/@CodeNameNoah/bcrypt-a-beginners-guide-e2293cc1eeb6
https://www.expressjs.com.cn/resources/middleware/csurf.html
https://codino.medium.com/secure-your-express-js-app-with-helmet-js-a-step-by-step-guide-632b7d94da78
https://codino.medium.com/secure-your-express-js-app-with-helmet-js-a-step-by-step-guide-632b7d94da78
https://blog.logrocket.com/using-helmet-node-js-secure-application/
https://blog.logrocket.com/using-helmet-node-js-secure-application/
https://jestjs.io/docs/getting-started
https://docs.sheetjs.com/docs/api/utilities/
https://www.npmjs.com/package/express-fileupload
https://www.npmjs.com/package/uuidv4

45

National College of Ireland

Project Proposal

Title: BiggerPhish: An Interactive Cybersecurity Training Platform
Date: [Insert Date]

Programme Name: BSc in Computing
Specialisation: Cybersecurity
Academic Year: 2023/2024
Student Name: Padraig McCauley
Student Number: 20123744
Student Email: x20123744@student.ncirl.ie

46

Objectives

Established resources, including WebGoat by OWASP and the game "Papers, Please,"
serve as the foundation for BiggerPhish—a captivating, informative cybersecurity
training platform. The project aspires to use these resources to create the platform on
which the real teaching can happen. Either through WebGoat or "Papers, Please," I can
achieve a lesson on key cybersecurity issues (phishing, for instance) that the user can
interact with and thereby learn more effectively than if they simply read about the issue.

Using "Papers, Please" as a foundation, I can apply the game mechanics that make the
simulation more engaging to our email phishing training module. "Papers, Please" is a
game about decision-making and time management—the two aspects of gameplay that
I believe most directly translate to what I want our users to do within the phishing
simulation and why I want them to do it. The authors of the game have done a great job
of making the scenarios challenging and somewhat life-like. And they have endowed
those scenarios with an increasing level of difficulty that, once grasped, equips the
player to face a similar but potentially more severe situation in real life.

Demonstrating technical skills: Show individual technical skills through the exercise
using both SQL and NoSQL databases in a dual-database environment. This guarantees
the correct handling of user profiles, the accurate tracking of user progress, and
dynamic content for the different modules. The Learning Experience: Ensure that this
platform not only educates but also is accessible, in an environmentally friendly way,
for users with differing sets of technical backgrounds. The aim is to create a learning
platform that is a true challenge for advanced users yet a friendly space for beginners.

Background to BiggerPhish

BiggerPhish is, in part, a response to the demand for better cybersecurity education as
cyber threats continue to rise. BiggerPhish is inspired by the likes of WebGoat by
OWASP but ultimately intends to provide a significantly more advanced experiential
learning platform over and above what current resources provide. WebGoat already
creates a great model for building an interactive approach to security education,
focused on web application vulnerabilities.

47

The second source of inspiration for the project is the deeply immersive and decision-
intensive gameplay in "Papers, Please," a game that blends critical thinking and detail
orientation under significant time pressure. It is this idiosyncratic engagement with the
user in complex tasks within a pressured time frame that BiggerPhish emulates in its
email simulation platform for various cybersecurity threats that users must recognize
and respond to quickly.

With all the educational content from WebGoat combined with the efficient, time-
pressured decision-making in "Papers, Please," BiggerPhish will deliver an interactive
learning experience that's engaging. The addition of a dual database system, using SQL
and NoSQL, is a personal challenge aimed at demonstrating advanced technical
proficiency and innovative problem-solving in database management.

State of the Art

The field of cybersecurity training platforms has seen tremendous growth, with several
solutions being developed to satiate a growing demand for hands-on cyber defense
skills. A typical example in this area is WebGoat from OWASP (Open Web Application
Security Project), used both as a benchmark and source of ideas in the development of
BiggerPhish.

Some commonalities with WebGoat:

• Like WebGoat, BiggerPhish focuses on an interactive approach to learning. Both
platforms engage the user through interactive activities where the user gets to apply
what they have learned in a simulated environment.

• In the same way that WebGoat does, BiggerPhish provides a way to practice
realistic cybersecurity problems. This basically makes sure that the skills acquired are
provable towards real life.

• Both platforms seek to touch upon a broad spectrum of topics in cybersecurity,
making sure their users are universally educated and prepared.

Differences from WebGoat:

• BiggerPhish introduces a new gamified approach to identifying phishing and
malicious emails. This component, borrowing gameplay from "Papers, Please," differs
from the lesson structure of WebGoat, therefore being more immersive and engaging.

• The time-based email simulation, slowly increasing in difficulty as the user goes
on, creates an urgency and stress that can rarely, if ever, be felt in WebGoat. This was
designed to ensure the user is best equipped to get used to the speed with which
threats are typically orchestrated in reality.

• An additional piece of complexity added to BiggerPhish is the technical
challenge in integrating SQL and NoSQL databases in handling different aspects of the

48

platform. This does not only demonstrate more technical skills and sophistication but
complexity, both in data management and security.

• WebGoat functions very effectively as training for a person who is experienced in
security. BiggerPhish will be designed in such a way that it can be used even by persons
who are not very conversant with the art of cybersecurity. The objective here is to
reduce the barrier of entry of cybersecurity education, reducing fear to a low level for
novices.

The development of BiggerPhish will start with an exhaustive phase for identifying
requirements. My plan is to work closely with stakeholders to conduct both interviews
and surveys. These will engage stakeholders at all levels and in all locations—
internationally and domestically—to capture an accurate and thorough set of
requirements. The scoped set of functional and non-functional requirements will then
be translated into the Agile methodology that I will use to develop the system. I will work
at an iterative pace, breaking down the project into two-week sprints. The Agile
methodology is employed mostly for the purpose of flexibility and adaptability. If I need
to make mid-course corrections based on stakeholder feedback or new project
insights, I will be able to do so using this approach.

In terms of the technology stack, I have selected Express.js for the backend, taking
advantage of its efficient and scalable nature. The frontend is going to be artistry with
HTML5, CSS3, and JavaScript, providing a vivid and engaging user experience. To
Bootstrap, I will also apply my reasons for the mobile-first, responsive design
capabilities of this framework. A major part of my reason for using Bootstrap is its ease
of use, and its compatibility with the design aesthetic I am striving for. I might also tell
you about the reasons for using a reactive library like Vue.js or React.js for the
framework of this application, but that will be another story.

The development approach will be inclusive of unit and integration testing done to high
standards to ensure code quality and basic functionality. I plan to use Git as a version
control system to keep things tidy, and I will use a web-based hosting service such as
GitHub or Bitbucket to further enhance collaboration and ensure that the code remains
clean and maintainable. Code that is written for a cybersecurity application like
BiggerPhish must comply with certain security-related coding standards; otherwise, the
application will be more susceptible to penetration and attack. To help preempt such
vulnerabilities, I plan to do code audits as well as penetration tests of the application's
functionality.

To achieve consistent feature delivery alongside application stability and security, I will
establish a CI/CD pipeline for deployment.

I will develop BiggerPhish using Express JS for the server-side framework and
JavaScript, HTML, and CSS for the client-side interface. I will utilize a dual database
system; I will use an SQL database for user data and a NoSQL database for content. I
will focus on interaction security and efficient data handling and storage. I require
access to a web server (and cloud database) for development and testing. Our project

49

plan outlines our steps from initial design to final testing and includes interface
development, database integration, server-side scripting, and user testing.

The project will move forward in two-week increments, with clearly defined goals for
each period. The first two "sprints" will focus on design and prototyping. User research
will be done to inform the design decisions. Initial wireframes, mockups, and an
interface prototype will be created. In the next two sprints, I will set up a backend server
in an environment suitable for iterative development; a CI/CD (continuous
integration/continuous deployment) pipeline will be established; and basic security
features will be implemented.

The database schema will be constructed and integrated, the principal features will be
realized in modules, and the authentication and authorization mechanisms will be
implemented during the database integration and module development phase (Sprints
5-8). The user interface development phase (Sprints 9-12) will concentrate on fine-
tuning the user interface in light of initial prototype feedback; implementing front-end
functionality; and integrating the front-end with back-end services. The syllabus
creation module will be designed and developed in Sprints 13-14, and then tested for
usability and functionality.

The phase of testing and refining the system (Sprints 15-22) will gathering of
requirement test results, using which to refine features and interfaces of the system,
doing security testing and hardening of the system, and a few other things to ensure
that the system is as effective and usable as it can be. The final phase (Sprints 23-24)
will consist of end-to-end testing of the whole BiggerPhish system and a final review of
documentation and support materials. The platform will be tested not just for
functionality (and, in doing so, it will be checked against UI best practices), but also for
security, with a combination of tests to ensure that the system is safe.

Reflective Journals

Supervision & Reflection Template

Student Name Padraig McCauley
Student Number 20123744
Course BSCCYBE4

Supervisor

Month: November

50

What?

Reflect on what has happened in your project this month?

This month I linked in with my supervisor. I had originally been given someone
different but this was changed after my initial contact. My new supervisor and I met
twice to discuss my original idea and some suggestions were give to adjust the
project to be more in line with the cybersecurity field. The points I had around web
technology and using two types of databases were kept and moving the subject
matter and focus towards cybersec training has been the focus instead. I have been
researching educational sites for cybersecurity with an interest in anything
interactive/gamified. WebGoat has been of particular interest.
So What?

Consider what that meant for your project progress. What were your successes?
What challenges still remain?

Moving to a more cybersecurity focus project means I can start to incorporate more
directly the lessons I am learning in my modules this semester which I am happy
about. I feel this will allow me to better internalise the material and applying this
knowledge directly into a project I can later showcase to employers is a great way to
kill two birds with one stone. The suggestion was a good pointer from my supervisor
and I feel we have began a productive relationship.
Now What?

What can you do to address outstanding challenges?

I will need to form a more considered idea for my project ahead of the proposal
submission late December with this new focus. With some ideas for inspiration (such
as the web goat application) I will continue to research and refine the project. I will be
bouncing ideas against my supervisor periodically to gauge how realistic the
concepts are to incorporate.

Student Signature

Month: December

51

What?

Finalized and submitted the project proposal. Felt a sense of accomplishment but
also the pressure of meeting the deadline.

Experimented with interactive cybersecurity elements, drawing inspiration from
WebGoat.

Began basic interface design, trying to visualize how users would interact with the
content.

So What?

The submission marked a significant milestone and relieved some of the anxiety
about the project’s direction.

Initial feedback on the interface designs was encouraging, yet it highlighted my need
to improve my design skills.

Struggled with balancing complexity and educational value in content.

Now What?

Plan to deepen my understanding of user-centered design.

Regular check-ins with my supervisor to ensure alignment with cybersecurity training
objectives.

Start building the backend, focusing on the dual database integration.

Student Signature

Month: January

52

What?

Began coding the backend, which was both challenging and rewarding.

Conducted initial usability tests, which were eye-opening in terms of user
experience.

Integrated cybersecurity scenarios into the platform, which required a lot of creative
thinking.

So What?

Realized the importance of robust backend architecture in supporting the frontend
needs.

User feedback made me aware of the importance of intuitive design and clear
navigation.

Felt excited and overwhelmed by the complexity of creating engaging content.

Now What?

Focus on simplifying the user interface based on feedback.

Continue enhancing my technical skills to tackle backend challenges.

Seek more feedback on content to ensure it is engaging and educational.

Student Signature

Month: February

What?

Enhanced the gamification elements, which was fun but also technically demanding.

Improved database integration, learning a lot about performance optimization.

53

Expanded user testing, which brought diverse feedback and required quick
adjustments.

So What?

Found joy in seeing users engage with the gamified elements.

Faced difficulties with database scalability, which tested my problem-solving skills.

User testing was stressful but ultimately very rewarding.

Now What?

Plan to further refine the gamification based on specific user feedback.

Address the scalability issues by exploring more advanced database solutions.

Increase user testing to refine features and improve user satisfaction.

Student Signature

Month: March

What?

Added feedback mechanisms and detailed progress tracking to the platform.

Conducted comprehensive testing, adjusting based on real user experiences.

Began preparing for the final project presentation, which was nerve-wracking.

So What?

Felt a deep connection to the project, seeing it nearly complete.

54

Stress and excitement as I began to finalize the project, knowing that presentation
day was approaching.

Gained confidence in my ability to deliver a complex project.

Now What?

Focus on polishing every aspect of the project for the presentation.

Practice my presentation skills and prepare to answer difficult questions.

Ensure that all documentation is thorough and reflective of the work completed.

Student Signature

Month: April

What?

Presented the project, which was a culmination of months of hard work.

Received valuable feedback from the academic panel and potential stakeholders.

Reflected on the entire project journey, feeling proud and a bit exhausted.

So What?

Presentation day was exhilarating and a huge learning experience.

Feedback opened potential paths for further development or commercialization.

Felt proud of what I achieved and grateful for the learning journey.

Now What?

Explore potential enhancements and real-world applications for the project.

Consider further studies or career paths inspired by this project.

55

Document and share my experiences to help future students.

Student Signature

Student Name Padraig McCauley
Student Number 20123744
Course BSCCYBE4

Supervisor Shivani Jaswal

Month: May

What?

Reflect on what has happened in your project this month?

This month I focused on getting my midpoint presentation together. I finalised my
requirements (to the best of my ability as the time) and got my codebase to a
presentable condition.

So What?

Consider what that meant for your project progress. What were your successes?
What challenges still remain?

The functionality still feels very basic in its implementation, but I am happy to have a
final ‘form’ on the project. The UI and UX is quite clunky but having a more rounded
functionallity base mean I can start putting more thought into things like colour
schemes and branding.

Now What?

What can you do to address outstanding challenges?

I feel I can round out the link between the email DB and the MSSQL DB so I will put
things in place to make the backend functionality more seamless.

56

Student Signature

Month: June

What?

This month I finalised the link between the mongo DB and the MSSQL database and
cleaned up the Ui of the email portal to make it more appealing to use.

So What?

I feel the look and feel of the email portal is the central draw of the application so I am
happy to have it looking and feeling like an authentic email portal. The buttons/styling
of the messages etc are as I had envisioned originally (styled off Gmail). The
importing of the content is more rounded out now also.
Now What?

I hope to get my deployment on a cloud server next so I can put a CICD pipeline in
place and implement the security measures needed to protect the server.
Student Signature

Month: July

What?

This month I migrated my functionality to an AWS instance and implemented a CICD
pipeline using Github and CircleCI. Security points were implemented to sure up
access control etc and the app was moved to using https. Final styling points etc
were done and my paperwork was completed.

So What?

The effort involved to get the project over the line has taught be a lot about time
management and I feel my agile type approach has kept the workload focused and
manageable.

57

Now What?

This marks the end of my project and the end of my time in NCI. I am happy with the
results and feel I have met the brief whilst also learning a lot about web development,
security components of web application deployment and development and
ultimately project management.
Student Signature

Signature

	1. Executive Summary
	2. Introduction
	2.1 Background
	2.2 Aims
	2.3 Technology
	2.4 Structure

	3. System
	3.1 Requirements
	3.1.1 Functional Requirements
	3.1.1.1 Interactive Cybersecurity Education
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.2 Gamification of Learning
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.3 Dual Database System
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.4 Credential Management System
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.5 Password Encryption
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.6 Admin Workflow Implementation
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.7 Content Upload Mechanism
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.1.8 Password Reset Functionality
	Use Case Diagram
	Description & Priority
	Use Case

	3.1.2 Data Requirements
	3.1.3 User Requirements
	3.1.4 Environmental Requirements
	3.1.5 Usability Requirements

	3.2 Design & Architecture
	3.3 Implementation
	3.4 Graphical User Interface (GUI)
	3.5 Testing
	Unit Testing
	Security Testing
	Functional Testing

	3.6 Evaluation

	4. Conclusions
	5. Further Development or Research
	6. References
	7. Appendices
	Project Proposal
	Reflective Journals

