

National College of Ireland

Computing

4th Year 2023/24

Ryan Lanz

X21759971

X21759971@student.ncirl.ie

Organizer

Technical Report

Contents
Executive Summary ... 2

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims ... 3

1.3. Technology ... 4

1.4. Structure ... 5

2.0 System ... 5

2.1. Requirements ... 5

2.1.1. Functional Requirements ... 6

2.1.1.1 Use Case Diagram .. 6

2.1.1.2 Requirement 1.. 6

2.1.1.3 Requirement 2.. 8

2.1.1.4 Requirement 3.. 9

2.1.1.5 Requirement 4.. 11

2.1.1.6 Requirement 5.. 12

2.1.1 Data Requirements .. 13

2.1.2 Non-Functional Requirements ... 13

2.2 Design & Architecture .. 14

2.2.1 Design Overview .. 14

2.2.2 System Architecture ... 15

2.3 Implementation .. 15

2.4 Graphical User Interface (GUI) ... 23

2.5 Testing .. 29

2.6 Evaluation ... 36

3 Conclusions ... 36

4 Further Development or Research ... 37

5 References ... 37

Bibliography... 37

6 Appendices .. 37

6.1 Project Proposal .. 37

6.1.1 Objectives ... 39

6.1.2 Background ... 40

6.1.3 State of the Art .. 40

6.1.4 Technical Approach.. 41

6.1.5 Technical Details .. 41

6.1.6 Project Plan ... 42

6.1.7 Validation .. 43

6.2 Reflective Journals ... 44

Executive Summary

The project aims to address the organizational challenges faced by students in managing their
coursework efficiently. The envisioned application consolidates project management, assignment
tracking, and event scheduling into a centralized platform, eliminating the need for students to
navigate multiple sources. Key functionalities include secure login, module management, date
scheduling, user feedback, and file handling. The tech stack involves Ruby on Rails for design,
Bootstrap for frontend, and SQLite for the backend database, ensuring a seamless integration of
various features.

The structural breakdown uses functional and non-functional requirements, design and architecture,
implementation, and testing. Comprehensive use case diagrams and detailed requirements show the
user interactions, emphasizing user-friendly experiences.

Initial evaluations have shown success in meeting functional requirements, including registration,
login, module management, and scheduling. Identified issues, such as users adding modules and
events with empty fields, are acknowledged for future refinement. Non-functional requirements,
encompassing reliability, usability, security, and performance, exhibit positive results that are positive.

Furthermore, the project is poised for further development. Planned features include file
upload/download functionality for enhanced storage accessibility, a contact/feedback page, and a UI
overhaul to refine the user experience. The acknowledgment of the project's early stage and ongoing
testing instils confidence in the development process. The strategic sequencing of future
developments aligns with the project's overarching goal of providing students with a comprehensive
and user-friendly platform.

In conclusion, the project id in its infancy but it showing promise with how it has begun and will
continue to grow to be how it has been envisioned.

1.0 Introduction

1.1. Background

The problem looking to be solved with this project is the creation of an application that can help
students with management of projects and assignments and help organise and schedule key dates
and other events in relation to college course. The goal is to have a centralized application of all their
needs in one single place without the need to go to multiple different sources, websites, or
applications. As students have a wide range of tasks, different languages being learned with strict
timeframes as well, the organization of all these things it can be difficult to stay on top of everything
and quite easy for things to get out of hand and leave them falling behind.

1.2. Aims

The main goals for the application would be to alleviate some of the stress of that and have the
information in a single platform. With that in mind some of the functionalities the application should
have include:

• Secure Login: A secure login that allows them to have their information and course
information, assignments, due dates, exam dates relevant to them specifically.

• Management: The ability to add key dates that are in relation to their course, this helps to
keep on top of everything when the important dates are known.

• Modules Access: Allows for adding, viewing, updating, and removing modules that the user
can add course materials to be accessed with relevance to that module.

• Feedback: Send feedback to admins in relation to the application or send emails to a
lecturer/HR/events team. Have the ability to send something without needing to leave the
application.

• File Handling: Upload and Download files from a database that are related to your modules,
this could be uploading all your course content so you have it all in one place and can
download it for ease of access.

1.3. Technology

The project utilizes a wide range of technology in it’s frontend and backend working asynchronously.
The core technologies and components of the backend are:

Ruby on Rails: Rails is used here with a MVC (Model, View, Controller) framework which helps to
streamline the backend development. Rails allows rapid development as it builds a lot of the code for
you, hence removing a lot of the headache of backend coding is eliminated.

Database: The database here uses 2 separate databases, SQLite and PostgreSQL. SQLite is the default
language for Rails and is used in the development environment. The projects deployment into
production uses PostgreSQL as SQLite is not supported.

Gems & Libraries:

• Devise: This is used for user login and authentication. It adds secure login and registration
functionalities to the program.

• SortableJS: Javascript library for drag and drop feature and sorting within separate lists and
other containers. Used for moving tasks and events throughout the programs list and calendar
features.

• Ranked Model: Ranked model allows for adding a rank and id to the tasks in the program from
when they’re created which automatically updates when they are moved.

• RequestJS: Javscript library for handling HTTP requests and responses. Makes AJAX requests
and makes logs, modifies requests/responses as well as handles errors.

Frontend:

HTML/CSS & ERB: Embedded ruby renders the views in HTML to generate the frontend. Works
alongside the backend to utilise the backend gems and code to make the program usable.

Bootstrap & Tailwind: Gems that help to create the UI and build components easily and quickly with a
professional look.

1.4. Structure

The report follows this section with a breakdown of the system in different sections. This begins with
the requirements of the project. This includes Functional, Non-Functional, and Data Requirements.
The functional requirements also get further broken down with important use cases for the flow of
the program alongside exceptions.

After that is the Design & Architecture, this gives an insight into the technologies used in order to build
up the project and what exactly goes into it as well as how they function. It breaks down how they
function in relation to the project and why they have been selected for the task. Afterwards is the
implementation of them, followed by a guide of the interface showing the earliest prototype.

Furthermore, some rigid testing is done on the different variables and aspects of the program to make
sure that they are functioning correctly and then these tests are evaluated to make sure they line up
with the envisioned requirements. with the envisioned requirements.

2.0 System

2.1. Requirements

The program should be constructed in accordance with EU GDPR which is crucial in the
construction of a program to avoid issues in the future. As data is stored on the user there are
standards that need to be included.

• User Data: Collection and storage of the user’s personal information (name, email, username,
password) needs to comply with GDPR by allowing for the user to have access to the data as well
as asking consent for getting the users data. Information provided must also be securely saved
where it cannot be accessed by personnel without authorization. This data stored will be retained
only for how long it is necessary and if the user requests deletion it must be done.

• Event, Module, File Data: Data must be stored safely and securely belonging to the specific user,
be properly labelled, and organized so as to be available to user upon request. This information
will be detained for a certain period, stored securely, and must be deleted upon request by the
user themselves.

• Database: All information stored is compliant with EU GDPR which includes data minimization
and storage limitations which have clear retention policies that were explained above.

With these strict policies in place, they will adhere to current EU GDPR rules and be amended to
comply with the rules at any change in rules, set by the GDPR committee in order to stay
compliant.

2.1.1. Functional Requirements

FR-Number Functional
Requirement
Title

Functional Requirement Description

FR-1 Modules Module Management which should allow the user to manage their
course modules. This includes adding, viewing, updating, and
deleting said modules. Buttons should be provided for each of the
corresponding actions and need to function as intended. A display
must be in place to show the modules and information included
about them including a name, ID, and lecturer.

FR-2 Scheduling Date Management is required where users can schedule events
and have key dates input in their calendar. A monthly calendar
need be included which is interactive and allows users to add and
edit dates, and view said dates when checking the calendar. List
and task management must also be included. Users must be able
to create, edit, update, and delete lists and tasks within those lists.
Those tasks must also be movable within lists.

FR-3 Users User Management needs to be included so that a user can amend
their details that they input in the registration phase. They need to
be advised that the update has been successful and can carry on
without being logged out due to details being amended.

2.1.1.1 Use Case Diagram

2.1.1.2 Requirement 1

Description

User Logging Into System

Use Case ID: UC-1
Use Case Name: displayLoginScreen
Created By: Ryan Lanz
Date Created 24-06-23
Description:

User logging into system

Actors:
Primary:
Secondary:

User

Triggers:

User is at login screen

Pre-conditions:

User has launched the program.
Program is connected to the database.
Server is running.
System is functioning correctly.
User has already registered

Post-Conditions:

Successful: User is authorized and is logged in.
Fail: User is advised to re-enter correct details and try again.

Normal Flow:

1) User enters username. 2) User enters password. 3) User presses login button.
4) System authenticates the credentials. 5) System authorizes user. 6) User is
brought to main menu.

Alternate Flows:

1) User does not enter username. 1.1) System advises to enter a username.
2) User does not enter a password. 2.1) System advises to enter a password.
3) User enters incorrect credentials. 3.1) System advises details are incorrect and
to try again. 3.2) User is returned to step 1.

Exceptions:

1.1 System advises that it is unable to complete the authentication process.
1.2 System logs the error.
1.3 The system reports the problem to the system administration.
1.4 System returns to the main menu.

Here is an Activity diagram of the use case. It shows the flow of all activities and actions that the login
process has. It covers both the normal flow as well as alternate flows and exceptions.

Normal flow: 1. (Start: Login initiated with user entering credentials) 2. (Enter Credentials: User enters
username and password) 3. (Authentication Credentials: System authenticates the credentials with
the database) 4. (Successful Authentication: User is successfully authenticated) 5. (Authorize User:
System authorizes user to access the main menu) 6. (Navigate to Main Menu: User is brough to the
main menu). 7. (Success: Login process complete).

Alternate flow: 2.1) User does not enter correct username, advised to enter correct username, and is
returned to step 2.

2.2) User does not enter correct password, advised to enter correct password, and is returned to step
2.

2.3) User does not enter correct username and password, advised to enter correct credentials, and is
returned to step 2.

Exceptional flow: 3.1) System has an issue while authenticating the credentials, reports to the system
admin, login process fails.

2.1.1.3 Requirement 2

Description

User Registering On The System

Use Case ID: UC-2
Use Case Name: userRegister
Created By: Ryan Lanz
Date Created 24-06-23
Description:

User registering on the system.

Actors:
Primary:
Secondary:

User

Triggers:

User enters details to register.

Pre-conditions:

User has launched the program and gone to register screen.
The program is connected to the database.
The system is functioning correctly.
Server is running.
User is not registered.

Post-Conditions:

User is registered successfully.
User registration failed.

Normal Flow:

1). User enters first name. 2) User enters surname. 3) User enters email address.
4) User enters username. 5) User enters password. 6) User presses register
button. 7) System checks information. 8) System inputs user information to
database. 9) User receives confirmation that registration is successful.

Alternate Flows:

2.1) User does not fill all fields. 1.2) User presses register button. 1.3) System
checks information. 1.4) User receives error message to fill all fields. 1.5) User
returns to step 1.
3.1) User fills all fields. 2.2) User presses register button. 2.3) System checks
information. 2.4) User receives error message that username is already in use.
2.5) User returns to step 1.

Exceptions:

4.1. The system advises that it is unable to complete the registration process.
4.2. The system logs the error.
4.3. The system reports the problem to the system administration.

The below diagram is an Activity diagram for Use Case 2. It had to be split in 2 as it was too long and
the text was not viewable.

Normal flow: 1) User enters first name. 2) User enters surname. 3) User enters email address. 4) User
enters username. 5) User enters password. 6) User presses register button. 7) System checks
information. 8) System evaluates information to check if it is valid. 9) System stores information in
database. 10) User receives registration confirmation.

Alternate flow: 2.1) User does not enter all fields. 2.2) User presses register button. 2.3) System checks
information. 2.4) User receives error fill all fields. 2.5) User returns to Step 1.

3.1) User fills all fields. 2.2) User presses register button. 2.3) System checks information. 2.4) User
receives error message that username is already in use. 2.5) User returns to step 1.

Exceptional flow: 4.1. The system advises that it is unable to complete the registration process. 4.2.
The system logs the error. 4.3. The system reports the problem to the system administration.

2.1.1.4 Requirement 3

Description

User Adding Event On Calendar

Description: startCalendarFunction
Actors:

Primary
Secondary

User

Triggers:

User clicks Add button to initiate the add event function.

Pre-conditions:

User has logged in and has gone to the Calendar function.
The program is connected to the database.
The system is functioning correctly.

Post-Conditions:

Event has been added successfully.
Event has not been added.

Normal Flow:

1) User clicks Add Event button. 2) User selects date. 3) User enters event
description. 4) User enters event name. 5) User enters module code
number. 6) User clicks Save button. 7) System checks information. 8)
System inputs information into the database. 9) System advises user event
has been added.

Alternate Flows:

3) User does not enter an event description 4) User enters event name. 5)
User enters module code number. 6) User clicks Save button. 7) System
checks information. 7.1) System advises user error, all fields must be filled.
7.2) User returns to step 3.
5) User enters letter for module code number. 6) User presses Save button.
7) System checks information. 7.1) System advises user error, field must
contain digits. 7.2) User returns to step 5.

Exceptions:

1. Failed to save event.
2. Fill in all fields
3. Please enter a digit.

The activity diagram goes as follows:

Normal Flow: 1.) User clicks Add Event button: The user initiates the process of adding a new event to
the calendar. 2) User selects date: The user selects a date for the new event. 3) User enters event
description: The user enters a description for the event. 4)User enters event name: The user provides
a name for the event. 5) User enters module code number: The user inputs a module code number
for the event. 6) User clicks Save button: The user triggers the saving of the event. 7) System checks
information: The system verifies the entered information. 8) System inputs information into the
database: If the information is valid, the system stores the event details in the database. 9) System
advises user event has been added: The system notifies the user that the event has been successfully
added.

Alternate Flows: 1) User does not enter an event description: If the user skips entering the event
description, the system prompts an error message indicating that all fields must be filled. The user is
then directed back to the step of entering the event description. 2) User enters letter for module code
number: If the user enters a non-digit character for the module code number, the system displays an
error message stating that the field must contain digits. The user is then directed back to the step of
entering the module code number.

Exceptions: 1) Failed to save event: If the system encounters an issue while saving the event, an error
handler is triggered to handle the failed event save. 2) Fill in all fields: If the user fails to fill in all the
required fields, an error handler is triggered to handle the missing fields.3) Please enter a digit: If the
user enters a non-digit character for the module code number, an error handler is triggered to handle
the invalid module code.

2.1.1.5 Requirement 4

Description

User creating a new list

Description: createListFunction
Actors:
Primary
Secondary

User

Triggers:

User clicks New List button to initiate the list creation process

Pre-conditions:

User has logged in and has gone to the Lists section
The program is connected to the database.
The system is functioning correctly.

Post-Conditions:

List has been created successfully.
List has not been added.

Normal Flow:

1) User clicks New List button. 2) User enters list name. 5) User enters
module code number. 6) User clicks Create List button. 7) System checks
information. 8) System inputs information into the database. 9) System
advises user list has been created.

Alternate Flows:

2) User doesn’t enter a list name. 2.1) System advises user that list name is
required. 2.2) User returns to step 2.

Exceptions:

1. Failed to save list.
2. Fill in all fields

The activity diagram goes as follows:

Normal Flow: 1) User clicks New List button. 2) User enters list name. 5) User enters module code
number. 6) User clicks Create List button. 7) System checks information. 8) System inputs information
into the database. 9) System advises user list has been created.

Alternate Flows: 2) User doesn’t enter a list name. 2.1) System advises user that list name is required.
2.2) User returns to step 2.

Exceptions: 1. Failed to save list. 2. Fill in all fields

2.1.1.6 Requirement 5

Description

User creating a new task

Description: createListFunction
Actors:
Primary
Secondary

User

Triggers:

User clicks New Task button to initiate the task addition process.

Pre-conditions:

User has logged in and has gone to the Lists section.
User has created the list to which the task is for
The program is connected to the database.
The system is functioning correctly.

Post-Conditions:

Task has been created successfully.
Task has not been created.

Normal Flow:

1) User clicks New Tasj button. 2) User enters list name. 3) Enters task
name. 4) User clicks Create List button. 5) System checks information. 6)
System inputs information into the database. 7) System advises user task
has been created.

Alternate Flows:

2) User doesn’t enter a correct list name. 2.1) System advises user that list
name is required. 2.2) User returns to step 2.
2) User doesn’t enter task name. 2.1) System advises user that task name is
required. 2.2) User returns to step 2.

Exceptions:

1. Failed to save Task.
2. Fill in all fields

The activity diagram goes as follows:

Normal Flow: 1) User clicks New Tasj button. 2) User enters list name. 3) Enters task name. 4) User
clicks Create List button. 5) System checks information. 6) System inputs information into the
database. 7) System advises user task has been created.

Alternate Flows: 2) User doesn’t enter a correct list name. 2.1) System advises user that list name is
required. 2.2) User returns to step 2.
2) User doesn’t enter task name. 2.1) System advises user that task name is required. 2.2) User
returns to step 2.

Exceptions: 1. Failed to save task. 2. Fill in all fields

2.1.1 Data Requirements

The program should be constructed in accordance with EU GDPR which is crucial in the construction
of a program to avoid issues in the future. As data is stored on the user there are standards that need
to be included.

• User Data: Collection and storage of the user’s personal information (name, email, username,
password) needs to comply with GDPR by allowing for the user to have access to the data as
well as asking consent for getting the users data. Information provided must also be securely
saved where it cannot be accessed by personnel without authorization. This data stored will
be retained only for how long it is necessary and if the user requests deletion it must be done.

• Event, Lists, Tasks, Module, File Data: Data must be stored safely and securely belonging to
the specific user, be properly labelled, and organized so as to be available to user upon
request. This information will be detained for a certain period, stored securely, and must be
deleted upon request by the user themselves.

• Database: All information stored is compliant with EU GDPR which includes data minimization
and storage limitations which have clear retention policies that were explained above.

With these strict policies in place, they will adhere to current EU GDPR rules and be amended to
comply with the rules at any change in rules, set by the GDPR committee in order to stay compliant.

2.1.2 Non-Functional Requirements

The Non-Functional Requirements define exactly how the system works behind the scenes.
This is important for the user experience; the functional requirements are for the functions
within the program but the non-functional requirements how those features as well as the
program as a whole actually functions. These 4 requirements seem most valuable to me which

is why they are chosen and the criteria was selected in order to have the user experience be
smooth and pleasant and work how it has been envisioned.

NFR-
Number

Title Non-Functional Requirement Description Criteria

NFR-1 Reliability Functions work as intended. Consistency is essential. Must
always have a high level of uptime and not have any
crashes. Exceptions can occur from user misusing a
function, but they must be caught, and the system cannot
incur fatal errors.

Uptime: 99.9%

Exceptions:

All Caught

NFR -2 Usability U.I. needs to be user-friendly, easily accessible, and easy to
navigate. Buttons and labels must be clear and input fields
need clear instructions. Users should not spend more than
>5s trying to find any given option. Should not select
incorrect option more than once.

Navigation Time:

<5s

Incorrect Options
Selected: <2 times

NFR -3 Security Data input must be secure. Database connection needs to
be secure, and data should be shielded from SQL injection.
Sensitive user information needs to be encrypted.
Authentication and authorization need to be implemented
for login. If the incorrect information is input, then the login
attempt fails, and user cannot gain access to the program.

Encryption:
Password, SHA-256

Database
Authentication:

Values 100%
correct

NFR -4 Performance System must load almost instantly in all aspects. All
functions should execute quickly when the user presses the
associated button. Exception messages need to occur
straight away. No loading or buffering at any stage of using
the system.

Login: <3

Register: <3

Add Functions
(Calendar dates,
modules): <3

Error Messages: <1

2.2 Design & Architecture

2.2.1 Design Overview

The system follows the Rails framework using Ruby and Bootstrap for backend and frontend.
Bootstrap in the frontend uses a combination of HTML, CSS, and JavaScript. It has plenty of pre-wrote
scripts that you can add to your CSS page to and add sleek designs to your pages and components
quickly. It utilizes gems for added features. As the project is in its early stages, a lot of the groundwork
has been done using scaffolds. A scaffold in Ruby on Rails builds and programs basic components for

your program in a matter of seconds, combine this with the using scaffolds for the gems, if you had to
code it for yourself depending on your experience it could take hours or days even.

2.2.2 System Architecture

Backend Framework:

- Ruby on Rails: This is the backbone of the application and follows a MVC (Model-View-
Controller) design pattern. The three different components of it work in different ways to
the development of the program.

o The model consists of the different classes of Ruby coding, which interact with the
database. Essentially, it is responsible for the CRUD database in my instance. If a
user created a web page but with no backend like a model, they would be inputting
data and it would simply do nothing.

o The view is the how the data from the database and such is shown to the user. It
uses templates to generate HTML with ‘.erb’ (embedded Ruby code). If the model
creates the data in the CRUD database, the view is used to make the pages with the
means to input data into the data like a form.

o The controller works alongside the model to take in the user input and request and
‘control’ the actions. The view presents a way to input the data, the controller takes
the input from the view, and the model then communicates what the controllers’
specific requests is to the database to update it.

Frontend Framework:

- Rails Views: Although views are used in the backend it would also count as frontend as it
generates HTML and works alongside the other frontend technologies and languages.

- Bootstrap: This is a framework that uses HTML, CSS, and JavaScript in an easy to use and
seamless way. Without the framework, you would need to code everything separately and
integrate it to all work synchronously whereas with Bootstrap, you simply find what the
design is you are looking for and then can add a line of code to your program from the
Bootstrap website. And it is done that simply, you still have to tweak it to your needs but the
base it there.

Database Design:

- SQLite: Ruby on Rails can use different databases as far as I knew but I used SQLite as it was
set up with mine and works perfectly for any of my needs. With previous experience in
MySQL, SQLite database and schema structure are suitable in all ways. The program uses 2
files for saving data. A ‘db’ or database file, and a ‘schema.rb’ or schema file. These need to
be migrated and updated throughout the program in order for it to run correctly.

2.3 Implementation

Now that that the system architecture has been further broken down and the different ways the
project works, lets go through the implementation of it and the key functions that define the program.

Backend Framework:

- Model: Below you can see the model classes for the modules and users. These are the only
correctly and fully functioning sections of the projects so far and there is some important code to
speak about.

Collegemodule.rb & Event.rb:

belongs_to :user makes them specific to signed in user so it’s not viewable by everyone.

List.rb:
has_many :tasks, dependent: :destroy creates a one-to-many relationship so that a list can have multiple
tasks associated with it and that when a list is deleted, tasks are deleted with it.

ranks :row_order, with_same: :list_id implements the ranked-model gem to store the position of a list
amongst other lists.

Task.rb:

Similar to list but belongs_to :list allocates the task to a specific list and user and ranks :row_order,
with_same :list_id puts ranking order on tasks that are allocated to a list.

- Controller:

application_controller.rb:

before_action :authenticate_user! Ensures the user is authenticated before being able to access the
program.

calendar_controller.rb

@date = Date.parse(params.fetch(:date, Date.today.to_s)) parses date from params from request and
defualts to current date when no specified one.

@tasks = Task.where("start_date >= ? AND start_date <= ?", @date.beginning_of_month,
@date.end_of_month) retrieves tasks in month in question aswell as stores tasks to be displayed.

@events = Event.where(start_time: @date.all_month).group_by { |e| e.start_time.to_date } retrrieves
events from specified month and displays them in calendar.

@lists = List.includes(:tasks).where(user: current_user) fetches lists for the logged in user.

events_controller.rb, lists_controller.rb & tasks_controller.rb all contain similar methods with some
exceptions. Def index, def sort, def show handles ranking, sorting, and displaying items. While def new,
def edit, def create, def update contain the CRUD based actions.

Sortable_controller.js:

Group configures drag-and-drop features between the groups alongside pull and put. Put rstricts the
function to only allow dropping elements in the task class. Once the item is then dropped, onEnd is then
executed to update the items rank behind the scenes.

month.html.erb:

Contains mostly navigational liknks and renders partials. @date.strftime(‘%B %Y’) displays the current
month and year.

_month.html.erb:

This is the lists column for displayed the list for the user, @lists renders the list as a sticky note with the
tasks inside.

The calendar column builds the calendar from scratch, there is no gem invovled. This was done for
flexibility to integrate with the lists and tasks as it proved difficult implementing it with a gem like Simple
Calendar.

grid-cols-7 uses a 7 day shaped grid system for the calendar.

Date::ABBR_DAYNAMES.rotate rotates day name array from Monday onwards.

This helps to create a separate ‘cell’ for each day so they can be easily distinguished and highlights the
current day.

This is a ‘dropzone’ which is for the tasks to be dropable in the cells and enables them to be movable
throughout the dates and dropped and then displayed accordingly.

‘document.addEventListener(‘DOMContentLoaded’, function() makes certain that the script runs after
HTML has loaded to prevent errors from element manipluation.

‘const lists = document.querySelectorAll(‘.tasks’); gets all tasks elements and initializes SortableJS.

name: ‘tasks’ defines tasks as a group so they can be moved between lists.

This section is utilised when the drag/drop feature is completed. It essentially extracts the elements
attriubutes (like the ID), retrives the ID of the list it’s being put onto and then gets the new index of the tasks
in the new list.

‘/tasks/${taskID}/sort is the target endpoint to update order of tasks and PATCH updates the existing
resources. The JSON object is used by the server to update the datbase with list_id and row_order_position.

Although there are some similarities between the above section of _month.html.erb and
sortable_controller.js they both have their own functionalities and serve their own purposes.
sortable_controller.js is a stimulus controller that handles different functionalities throughout the
program, it initializes automatically to handle sortable elements throughout so not to be duplicated often.
The _month.html.erb is a script embedded into the view file initalizing sortable elements on the particular
page. There was major issues during creation and I had originally just used sortable on the Lists page but I
came across problems when implementing it on the calendar and lists/tasks on the calendar page. This
lead to it being initalized for lists and tasks on the calendar page aswell to get it working again.

Schema.rb: Below are the schemas and tables for the database of the project.

2.4 Graphical User Interface (GUI)

System Design:

Below is a user manual for each page of the program. Each part contains a screenshot to help
visualize and a brief explanation related to the corresponding screenshot. This helps to
understand the program and understand why certain features were created the way they are as
well as further breakdown the program.

Start Screen: Home page with options in the navbar to proceed.

Registration: Sign up page for user to create an account, notifies them when successful or
unsuccessful.

Login: Login page for users who have successfully created account, signed in automatically after
registration.

Modules: College modules page, uses the CRUD database for the data and is linked to the user.

Calendar: Interactive calendar uses CRUD database as well. Contains Lists and Tasks which are
movable through lists. Events are movable throughout the calendar aswell.

Create new list:

List created:

Create new task (list name has to be the list ID):

Task created:

New event:

Event created:

Lists page view:

Delete list button:

Delete task button:

Edit Profile: Account settings to amend previously input data, i.e. password.

2.5 Testing

Fixtures For Tests:

Fixtures are done in the testing phase to give data to the system to input when testing the different
functions, systems etc. This caused me quite a headache because the users were not originally
linked to the modules when it was created.

‘users.yml’, ‘events.yml’, ‘collegemodules.yml, & ‘tasks.yml’

Individual Controller Tests:

Individual Model Tests:

Individual Security tests:

CI/CD:

Project is deployed through Heroku successfully. Initially done through AWS but issues started
arising through being deployed through a production environment instead of development
environment.

Acceptance Test Functional Requirements Testing Results:

FR-
Number

Functional
Requirement
Title

Functional Requirement
Description

Testing Results

FR-1 Modules Module Management which should
allow the user to manage their
course modules. This includes
adding, viewing, updating, and
deleting said modules. Buttons
should be provided for each of the
corresponding actions and need to
function as intended. A display
must be in place to show the
modules and information included
about them including a name, ID,
and lecturer.

Test 1: Success as the user
can add a module,
including name, ID, and
lecturer.

Test 2: Success as the user
can edit modules.

Test 3: Success as the user
can view modules.

Test 4: Success as the user
can delete modules.

Test 5: Failed as the user
was able to add a module
with no fields filled in.

FR-2 Scheduling -Date Management is required
where users can schedule events
and have key dates input in their
calendar. A monthly calendar
needs to be included which is
interactive and allows users to add
and edit dates. Specific
information needs to be included
where the user can add time,
name, description, and view said
dates when checking the calendar.

Test 1: Success as the user
can add events with time
and description.

Test 2: Success as the user
can edit events.

Test 3: Success as the user
can view events in the
calendar.

Test 4: Success as the user
can delete events.

Test 5: Failed as the user
was able to add an event
with no fields filled in.

Test 6: Success as the user
can create lists with a
name and user.

Test 7: Success as tasks
can be moved within lists.

Test 8: Success as tasks
cannot be created without
a user.

Test 9: Success as tasks
cannot be created without
a name.

Test 10: Success as tasks
cannot be created without
a start date.

Test 11: Success as tasks
cannot be created without
a list.

Test 12: Success as lists
can be shown.

Test 13: Success as lists
can be accessed via the
index.

Test 14: Success as new
list pages can be retrieved.

Test 15: Success as lists
can be updated.

Test 16: Success as lists
can be deleted

FR-3 Users User inputs details from
registration and the system
authenticates them, should be
done with a username and
password. Needs to advise user if
there are incorrect details entered
with exception handling.
Successful authentication
authorizes the user to access the
programs’ features. User can Sign
out from program successfully.

Test 1: Success as the user
can update details without
being logged out.

Test 2: Success as the user
receives confirmation
upon successful updates.

Test 3: Success as users
can log in with correct
credentials.

Test 4: Success as users
are blocked and shown an

error for incorrect
usernames.

Test 5: Success as users
are blocked and shown an
error for incorrect
passwords.

Test 6: Success as users
can successfully sign out.

Acceptance Test Non-Functional Requirements Testing Results:

NFR-
Number

Title Non-Functional
Requirement
Description

Criteria Testing

NFR-1 Reliability Functions work as
intended. Consistency
is essential. Must
always have high level
of uptime and not have
any crashes.
Exceptions can occur
from user misusing a
function, but they
must be caught and
the system cannot
incur fatal errors.

Uptime: 99.9%

Exceptions:

All Caught

Success: Thorough
testing done of using the
application. Exceptions
and errors were created
for every function where
necessary, and user will
incur no fatal issues.
User is always informed
when they have used
something incorrectly.

NFR -2 Usability U.I. needs to be user-
friendly, easily
accessible, and easy
to navigate. Buttons
and labels must be
clear and input fields
need clear
instructions. Users
should not spend more
than >5s trying to find
any given option.
Should not select
incorrect option more
than once.

Navigation
Time:

<5s

Incorrect
Options
Selected: <2
times

Success: Employed
user testers for this
phase to check times.
Users spent +/-4
seconds navigating
menu to view options
available. No testers
clicked wrong options.

NFR -3 Security Ensure the application
is secure against
unauthorized access
and vulnerabilities
such as SQL injection
and XSS attacks. Only
authenticated users
should access their
data, and proper error
handling should be
implemented for
invalid input attempts.

Encryption:
Password,
BCrypt, devise

Database
Authentication:

Values 100%
correct

Test 1: Failed as the XSS
protection test returned
a 422 error instead of a
2XX success response.

Test 2: Success as SQL
injection attempts in the
login form are blocked.

Test 3: Success as only
signed-in users can
access their tasks.

Test 4: Success as
unauthorized users are
redirected to the login
page.

Test 5: Success as users
cannot access other
users' tasks.

Test 6: Success as only
signed-in users can
access their lists.

Test 7: Success as
unauthorized users are
redirected to the login
page when trying to
access lists.

Test 8: Success as users
cannot access other
users' lists.

Test 9: Success as only
signed-in users can
access their modules.

Test 10: Success as
unauthorized users are
redirected to the login
page when trying to
access modules.

Test 11: Success as
users cannot access
other users' modules.

2.6 Evaluation

With the project having been evaluated now against functional and non-functional requirements.
Steady progress has been made with functional features, and although not at commercial
deployment level yet, promise is shown with the foundation laid. As this is useful for me, I’ll be
continuing to build it and increase the complexity, scope, and adding features. Let’s have a run
through below.

Functional Requirements:

The functions of the program have been implemented at it’s core but have room to improve. The
user registration and login are there, with devise creating a secure and easy user management
system. The CRUD database for module, list, and task management was implemented
successfully along with it being tied to the user that is signed in for security. Everything has been
rigorously tested with all functions working as intended. Although the features are there,
improvements need to be made with the modules section most. It doesn’t serve much purpose
at the minute, the ability to add/edit/update/delete modules exists but the addition of a file
upload service and any other corresponding features to service it isn’t there. This needs to be
integrated into the scheduling aswell to link it with say, class times for modules and what needs
to be submitted.

Non-Functional Requirements:

All non-functional requirements working correct and efficiently throughout the tests. With regard
to reliability, usability, security, as well as performance the tests perform under or on the testing
acceptance times. Further tests need to be run on future functions and system updates but
everything all good for now.

3 Conclusions

With significant strides made to the project and a solid foundation for future work to be done,
there is plenty of promise for the future of it. I’m happy with the work done, especially the
implementing of sortable to lists/tasks/calendar as it was extremely difficult to get it functional
the way it was set up in the functional requirements but from perseverance and research it was
possible.

4 Further Development or Research

With the future of the project there are more features to be added:

- File Upload & Downloading for storage and accessibility. This is key to the project as the goals
include having your work in a single space.

- Contact/Feedback page with potential for simple AI implementation of sorts. Definite addition of
a feedback with mailer properties for submitted issues.

- Add features to module management with it being intertwined more in the calendar and with the
other features.

5 References

Bibliography
Dedecker, J. (n.d.). No Route. Retrieved from Stackoverflow:

https://stackoverflow.com/questions/6557311/no-route-matches-users-sign-out-devise-rails-3

Devise. (n.d.). Devise Gem. Retrieved from rubydoc.info: https://rubydoc.info/github/heartcombo/devise

Github. (n.d.). SortableJS. Retrieved from Sortablejs.github.io: https://sortablejs.github.io/Sortable/

6 Appendices

6.1 Project Proposal

National College of Ireland

Project Proposal

Computing Project

28/10/2023

Computing

Software Development

2023-2024

Ryan Lanz

x21759971

 x21759971@student.ncirl.ie

Contents
1.0 Objectives .. 39

2.0 Background ... 40

3.0 State of the Art .. 40

4.0 Technical Approach ... 41

5.0 Technical Details ... 41

6.0 Project Plan ... 42

7.0 Validation/Verification .. 43

6.1.1 Objectives

The aim is to develop a convenient application that assists students and professionals in organizing
their tasks in a concise, professional, and effective manner. The application will address the common
challenge of individuals struggling to complete tasks without clear guidelines and difficulties in
tracking progress and archiving information. The vision for the application is to create a unified
platform, combining the functionalities of Moodle and Microsoft Teams, to provide users with a
comprehensive solution.

The expected impact and outcomes of the project include improved timekeeping, streamlined
archiving of documents, enhanced accessibility, reduced scheduling conflicts, and overall increased
benefits and efficiency for all users.

There are several requirements for this project that need be fulfilled including user authentication,
task management and scheduling with different features, feedback methods, all the while being highly
usable, secure and perform well.

6.1.2 Background

The motivation behind this project stems from the daily use of Teams and Moodle, recognizing their
usefulness while desiring a different user interface and integrated functionality. The recent upgrades
to the Moodle user interface have improved its usability, but there is still room for enhancement in
terms of user experience and layout.

The project is driven by the belief that it will significantly enhance productivity, boost morale,
improve managerial skills, and facilitate timely task completion. In an era where remote work has
become prevalent, it is easier to become distracted and lose track of time. By consolidating all tasks
in a single platform, the application aims to mitigate these challenges.

I created a project on this previously as a basic program using java, GUI, and MySQL and would like to
utilise Ruby on Rails and CSS to create a functioning website as it is much better to create with and
can be used anytime through a web browser on a computer as well as a phone.

I have to create a cloud application with Ruby on Rails for another module before Christmas with
CRUD capabilities and plan to create a base of this project for that and then build upon it further.
The requirements could all be fulfilled solely with that framework but I might implement something
like React or Angular if it is going well and can be picked up easily enough.

6.1.3 State of the Art

There are loads of applications that are similar, ones like Todoist (I found I didn’t like the overall UI of
it and found myself not wanting to add any tasks to it and didn’t like how the tasks were added. I
disliked this the most and don’t understand why it’s as highly regarded.), Trello (Trello I really liked the
UI but thought it was lacking some features. I would love to create an interactive calendar with
similarities to this), Toodledo (This app I didn’t like the UI of it at all either, it didn’t feel like the
application it’s meant to be because of the way it’s laid out. However, I really liked all the features
available in it.), OmniFocus (I couldn’t use this really, not for any reason other than I feel this is for
people who have created a productivity and management system for themselves already over time
and need to implement it and use it an application to accommodate it.), and I have tried multiple of
them but they have never worked for me. I have found myself not drawn in by them and end up just
deleting them in the end as I don’t utilise them. I would like to compile the things I liked from these
apps and create a compilation of those features and designs.

For my application I would like to take elements I like from Toodledo and implement some UI features
from Trello as well as adding my own features to it as well. That would include features from
Moodle/Teams like file storage of documents etc that correspond to different modules, as well as
assignment and exam grading sections to keep track of that. If I combine all these elements
successfully, I feel it would be a unique project compared to the others and be extremely helpful.

6.1.4 Technical Approach

The methodology chosen for this project shall be PRINCE2. PRINCE2 allows for a structed and
controlled way of project management and sections the whole project into different divisions or
stages while clear goals and responsibilities are emphasized. This allows for every role and
responsibility of every section within the project to be defined clearly with a goal, milestone, and
timeframe. There are regular checks and reviews to gain full transparency and keep realistic goals of
project completion as well it being good for organization and communication. Internal stakeholders
include developers, QA, and team members involved on the project.

I have program down the project into 6 different stages in order to follow complete it in a timely
manner and not fall behind and try to avoid delays.

Time:

 Stage 1: Requirements Gathering & Proposal

Start date: 18/10 End Date: 28/10 Tolerance:

Stage 2: Set Up Development Environment & Commence Coding

Start date: 31/10 End Date: 10/12 Tolerance:

 Stage 3: Mid-Point Implementation (Finish v1 of project with CRUD capabilities)

Start date: 11/12 End Date: 15/12 Tolerance: +/- 1 Week

 2024

 Stage 4: Commence Coding For v2 (Full functioning UI and all requirements fulfilled)

Start date: 20/01 End Date: 01/04 Tolerance: +/- 2 Weeks

 Stage 5: Acceptance Testing

 Start date: 02/04 End Date: 15/04 Tolerance: +/- 2 Weeks

 Stage 6: Commence Coding For v3 & Finish Documentation

Start date: 16/04/06 End Date: 05/05 Tolerance: 5 Days

Final Submission: 15/05

6.1.5 Technical Details

Frontend Development and User Interface: The user interface and frontend experience will be constructed using
Ruby on Rails (RoR), HTML, and CSS. The versatility of RoR allows for seamless integration with HTML and CSS,

improving the UI and making the interactivity with the application easy to use. With CSS being utilised it allows
for easy editing and real-time incorporation of ideas and the program you imagine making is created exactly
how you want to make it. With all these languages integrated it will mean the application will be user-friendly
and useful. Backend Development: Ruby on Rails will be used for the backend development of this project as
well. We have began developing with it and it is easy to use and has a lot of support with various frameworks,
libraries with plenty of services like APIs and such. It is brilliant for backend as you can create websites extremely
quickly compared to other languages like Java or Python and they don’t lack and professionalism despite the
quick creation.

Backend Development: Ruby on Rails will also power the backend development. Its user-friendly syntax,
extensive library support, and numerous frameworks simplify the creation of complex backend
functionalities. RoR's efficiency stands out, enabling rapid development without compromising
professionalism. The availability of diverse services like APIs further enriches the backend capabilities,
ensuring a robust and dynamic application. RoR's Model-View-Controller (MVC) architecture guarantees
clean and organized code, facilitating easier debugging and future enhancements.

Database management: PostgreSQL will be employed for the management of the database.
The utilization of this kind of database management is useful and widely used for applications
that rely on CRUD operations. This enables quick and efficient data retrieval and also supports
any kinds of queries the user might have in relation to this program. Additionally, it offers
support for JSON, which can be implemented in this project as well.

Hosting: Heroku seems to be the most reasonable choice for this project as there is a free tier which
can work for small projects while still performing well and suits the small scale of the project.
Alongside this that, it focuses on simplicity and a straightforward deployment process which is
helpful for new users and a project of this scale.

6.1.6 Project Plan

Business Requirements:

• Feedback focused: The program aims to evolve and scale with user-submitted feedback shaping how
the program will look and act as no-one knows something as much as the person who uses it most.
This is a good look for business as well as customer care and support show good company morals and
willingness to listen to the customer based shows they are valued.

• Performance based: Program needs to perform for users smoothly with no errors, appropriate error
and exception handling needs to be in place with any potential overlooked issues reported
automatically by the system where possible, and if system does not pick it up allow for customer
feedback to report it.

Functional Requirements:

• User Registration, Authentication, Authorization: Users must be able to create an account on their
own accord and be able to login with the details they have provided. They must be authorized to use
any functions appropriate to them without assistance.

• Management: User must be able to use management facilities of all functions, scheduling for adding
and editing key dates in their personal calendar, module management for adding, viewing, updating,
and deleting modules appropriate to them that are in their course, account management where they
have the ability to amend details about themselves.

• File Storage: User must be able to upload & download files that correspond to the module they were
uploaded to. They must be able to add and remove them as such.

• Grading System: User must be able to utilise a grading system for assignments and exam results. This
should show a tally of current progress.

• Feedback: Must be able to submit feedback that can be used to benefit the program in the future.
Whether it be issues with the program to fix, advice on what can be improved in the future, or just
general praise or complaints users might have.

Non-Functional Requirements:

• Usability: Program is easy to use, users should spend much time navigating. <5s navigating.
• Reliability: Program is consistent and works as intended, any issues need to be reported. Uptime: 99%
• Performance: All functions of application load instantly. Allow for slight delay in startup of program

which could depend on specs of the user’s device. Startup <5s & Functions load time <1s.
• Security: Security measure implemented and compliance with GDPR is mandatory. Encryption of user

data must be used and comply with GDPR rules with how it is stored.

Time Requirements

Phase Milestones Timeframe

Planning & Learning -Requirements Gathering
-Project Proposal & Plan Complete

18/10-28/10

Implementa�on -Roles and Responsibili�es Defined
-Development Underway

31/10-10/12

Mid-Point Review -V1 Completed
-Documenta�on Compiled & Video
Showcase Completed

20/12/2023

Final Implementa�on -V2 Development Underway 20/01/2024-01/04

Acceptance Tes�ng -Acceptance Tes�ng Underway 02/04 to 15/04

Close Project -Any Acceptance Tes�ng Issues Fixed
-Finalize Documenta�on
-Check All Deliverables

16/04 – 05/05

Finishing Review -Documenta�on Prepared
-Video Presenta�on Completed

11/05 to 15/06

Finish -Submit Full Project 15/05/2024

6.1.7 Validation

The validation and verification of different aspects of the project will be done throughout the course
of the year. There will be 3 main points of validation:

Mid-Point Review: The mid-point review will prove crucial to assess the progress of the project. It is a
milestone for progress and the success of the project so far can be judged from here to an extent. It
will be used for knowing what functions have been implemented successfully and if there are any
issues with them, and issues that could arise later on in the development process. If there have been

any deviations from the original plan, they can be focused on in-depth in the next development phase
and ironed out quickly.

Acceptance Testing: The acceptance testing is a crucial stage of any project regardless of who is
undertaking it. The acceptance testing stage is where all the work that has been put into the project
is thoroughly tested in comparison to the requirements that were set out and the beginning of the
project. This is a stage that makes or breaks the application and tests if it has been successfully
implemented and is what was originally proposed. All the requirements set out previously (business,
functional, non-functional) will be tested thoroughly and any errors and can hopefully be rectified in
the final review.

Final Review: The final review will be the last stage of the project before it has been submitted. Any
issues from acceptance testing, if needed to be fixed, will have a final attempt at rectification before
the project is submitted. Not only will the code be validated but the documentation needs to be
verified and validated thoroughly as well that is represents the end product correctly.

6.2 Reflective Journals

Signature

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1 Use Case Diagram
	2.1.1.2 Requirement 1
	2.1.1.3 Requirement 2
	2.1.1.4 Requirement 3
	2.1.1.5 Requirement 4
	2.1.1.6 Requirement 5
	2.1.1 Data Requirements
	2.1.2 Non-Functional Requirements
	2.2 Design & Architecture
	2.2.1 Design Overview
	2.2.2 System Architecture
	2.3 Implementation
	2.4 Graphical User Interface (GUI)
	2.5 Testing
	2.6 Evaluation

	3 Conclusions
	4 Further Development or Research
	5 References
	Bibliography
	6 Appendices
	6.1 Project Proposal

	6.1.1 Objectives
	6.1.2 Background
	6.1.3 State of the Art
	6.1.4 Technical Approach
	6.1.5 Technical Details
	6.1.6 Project Plan
	6.1.7 Validation
	6.2 Reflective Journals

