

National College of Ireland
BSc (Honours) in Computing

Cyber Security

2023/2024
Michael Greed

20142269

X20142269@student.ncirl.ie

Passwordless Post-Quantum Resistant File
Storage and Cloud Backup Application

Technical Report

1

Contents
Executive Summary ... 5

1.0 Introduction ... 5

1.1. Background .. 5

1.2. Aims ... 6

1.3. Technology .. 7

1.4. Structure .. 8

2.0 System .. 8

2.1. Requirements .. 8

2.1.1. Functional Requirements .. 9

2.1.1.1. Use Case Diagram .. 9

2.1.1.2. Requirement 1: Register account .. 9

2.1.1.3. Description & Priority .. 9

2.1.1.4. Use Case .. 9

2.1.1.5. Requirement 2: Login .. 11

2.1.1.6. Description & Priority .. 11

2.1.1.7. Use Case .. 11

2.1.1.8. Requirement 3: Encrypt files at rest ... 12

2.1.1.9. Description & Priority .. 12

2.1.1.10. Use Case .. 12

2.1.1.11. Requirement 4: Decrypt files at rest ... 13

2.1.1.12. Description & Priority ... 13

2.1.1.13. Use Case .. 13

2.1.1.14. Requirement 5: Back up files .. 15

2.1.1.15. Description & Priority ... 15

2.1.1.16. Use Case .. 15

2.1.1.17. Requirement 6: Restore files from backup ... 16

2.1.1.18. Description & Priority ... 16

2.1.1.19. Use Case .. 16

2.1.1.20. Requirement 7: Manage user data ... 17

2.1.1.21. Description & Priority ... 17

2.1.1.22. Use Case .. 17

2.1.1.23. Requirement 8: Recover user account ... 18

2

2.1.1.24. Description & Priority ... 18

2.1.1.25. Use Case .. 18

2.1.1.26. Requirement 9: Logout ... 19

2.1.1.27. Description & Priority ... 19

2.1.1.28. Use Case .. 19

2.1.2. Data Requirements ... 20

2.1.3. User Requirements .. 21

2.1.4. Environmental Requirements ... 22

2.1.5. Usability Requirements ... 23

2.2. Design & Architecture ... 24

2.3. Implementation ... 25

2.3.1. Main algorithms .. 25

2.3.2. Classes ... 26

2.3.3. Functions ... 28

2.4. Graphical User Interface (GUI) .. 42

2.5. Testing ... 45

2.5.1. Objectives .. 45

2.5.2. Scope ... 45

2.5.3. Test Strategies ... 45

2.5.4. Test Environment .. 45

2.5.5. Test Cases .. 46

2.5.6. Automated testing .. 59

2.6. Evaluation .. 59

2.6.1. Functional evaluation .. 59

2.6.2. Performance evaluation .. 60

2.6.3. Scalability .. 61

2.6.4. Challenges faced ... 61

2.6.5. User Experience .. 61

2.6.6. Results and outcomes ... 61

2.6.7. Limitations ... 61

3.0 Conclusions .. 62

4.0 Further Development or Research .. 62

5.0 References ... 62

6.0 Appendices ... 64

6.1. Project Proposal .. 64

6.1.1. Objectives .. 64

3

6.1.2. Background ... 64

6.1.3. State of the Art .. 65

6.1.4. Technical Approach ... 65

6.1.5. Technical Details ... 66

6.1.6. Special Resources Required .. 67

6.1.7. Project Plan ... 67

6.1.8. Testing ... 69

6.2. Reflective Journals ... 70

6.2.1. October 2023 .. 70

6.2.1.1. What? .. 70

6.2.1.2. So what? .. 70

6.2.1.3. Now what? .. 71

6.2.2. November 2023 ... 71

6.2.2.1. What? .. 71

6.2.2.2. So What? ... 72

6.2.2.3. Now What? .. 72

6.2.3. December 2023 ... 73

6.2.3.1. What? .. 73

6.2.3.2. So What? ... 73

6.2.3.3. Now What? .. 74

6.2.4. January 2024 ... 74

6.2.4.1. What? .. 74

6.2.4.2. So What? ... 75

6.2.4.3. Now What? .. 75

6.2.5. February 2024 ... 75

6.2.5.1. What? .. 75

6.2.5.2. So What? ... 75

6.2.5.3. Now What? .. 76

6.2.6. March 2024 ... 76

6.2.6.1. What? .. 76

6.2.6.2. So What? ... 77

6.2.6.3. Now What? .. 77

6.2.7. April 2024 .. 77

6.2.7.1. What? .. 77

6.2.7.2. So What? ... 78

6.2.7.3. Now What? .. 78

4

6.2.8. May 2024 ... 78

6.2.8.1. What? .. 78

6.2.8.2. So What? ... 79

6.2.8.3. Now What? .. 79

6.2.9. June 2024 .. 79

6.2.9.1. What? .. 79

6.2.9.2. So What? ... 79

6.2.9.3. Now What? .. 79

6.2.10. June 2024 .. 80

6.2.10.1. What? .. 80

6.2.10.2. So What? ... 80

6.2.10.3. Now What? ... 80

5

Executive Summary
The main goal of this project is to create easy-to-use passwordless file storage and cloud
backup application designed primarily for Windows 11 users. With cyber threats arising from
post-quantum computing as the core driving motivator when planning on this application, it
features OWASP recommended novel cryptographic technologies to protect from these risks
in the rapidly evolving digital environment.

Due to the growing cyber risks, also the demand for protective solutions has increased in the
recent years. Such solutions are particularly necessary because of the data privacy and
protection requirements set by General Data Protection Regulation (GDPR) and the
normalized remote working business environments. For data in transit the algorithms are still
not mature enough in terms of years of experience using them so they may have still
undiscovered flaws that could get exploited by the malicious parties. However, with the help
of post-quantum resistant algorithms such as AES-256 for the data at rest confidentiality and
integrity can be achieved even in the future. Furthermore, terminating password-based
authentication from the login process enhances security posture of personal or business
application users.

The design and implementation of the application especially promotes usability and user
experience. Graphical interfaces of the application are easy-to-use and approachable even for
the users without technical background.

The application aims to be relatively cost-efficient, low entry, and scalable cyber security
solution. Additionally, the project provides good foundation for further research and
development when the post-quantum algorithms have matured more.

1.0 Introduction
1.1. Background
Having strong background in IT, HR, and marketing, I have always been interested in the
latest technology, information security, and finding ways to help people by providing
them with user-friendly solutions. Big companies have had the same goal but sometimes
there are malicious parties who would like to ruin those ambitions or get personal gains.
Data leaks and cyber threats have become too common and even criminals who do not
have technical skills can purchase cyber attacks as service from the black markets.
Producing ethically viable and easily downloadable and installable solution to protect
individual users, remote workers or businesses from cyber threats was the main
motivational factor behind this application project.

This project produces passwordless post-quantum secure file storage and cloud backup
solution for Windows 11 users. Implementing sustainable cryptographical solution using
the latest framework which enables cross-platform development through this novel
product is remarkable step for the adoption of post-quantum resistant cryptography in
the larger scale. This project seemed like a perfect opportunity to learn and demonstrate
my skills learned through the four years in the college.

6

Above all, this project let me research, design and implement the cutting-edge
technologies and explore cryptography deeper under the surface. This project may even
have commercial potential if developed further with investments and commercialized.

1.2. Aims
One of the major goals of this project is to create a passwordless post-quantum resistant
file storage and cloud backup application for Windows users. More profoundly, there
were four key objectives to be achieved which are protecting against quantum computing
threats for data at rest, avoiding password-related risks, creating user-friendly and visually
appealing application, and ultimately providing the users with a secure cloud backup
solution for increased cyber safety guaranteeing availability of their data.

The application would leverage National Institute of Standards and Technology (2023)
recommended performant AES-256 with GCM (Galois/Counter Mode) as recommended
by OWASP (2024) as a best security practice in the process of encryption. To ensure
security for files at rest envelope encryption is implemented in a similar manner as
described by Amazon Web Services, Inc. (2023a) and by utilizing envelope encryption
through AWS Key Management Service (2024a). This aims to guarantee the CIA triad data
confidentiality, integrity, and authenticity. This proactive approach aimed to protect user
data against hackers who may get access to the computer of a remote worker and then
steal their data. This solution would leave the attackers empty handed as the data has
been strongly encrypted.

Recognizing the inherent vulnerabilities associated with password-based authentication,
the project also focused on integrating novel Supabase (Google Firebase competitor)
(2024a), a secure and convenient, partly passwordless authentication system, through
one time password code of 6 digits which is sent to the registered and authenticated user
by email (Supabase, 2024b). This method helps to significantly reduce the risk of phishing
attacks and streamline the user experience by eliminating the need for remembering and
managing complex passwords. Resend (2023) is used as a SMTP service to send HTTPS
secured email containing the code and Amazon Lightsail (2024b) virtual private server
with Nginx and autorenewing Let’s encrypt TLS certificate to act as redirection point for
new account verifications.

Understanding the importance of accessibility, a core principle of the project was to
develop an intuitive and user-friendly interface. This meant prioritizing clear instructions,
simple interactions, and a design that catered to both technical and non-technical users.
Empowering users to take control of their data security without technical hurdles was one
of the cornerstones of the design philosophy of the project.

Integrating secure cloud backup with Amazon S3 aimed to offer an additional layer of
protection against data loss. This redundancy ensured that even in case of device failure
or accidental deletion, user data remained safe and accessible. This feature catered to the
increasing reliance on cloud-based storage and the need for robust disaster recovery
capabilities.

7

By achieving these objectives, the project aspired to create a user-friendly and future-
proof solution that empowers Windows users to prioritize their data security. It aimed to
contribute to a digital landscape where technology serves as a tool for user empowerment
rather than a security barrier.

1.3. Technology
At the heart of robust security lies post-quantum resistant cryptography. Initially, I had
opted for the standardized and meticulously analysed CRYSTALS-KYBER, a lattice-based
key encapsulation mechanism, to safeguard data communication and encryption but due
to the limitations of my present competence and inactive libraries, such as OpenSSH, in
adapting this novel technology, I could not straightforwardly use it. Therefore, I decided
to protect users by the means of effective local encryption and backup solution. Even if
the data would be harvested by possible, even a quantum computer possessing malicious
party, the data would be encrypted with the strongly recommended NIST algorithm. This
future-proof choice ensures resistance against potential attacks from quantum
computers, a looming threat to traditional cryptography.

Eliminating old password-based authentication is crucial for enhanced security because
of the growing calculation power of quantum computers. Supabase OTP (One Time
Password) is a passwordless alternative replacing traditional passwords after initial
mandatory registration with email and password. This reduces the possible cyber attack
surface, makes user experience simpler, and removes the necessity of having to
remember passwords for the service.

The design of this application has been planned prioritizing user experience. C# and the
new open-source .NET MAUI Framework provide a familiar and robust development
environment for building the core functionalities and graphical user interfaces of the
application. Their extensive selection of compatible NuGet libraries and strong
community support ensure efficient development and long-term maintainability.
Moreover, user-centered design principles will guide the interface development,
emphasizing clarity, intuitiveness, and accessibility for users of all technical backgrounds.
Prioritizing ease of use and clear instructions will be essential.

For secure cloud backup and enhanced reliability, Amazon (2024c) Simple Storage Service
S3 will be utilized. This cloud storage service boasts robust security infrastructure and
server-side encryption with also AES-256, ensuring data confidentiality at rest even in
cloud. Additionally, its scalability caters to the growing data storage needs of users.

To ensure efficient management and delivery, I will adopt the agile Kanban methodology.
This approach emphasizes continuous improvement, flexibility, and iterative
development. Kanban boards help keeping on track with the features to be implemented
and other scheduled tasks. The development time is cut remarkably because of this while
still guaranteeing the agile updates and deployment of the application.

8

1.4. Structure
This technical report outlines the development of a passwordless post-quantum resistant
file storage and cloud backup application for Windows users, aiming to address the
growing need for robust cybersecurity and user-friendliness in data management.

The system section delves deeper into the specifications of the system. It starts by
detailing various types of requirements, ranging from functionalities described through
use cases to data structures, user needs, environmental constraints, and usability
requirements. The design and architecture are then explained, showcasing the
components of the system, algorithms, and demonstrating with a high-level architecture
diagram. Implementation details, including key algorithms, classes, and code snippets, are
presented in this section as well. The user interface is explored through screenshots and
explanations of their functionalities. Finally, the testing process and its results, covering
unit, integration, and end-user testing, are explained. The last evaluation part of the
section summarizes how the system was assessed and presents performance metrics,
scalability, correctness, and other relevant findings.

The report continues by discussing the strengths, limitations, advantages, and
disadvantages of the project in the conclusion section. The conclusion offers a balanced
perspective on the achievements and potential areas for improvement of the project
outcome.

Further development and research section explores potential future directions for the
project, considering additional resources and time. It proposes enhancements,
expansions, or new research avenues that could build upon the current work.

The report concludes with a list of references used throughout the document and relevant
appendices which are the project proposal and monthly reflective journals during this
project.

2.0 System
2.1. Requirements

System requirements are preliminary and will become more precise when
implementing the application functionalities. All the data in transit connections will
use currently safe TLS-based HTTPS connections. Even if the data may be susceptible
to harvest now, decrypt later attacks, the sent files would be encrypted and the
malicious party does not have access to the original plaintext data key.

9

2.1.1. Functional Requirements
2.1.1.1. Use Case Diagram

Figure 1 Use Case Diagram

2.1.1.2. Requirement 1: Register account
2.1.1.3. Description & Priority
A user can only use the application with a registered account. Registration is
mandatory.

Priority: High. Without a user account the user will not have access to any of the
application features.

2.1.1.4. Use Case
UC-1

Scope

The scope of this use case is to define a new user account to authenticate and
authorize access to the user-specific resources and for account recovery.

Description

This use case describes the process of a user registering a new account into the
application.

Flow Description

Precondition

10

The user is not logged into the system and does not have previously registered
account.

Activation

This use case starts when a user clicks on the application icon or executable and
opens the application.

Main flow

1. The user opens the application.
2. The system displays the login view.
3. The user clicks Register here link to navigate to the registration view (See

A1).
4. The user enters their email, password and confirms their password in a

separate field.
5. The system validates the email, password and confirm password fields.
6. The user clicks Register button (See E1).
7. The system creates a new entry into PostgreSQL database in Supabase.
8. The system sends a verification email to the email they filled into the

system when registering.
9. The system redirects the user to the login view.
10. The user clicks the link in the verification email.

Alternate flow

A1 : User uses incorrect email or password.
1. The user enters an incorrect email, password, not matching password in

the confirm password field or empty credentials.
2. The system validates the email, password and confirm password fields.
3. The system displays an error message, keeps the information entered

before in the fields but prompts the user to try again and does not let the
user register into the application.

Exceptional flow

E1 : System gets into an error state.
1. Due to database connection error, the system is unable to create an

account.
2. The system catches the error and displays an error message to the user

with OK button.
3. The user clicks OK button or closes the window.
4. The system displays registration view to the user.

Termination

The system presents the login view of the application for the registered user.

Post condition

The system goes into a wait state.

11

2.1.1.5. Requirement 2: Login
2.1.1.6. Description & Priority
A user must authenticate through Supabase REST API with an existing user account
to access and use the application.

Priority: High. Without a successful authentication login event, a user cannot view
any of their files or use any of the application features.

2.1.1.7. Use Case
UC-2

Scope

The scope of this use case is to define a single login method using a user account
and Supabase REST API, restricting unauthorized access to the data and
functionalities of the application.

Description

This use case describes the process of a user logging into the application.

Flow Description

Precondition

The user is not logged into the system. The user has created a user account into
Supabase and verified their registration email. The user has been registered into
Amazon S3 and Amazon KMS.

Activation

This use case starts when the user clicks on the application icon or executable and
opens the application or when a user has already opened the application and
registered a new account.

Main flow

1. The user opens the application.
2. The system displays the login window.
3. The user enters their email and clicks Login (See A1).
4. The system sends a passwordless OTP to the user email for login.
5. The system displays the OTP view in which the user can enter the code to

start a session.
6. The user enters the code (See A2).
7. The success message is displayed.
8. The system starts the user session utilizing JWT token with reasonable

expiry time (10 hours).
9. The user is now logged in and the file storage folder is displayed.

Alternate flow

A1 : Incorrect or empty email address

12

1. The user enters an incorrect or empty email.
2. The system validates the email field.
3. The system makes an API call to Supabase and does not find the email

address.
4. The system displays an error message, prompts the user to try again and

does not let the user log in to the application.

A2 : Incorrect passwordless credentials
1. The user enters wrong or expired OTP.
2. The system shows a display alert requiring the user to try again.
3. The user returns to the login screen and may start the login process again.

Termination

The system presents the personal user folder or “user space” of the application for
the authenticated, logged in user.

Post condition

The system goes into a wait state.

2.1.1.8. Requirement 3: Encrypt files at rest
2.1.1.9. Description & Priority
When the user decides that he has finished working with the files, they click
encrypt button of the application and the application encrypts the file utilizing
envelope encryption through AWS KMS and AES-256 algorithm. Root encryption
and decryption key is created and saved into Amazon KMS.

Unique data key generated using Amazon KMS is saved at the local storage in its
encrypted form. AES-256 GCM algorithm is used to encrypt the file using plaintext
decrypted key and the initialization vector is saved together with the file and the
encrypted data key.

Priority: High. Without encryption, the personal files of the user would be
susceptible to a possible theft or cyber attack.

2.1.1.10. Use Case
UC-3

Scope

The scope of this use case is to ensure the confidentiality of the personal user files.

Description

This use case describes the process of the system encrypting user files.

Flow Description

Precondition

13

The user has created an account in the system, opened the application and logged
in using Supabase OTP. The user has active AWS KMS account. The user has an
active session.

Activation

This use case starts when the user selects the file they would like to encrypt (and
later back up to cloud by uploading the file to AWS S3.

Main flow

1. The user selects a file that they would like to encrypt for security.
2. The system detects that the user has clicked Encrypt button.
3. The system starts encrypting the file with AES-256 encryption (See E1).
4. The system requests AWS KMS to generate data key.
5. The system receives both the plain text and encrypted data keys but only

the encrypted is saved locally.
6. The system starts encrypting the file using AES-256 using the plaintext data

key.
7. The system creates initialization vector and saves it locally with the file and

the encrypted data key.

Exceptional flow

E1 : System gets into an error state during encryption.
1. The system encounters an unexpected error during the encryption process.
2. The system displays an error message and instructions to the user with OK

button.
3. The user clicks the OK button.
4. The system returns to the user space.

Termination

The system presents the window indicating successful encryption.

Post condition

The system has finished the encryption and is in wait state.

2.1.1.11. Requirement 4: Decrypt files at rest
2.1.1.12. Description & Priority
When logging in to the application, the application shows the current encrypted
and unencrypted files in the local UserFiles folder after the user selects the main
folder. The user needs to decrypt the files to be able to use them.

Priority: High. Without decryption, the user would not be able to access their
encrypted files. The data key decryption root key would be saved in Amazon KMS.

2.1.1.13. Use Case
UC-4

14

Scope

The scope of this use case is to ensure authorized access to the authenticated user
to their confidentially stored personal files in the local system.

Description

This use case describes the process of a previously created user who is logged in
to the system getting access to their files for editing or other relevant purposes.

Flow Description

Precondition

The user has created an account in the system, opened the application and logged
in using Supabase OTP. The user has active AWS KMS accounts. The user has an
active session.

Activation

This use case starts when the user selects an encrypted file in the local storage.

Main flow

1. The user clicks decrypt button in the application toolbar.
2. The system requests decrypt function from AWS KMS.
3. The system starts the decryption process using KMS root decryption key

for the corresponding selected encrypted file data key (See E1).
4. The system decrypts data key corresponding to the respectively named file

and uses plaintext data key for AES-256 decryption.
5. The system gets the initialization vector and decrypts the file.
6. The encrypted file is deleted
7. The system has finished decryption and displays the file to the user.

Exceptional flow

E1 : The system gets into error state during decryption.
1. The system encounters an unexpected error during the decryption process.
2. The system displays an error message and instructions to the user with OK

button.
3. The user clicks OK button.
4. The system returns user to the personal folder view.
5. The user tries decryption again by clicking the Decrypt button.
6. If the decryption is still unsuccessful, the system will instruct the user to

contact the application creator for support.

Termination

The system presents the files of a user in their personal folder view, “user space”.

Post condition

The system goes into a wait state.

15

2.1.1.14. Requirement 5: Back up files
2.1.1.15. Description & Priority
Personal files of a user should be backed up to the Amazon S3 server to reduce the
risk of possible device malfunction, malware or possibly stolen device. Personal
files of a user must be encrypted when sent to the Amazon S3 backup server using
secure HTTPS connection utilizing TLS protocol.

Priority: High. Without backup risks related to the loss of access to the data may
become realized.

2.1.1.16. Use Case
UC-5

Scope

The scope of this use case is to ensure the file availability in case of unexpected
events.

Description

This use case describes the process of user backing up their data to Amazon S3
using back up button from the application toolbar.

Flow Description

Precondition

The user has created an account in the system, opened the application and logged
in using Supabase OTP. The user has active Amazon S3 account configured
properly with relevant permissions through groups. The user has an active session.

Activation

This use case starts when the user has selected the desired file and clicks the back
up button in the graphical user interface of the application.

Main flow

1. The system will send a request to connect to S3 bucket to put a new object
there.

2. The AWS S3 accepts the connection and starts transferring the file there.

Exceptional flow

E1: Connection issue during backup
1. The system displays an alert indicating the connection cannot be formed

or is interrupted and asks user to try again.

Termination

16

The system confirms to the user through display alert that the files have been
backed up and synced to AWS S3 successfully.

Post condition

The system goes into a wait state.

2.1.1.17. Requirement 6: Restore files from backup
2.1.1.18. Description & Priority
The user should be able to retrieve backup files from the Amazon S3 server if there
is a device malfunction, malware infeciton or the device gets stolen. The personal
files of a user are encrypted using server-side encryption at S3.

Priority: High. Without the ability to restore files from Amazon S3 backups, risks
related to the availability of files become realized.

2.1.1.19. Use Case
UC-6

Scope

The scope of this use case is to ensure the availability of user files and integrity
through the option to retrieve backups.

Description

This use case describes the process of user retrieving their files by downloading
them from Amazon S3 with a new device if the previous one was stolen, broken,
had a general malfunction, or was infected with malware.

Flow Description

Precondition

The user has downloaded the application to the new computer and has performed
the initial installation. The user has logged in to the system and is now in the user
space view.

Activation

The user has clicked recover files from cloud button in the application toolbar.

Main flow

1. The system will request to make a connection to the AWS S3 bucket.
2. The system will download the files in the S3 bucket to the local storage of

the user.

Exceptional flow

E1: Error 1 to be defined
1. The process will become more precise during implementation.

17

Termination

The system confirms to the user with a new window that the files have been
synced from Amazon S3 with a certain date and time.

Post condition

The system goes into a wait state.

2.1.1.20. Requirement 7: Manage user data
2.1.1.21. Description & Priority
The user needs to be able to create files within the secure application environment
as easily as in a basic Windows environment.

Priority: Medium. The user needs to be able to update their email address.

2.1.1.22. Use Case
UC-7

Scope

The scope of this use case is to ensure a good user experience and provide control
for the user to manage their data.

Description

This use case describes the process of user changing their data saved into the
Supabase PostgreSQL BaaS database.

Flow Description

Precondition

The user has logged in to the system and the system is not performing other tasks.
The system is in a wait state.

Activation

This use case starts when the user in user space view and selects Change email
address from the File dropdown in the upper left-hand corner of the application
window.

Main flow

1. The system identifies the option “Change email address” was clicked.
2. The system displays prompt to enter the new email address.
3. The user enters their email address
4. The user clicks ok (See E1).
5. The system sends user the verification link to their current and new email

address. The both must be clicked for the change to take place.
6. The user clicks the link to verify the change.

18

7. The system updates data in the Supabase database.
8. The system redirects user to the application to login.
9. The user can now log in with the new email address

Exceptional flow

E1: System gets into an error state.
1. Due to a connection error to Supabase, the system is unable to update and

save user details.
2. The system catches the error and displays an error message to the user

with OK button and prompts the user to try again.
3. The system goes into a wait state.

Termination

The system returns to the personal folder view of the user.

Post condition

The system goes into a wait state.

2.1.1.23. Requirement 8: Recover user account
2.1.1.24. Description & Priority
A user must be able to recover their account for Supabase, Amazon S3, and
Amazon KMS.

Priority: High.

2.1.1.25. Use Case
UC-8

Scope

The scope of this use case is to ensure that the user still has access to their files
through required accounts even in the case of unexpected events to mitigate the
risks involved.

Description

This use case describes the process of user recovering access to their account for
Supabase, Amazon S3, and Amazon KMS.

Flow Description

Precondition

The user does not have access to their Supabase, Amazon S3, or Amazon KMS
account.

Activation

19

This use case starts when the user tries to recover their account in the required
services.

Main flow

1. The user goes to the relevant system website to recover their account.
2. The relevant system provides user with the necessary steps to recover their

account.

Termination

The user manages to recover their account to access their files.

Post condition

The system lets the user log in and view their files normally.

2.1.1.26. Requirement 9: Logout
2.1.1.27. Description & Priority
A user must be able to terminate their session and log out of the system.

Priority: High.

2.1.1.28. Use Case
UC-9

Scope

The scope of this use case is to ensure that the proper session handling is in place
and the user can log out of the system successfully.

Description

This use case describes the process of user logging out of the system and
terminating their session.

Flow Description

Precondition

The user is logged in to the system and is not performing any tasks. The system is
in wait state.

Activation

This use case starts when the user clicks the Log out button from the graphical user
interface of the application, selects “Log out” from file menu or clicks cross icon in
the right corner of the application.

Main flow

1. The system identifies that the user has clicked the UI element.

20

2. The system confirms from the user whether they would like to log out of
the system.

3. The user clicks OK (See E1).

Exceptional flow

E1: System gets into an error state during session termination.
1. The system encounters an unexpected error during the session

termination process.
2. The system displays an error message and instructions to the user with OK

button.
3. The user clicks the OK button.
4. The system returns to the login window.

Termination

The system presents the window informing user that the log out was successful.

Post condition

The application has been closed.

2.1.2. Data Requirements
This section outlines the data requirements for the application. It specifies the types
of data the application will collect, store, process, and transmit, along with the
associated security considerations.

File data that the user provides is stored both locally on the device in the application
storage but also in the Amazon S3 cloud as a backup version of the data. File meta
data about the files, such as name and type are saved into the application. The
application supports the following file types: Microsoft Word files (*.doc, *.docx,
.rtf), Microsoft Excel files (.xls, *.xlsx), Microsoft PowerPoint files (*.ppt, *.pptx),
PDF files (*.pdf), and text files (*.txt). Files are encrypted using AES-256 GCM if the
user performs the encryption function in user space.

Data related to user authentication and access control consist of Supabase user
credentials (email and initial password) which are stored at their secure server in
PostgreSQL database. Additionally, the user data (encryption root key) will be saved
in AWS KMS and files in the backup to AWS S3.

For data at rest, the unique data key will be generated locally for the logged in user
and the root key used for data key decryption is saved in AWS KMS. Encrypted file
specific data key is saved locally in the user space together with initialization vector
used with AES-256 encryption.

For data in transit for the backups, TLS protocol will be used to prevent traditional
man in the middle computational threats and the data should be encrypted before
that by the user to protect against “harvest now, decrypt later” attacks.

21

Amazon S3 provides relevant IAM user access and other logs because of the robust
security features of the cloud environment. The logs are immutable and cannot be
tampered with. The logging elements include date and time of actions such as file
uploads and downloads. Additionally, user actions are logged as well.

2.1.3. User Requirements
Users should be able to securely authenticate themselves using passwordless login.
Authentication should be intuitive and easy to the user when giving access to the
personal application views and user data securely. The acceptance criterion is that
users should be able to log in using their email through OTP and relevant OTP view
securely through Supabase Auth.

Furthermore, users should be able to encrypt, decrypt, backup and manage files
securely. The application must allow users to move files to a secure folder, manipulate
them (edit, rename and delete), and backup them encrypted to Amazon S3 cloud
when necessary. The acceptance criterion is that users should be able to perform file
operations efficiently within the local environment of the application. Additionally, the
application could support file preview and versioning features, for example in the next
version.

Files stored within the application should be encrypted by the user to achieve
confidentiality. The application should employ strong encryption algorithm to protect
the content of files stored locally. The acceptance criterion is that the user should be
able to successfully use envelope encryption through AWS KMS and OWASP
recommended AES-256 GCM encryption. Decryption should only be possible for
authorized users with the appropriate AWS KMS credentials.

Availability of the user files should be always guaranteed. The acceptance criterion is
that the users should be able to initiate backup and recovery operations for their data
easily from within the application using AWS S3. The connections should use secure
HTTPS and TLS protocols.

The confidentiality of the information provided by the users and their files should be
a priority. Cyber security incidents such as information leaks, unauthorized access and
other issues should be prevented using effective protective actions. The acceptance
criterion is that the application should feature passwordless authentication policy and
ensure data privacy through cryptographic measures such as strong encryption at rest
and using computationally traditional strong HTTPS and TLS protocols. Maintenance
through regular updates and security audits should be carried out when the
application is in production.

Graphical user interface should be kept simple and easy to use. Navigation should be
clear and intuitive. The acceptance criterion is that general tasks should be easily
understood even by the users without technical background. This can be seen
demonstrated through completed tasks without help or confusion. The application
should look modern and pleasant from the visual perspective.

22

Laws and regulations should be considered in the functionalities of the application.
Adhering to the legal requirements generates trust and transparency. The acceptance
criterion is that the application design and functionalities should consider the privacy
laws such as (General Data Protection Regulation) GDPR and other similar legal
frameworks and rules.

2.1.4. Environmental Requirements
For client devices, the user must have access to device such as a computer or laptop
with internet connectivity to access the features and functionalities of the application.
From the infrastructure perspective, the application requires AWS S3 bucket and AWS
KMS services. Minimum hardware specifications include CPU 1 gigahertz (GHz) or
faster with two or more cores on a compatible 64-bit processor or system on a chip
(SoC) or comparable, 4 GB of RAM, and enough SSD storage capacity for the files but
at least 64 GB which is the minimum requirement for Windows 11.

The operating system must be Microsoft Windows 11 to be compatible with the
application architecture at this phase, but .NET MAUI framework allows cross-
platform development for android and iOS as well. A web server software, Apache but
preferably NginX with Let’s encrypt certificate, must be installed and configured to act
as a redirection point when the user has completed the registration process. Amazon
S3 (Simple Storage Service) is a web service that stores backup files from the local
client application and the backups can be retrieved using AWS API. The application is
developed using specific programming languages (C# and .NET) and framework (.NET
MAUI). Therefore, it requires corresponding runtime environments.

The application requires stable internet connectivity to support backup functionality
while ensuring uninterrupted access for users as well. Network security measures
consist of firewall and encryption protocols which must be in place to protect against
cyber threats.

TLS certificates are necessary to secure data in transit between the client device and
the Amazon cloud server and Supabase database. Data encryption provides data
confidentiality and integrity. Encryption algorithm AES-256 must be used to encrypt
sensitive data at rest at first before transferring data. Respectively, data at rest must
be secured using at least AES-128 which according to NIST (2024) will be post-
quantum secure for tens of years based on present knowledge.

Regular backup procedures should be established to create copies of application data
and configurations, ensuring data integrity and availability in the event of hardware
failure or data loss. A complete disaster recovery plan should be written to prevent
from unlikely events such AWS server outages, broken devices, criminal activity such
as theft or cyber attacks, and natural disasters. The plan should be considered when
designing and implementing the application functionality. Best cyber security
practices, standards and recommendations should be followed.

23

2.1.5. Usability Requirements
The application interface must be easy to navigate and logical. Finding features and
functionalities within the application should be straightforward. The acceptance
criterion is that the menu items within the personal folder view and the action buttons
should be clearly available and easy to notice. Secondarily, menu items and navigation
links should be logically grouped and labelled clearly to reflect the structure and
functionality of the application.

The application interface must adhere to consistent design patterns and UI
conventions. Users should experience a coherent look and feel across different
sections and screens of the application. The acceptance criterion is that the
application should feature consistent visual resources such as colors, typography, and
buttons. Adherence to platform-specific design guidelines for Windows 11 by
Microsoft (2021) native applications is also required.

The application could be extended to be used responsively with different screens in
the further development phase in the future, however it is mainly targeted to
Windows 11 users on desktops or laptops. Thus, the users should be able to use the
application on the most generally available desktop computers and laptops.
Secondarily, general accessibility guidelines should be considered to accommodate
users with disabilities.

The application must provide informative error messages and feedback to users. Users
should receive clear guidance and instructions when errors occur, or actions fail
through the user interface. The acceptance criteria include descriptive error messages
that clearly explain the problem and suggest possible solutions. Furthermore, the use
of visual techniques such as color changes and icons are utilized to highlight errors and
indicate successful actions.

The application should provide accessible help resources and documentation. Users
should have access to comprehensive help content and instructions to assist them in
using the application effectively. The acceptance criterion would be to provide the
user with manuals as documentation for more detailed guidance.

The application must deliver optimal performance and minimal loading times. Users
should experience smooth and responsive interactions with the application, even
under heavy load conditions. The acceptance criterion is the optimization of code and
resources to minimize load times and enhance overall responsiveness. Monitoring and
optimization of server-side performance is required to ensure fast data retrieval and
processing.

The application should have channels for user feedback and support iterative
improvements. Users should have an opportunity to provide feedback on their
experience with the application. The development team should utilize this feedback
to enhance the application based on this user experience data. The acceptance
criterion is the implementation of a feedback channel which could be as simple as

24

email and possibly additional feedback functionality within the application at the later
phase.

2.2. Design & Architecture
The user interface is based on Windows 11 design principles of Microsoft (2021) providing
an intuitive interface for users to interact with the application. The main interface
components are feature based, AWS KMS utility and AES encryption utility for envelope
encryption, Supabase service for user creation and authentication and AWS S3 utility for
backup and recover functionalities. The client application backend handles user requests,
file operations, encryption, and communication with Amazon and Supabase.

The application uses Supabase for user registration and authentication. For this Supabase
offers scalable and secure PostgreSQL cloud database and robust bcrypt algorithm secures
the data.

Amazon Web Services S3 and AWS KMS both use strong server side encryption to secure
the data at rest.

The application design makes use of .NET MAUI framework which is implemented with
Model-View-ViewModel (MVVM) design pattern. Moreover, MVVM pattern address
separation of concerns by splitting application logic, presentation logic, and user
interface. The idea is that model and Viewmodel should not know about each other. This
pattern helps with teaming, for example designer can work with UI and software
developer with the view background logic. Furthermore, the pattern decreases code
redundancy and helps with more effective unit testing.

Amazon S3 is used as the backend storage solution for storing encrypted files. It consists
of buckets which are containers for storing files and objects which are individual files
stored within buckets.

AES-256 is used for encrypting and decrypting files locally before storing them on Amazon
S3 for backup (if the user wants so). The mathematical notation of the algorithm can be
written as follows:

encryption:
Ek (m) = AES-256-Encrypt(k,m)

decryption:
Dk (c) = AES-256-Decrypt(k,c)

Where k is the plaintext encryption key which is produced by first decrypting the unique
data key and m is the plaintext message. C is the encrypted message.

25

Figure 2. High-level architecture diagram.

The architecture of the application (Figure 2) consists of UI layer with XAML views,
viewmodels and command classes control the business logic and data access library is
separately keeping models for data interactions without knowing anything about view or
UI layer. Services layer consists of the main services and utilities and the external cloud
services are in the external systems section in the diagram.

A user interacts with the application through the client application user interface, which
sends requests to third party services through the application backend utilities and
functions. This architecture ensures a secure and efficient system for storing and
managing files with encryption. It employs proven and recommended enterprise standard
algorithms like AES-256 GCM for data security through envelope encryption and
decryption.

2.3. Implementation
This section covers different code snippets corresponding to the use cases. The
implementation relied heavily on NIST recommended algorithms for data at rest.

2.3.1. Main algorithms
AES-256 GCM and envelope encryption and decryption utilizing AWS Key
Management Service and AesGcm Class were the main algorithms implemented in this
project. Additionally, data key management was executed by managing the
encryption and decryption of data keys through AWS API. Session persistence and
retrieval through Supabase were necessary in terms of security and functionality as
changing user email address in user space view would not have been possible without
it. I also implemented validation rules for different forms.

From design patterns, SupabaseService uses singleton. Command pattern was used
for example with LoginCommand or VerifyOtpCommand. Overall structure of the
application follows MVVM (Model-View-Viewmodel) for program architecture and

26

this is demonstrated by implementing different features and commands for user
actions.

2.3.2. Classes
Classes represent models, views and viewmodels as the implementation is based on
MVVM pattern which is also one of the best ways to create a .NET MAUI application.
This section contains class diagrams of the important classes.

Figure 3. UserSpaceViewModel.cs class

UserSpaceViewModel.cs is responsible for main user actions within the UserFiles
folder in the application, for example calling encrypt, decrypt and backup methods
from the utility classes.

27

Figure 4. AesEncryptionUtility.cs class

AesEncryptionUtility class is responsible for encrypt file and decrypt file operations
using AES-256-GCM with keysize of 32 bytes, nonce (or initialization vector) of 12
bytes and authentication tag of 16 bytes.

Figure 5. AwsKmsUtility.cs class

AwsKmsUtility class is handling data key generation and along with it its encryption
and decryption using root key located in AWS Key Management Service.

28

Figure 6. SupabaseService.cs class

SupabaseService.cs class takes care of interactions to Supabase Authentication and
cloud database PostgreSQL operations.

Figure 7. AwsS3Utility class

AwsS3Utility class connects to AWS S3 using set bucket policy and API keys in the client
and manages file uploads in terms of backup operations.

2.3.3. Functions
This section contains graphical commented code snippets which are shortly described
underneath each snippet. They represent the highest priority use cases.

Code snippet 1. SignUpAsync() function for user registration

The first code snippet (Code snippet 1) is from SupabaseService.cs class under Services
folder and it describes how asynchronous SignUpAsync function with email and
password strings (from RegisterFormViewModel.cs) as parameters using await
keyword pauses execution without blocking the thread and calls to Supabase API to
create a new user into the PostgreSQL database. The password is created only once
and not needed later for the user activities. Supabase uses effective bcrypt to encrypt
sent data securely.

29

Code snippet 2. First part of ExecuteAsync() function

ExecuteAsync function (Code snippet 2) is part of RegisterCommand.cs class which
inherits from the shared base class AsyncCommandBase. It performs validation for
matching user entered password and confirm password fields and then performs
additional validation for the user entered email address during the registration
process.

Code snippet 3. The rest of ExecuteAsync() function.

After validating password and email, the function tries to initialize Supabase client
(Code snippet 3) and to register the user by calling SignUpAsync() function. If the
application main page exists, it displays registration success message and cleans the

30

user entered data from the fields. If there is an exception during the process, display
alert is displayed to the user indicating that the registration failed and prompts to try
again.

Code snippet 4. SendOtpCode() method executed through ExecuteAsync() method in
class LoginCommand.cs inherited from shared AsyncCommandBase base class.

The function ExecuteAsync() initializes Supabase client (Code snippet 4) and then
validates email after which if the validation fails, display alert is displayed to the user.
If the entered email is valid, OTP code is sent through the Subabase service to the user
by calling _supabaseService.SendOtpCode() method if they have registered
themselves to the system. If the OTP is sent to the user they will be redirected to the
OTP view to enter the received code.

31

Code snippet 5. The rest of the ExecuteAsync() method of LoginCommand.cs including
helper method to validate the user entered email

Continuing from the Code snippet 4, if OTP code is not sent to the user, the application
will display an error message to the user. The latter helper method isValidEmail()
checks if the entered email is null or empty and that it fulfils several criteria of a valid
email address (Code snippet 5). If the method returns false, display alert indicating of
error is displayed to the user.

Code snippet 6. Simple OnSentOtpSuccess() located in LoginFormViewModel.cs class
under “Features” and “Login” folders to demonstrate clear project structure and
navigation logic.

OnSentOtpSuccess() (Code snippet 6) performs the navigation logic in a case that Otp
was sent successfully through SendOtpCode() function (Code snippet 4).

Code snippet 7. Encrypt() method from UserSpaceViewModel.cs viewmodel, the first
part

32

For file encryption, a file must be selected first or the error will be displayed through
display alert to the user if the main page exists (Code snippet 7). Next, new instance
of AES-256 is created and initialization vector which is saved to a byte array. Next AWS
KMS key is got from from the configuration file for data key generation which is
performed by AwsKmsUtility class and GenerateDataKeyAsync() method with
kmsKeyId and filenameWithoutExtension (derived from the selected file path)
parameters.

Code snippet 8. Encrypt() method from UserSpaceViewModel.cs viewmodel, the
second part

Plaintext key which was generated using AWS KMS (Code snippet 7) is saved in byte
array (to be used later with EncryptFile() and DecryptFile() methods of
AesEncryptionUtility.cs class) and validated so that it is not null and that encrypted is
not null or empty. If either of those conditions is true, error during data key generation
will be displayed to the user. Furthermore, encrypted data key is saved into variable
encryptedDataKey and converted from base64. Next selected file path will be saved
in the inputFilePath variable and checked for null or empty condition. If the path is

33

null or empty, error will be displayed to the user. Next, encrypted file outputFilePath
and its extension is combined using inputFilePath variable and .encrypted extension.
After this, AesEncryptionUtility class with EncryptFile() function is called with relevant
parameters and executed. If encrypted file does not exist in the output file path after
writing the encrypted file, and the main page exists, error is displayed to the user.

Code snippet 9. Encrypt() method from UserSpaceViewModel.cs viewmodel, the third
part

Encrypted key is saved in a single file with .base64 extension in the format file name
and -key.base4 ending (Code snippet 9). If everything went well and there was no
exception during execution, Encrypt() method continues to inform the user about
successful file encryption or if something went wrong during the encryption process
or the execution of Encrypt() (Code snippet 10) method (Code Snippet 7, Code snippet
8 and Code snippet 9), possible errors would be displayed to the user. Before catching
the encryption process exception, if selected folder and folder items are present, the
selected unencrypted file is removed and the view refreshed for user to see the
changes.

34

Code snippet 10. Encrypt() method from UserSpaceViewModel.cs viewmodel, the
third part the fourth part, rest of the exception handling

Code snippet 11. EncryptFile() function from AesEncryptionUtility class under Features
and its subfolder Encryption, part 1

EncryptFile() method (Code snippet 11) which was called in Encrypt() (Code snippet 8)
checks for possible null or empty values and ArgumentNullExceptions in its
parameters, input file path, output file path and (encryption) key byte array. After that
nonce (or initialization vector) and authentication tag are initialized into byte arrays.
After that RandomNumberGenerator() method is used to fill the nonce with random
values and ciphertext array is initialized.

35

Code snippet 12. EncryptFile() function from AesEncryptionUtility class under Features
and its subfolder Encryption, part 2

Continuing the EncryptFile() method (Code snippet 11), AesGcm class is used to
encrypt the plaintext using the defined nonce, plaintext, ciphertext and tag as
parameters. Finally, FileStream class instance is used to write the nonce, ciphertext
and (authentication) tag to the storage (Code snippet 12).

Code snippet 13. Decrypt() function of UserSpaceViewModel.cs which will call
AesEncryptionUtility.cs for DecryptFile() method in the next Code Snippet 14, part 1

Decrypt() function (Code snippet 13) performs the reverse logic when compared to
the Encrypt() function (Code snippet 7). At first the method checks if the user selected
file is null and displays corresponding error through alert if the file is null. Assuming
the user has selected encrypted file with .encrypted extension, the path of the file is

36

save into encryptedFilePath variable. Decrypted file path is set accordingly by
replacing the .encrypted file extension with an empty string for further processing it
later in the method. Encrypted file path is checked for possible null or empty values
and the relevant display alert is shown if the condition applies. Next, the directory
where the encrypted data key is saved with the file will be got and saved into string
called directory after which encrypted file name is stored in
fileNameWithoutExtension and similarly to get the original file name without
extension for AWS KMS decryption parameter for encryption context, is processed
using Path class and GetFileNameWithoutExtension() method. Then the paths are
combined with the identification string part “-key.base64” to retrieve the key file as
the first parameter in AWS KMS decryption process.

Code snippet 14. Decrypt() function of UserSpaceViewModel.cs which calls
AesEncryptionUtility.cs for DecryptFile() method, part 2

Continuing the Decrypt() function (Code snippet 13) if the encrypted data key file is
not found, relevant display alert is shown to the user. Next, encrypted key file is read
using await keyword and used by AWS KMS to get the plaintext data key which is saved
into byte array to be used with AesEncryptionUtility DecryptFile() method to decrypt
the encrypted file. If the decrypted key length is not corresponding to AES-256 bits,
invalid decrypted key error will be displayed to the user through display alert. Now,

37

DecryptFile() method is called utilizing encryptedFilePath, decrypedFilePath and
decryptedKey parameters and if the decrypted file does not exist after assumedly
successful decryption, relevant display alert indicating error during decryption will be
shown to the user. Finally, the encrypted file and encrypted data key file are deleted
as the user does not need them anymore.

Code snippet 15. Decrypt() function of UserSpaceViewModel.cs, part 3

Continuing the Decrypt() method (Code Snippet 13), if the application main page is
not empty, file decrypted successfully display alert will be displayed to the user (Code
snippet 15). The view will be refreshed for the user and possible exceptions caught
during decryption process or execution of decrypt() method will be displayed to the
user through display alerts.

38

Code snippet 16. DecryptFile() function of AesEncryptionUtility.cs.

DecryptFile() method (Code snippet 16) will get its parameters string inputFilePath,
string, outputFilePath and byte array key from Decrypt() method of
UserSpaceViewModel.cs as described in the previous relevant snippet (Code snippet
13). DecryptFile() method checks for null or empty and possible argument null
exceptions to validate the parameters of the method. Then the encrypted file is read
into byte array variable fileContent. Now, required variables for decryption (nonce,
authentication tag and ciphertext) are initialized. Next, the relevant parameters are
read by the BlockCopy() method of Buffer class. The plaintext byte array needed for
the decrypted file is initialized next. Now, new AesGcm class object with the
decryption key will be created to perform decryption using the Decrypt() method of
the class which takes nonce, ciphertext, tag and plaintext as parameters. Next, the
plaintext decrypted file is written to the output file path.

39

Code snippet 17. UploadFileAsync() function of AwsS3Utility.cs class for backing up
user files under Features and its Backup subfolder.

UploadFileAsync() function takes the AWS S3 bucket name, filePath (to upload the
selected file set in UserSpaceViewModel.cs) and filename to set the Key parameter
for AWS S3 PutObjectRequest (Code snippet 17). The start of the file location is set as
environment variable and that is why the config file appsettings.json is initialized at
first to retrieve it. Then this path (referring to S3 bucket path) is combined with the
file name to form the full object path for the Key parameter. If there are errors during
the upload process, they will be thrown as exceptions with relevant message.

40

Code snippet 18. BackUp() function of UserSpaceViewmodel.cs class which is
responsible for implementing the back up logic and calling AwsS3Utility.cs class when
necessary, part 1

At first, there is check for possible null selection if no files have been selected for
backup and the back up toolbar option is clicked in the user interface by the user.
Next, configuration settings are loaded from the config file to get the set S3 bucket
name needed for the UploadFileAsync() method. If the bucket name is null or empty,
error will be displayed to the user. Next, new AwsS3Utility instance is created and
needed variables file path (filePath) and (filename) are initialized to empty string and
then based on the selected file by the user, the corresponding values are saved in
them. Consequently, UploadFileAsync() method of AwsS3Utility is called to attempt to
execute the file upload.

41

Code snippet 19. BackUp() function of UserSpaceViewmodel.cs class, part 2

The possible exceptions are caught during the upload process and the backup method
execution.

42

2.4. Graphical User Interface (GUI)

Figure 2. Login view of the Windows client application

The login view (Figure 2) is presented first to support frequent usage instead of always
asking the user to register first. The view consists of the welcome splash area on the left
and on the right there is a modern login entry to log in to the application with the relevant
blueish button with “Login” text. If the user enters their email address and clicks login,
they are being redirected to the new OTP view in which they can enter their OTP to
authenticate themselves through Supabase Authentication service.

On the left-hand upper corner, there is a grouping File option like in many native Windows
applications. It offers Exit functionality to exit from the application. The user is also able
to quit the application clicking the upper right-hand corner x icon like in traditional
Windows applications.

If the user has not registered for the application yet, they have an intuitive text label
suggesting that and providing option to “Register here”. By clicking on the underlined text,
the user is redirected to register view.

Technically, the view consists of grids, flex layouts and stack layouts. The application has
a minimum width but also supports full screen and expanding the application window.

43

Figure 3. Registration view

The welcome section on the left is still visible to the user after navigating to the
registration view (Figure 3). The similar “brand” feeling is maintained and on the right,
user is able to enter their email, password and password confirmation in the respective
fields. When the user clicks the register button, the application posts the user data to
Supabase API which will send a response to the user.

If the user accidentally clicked register in the previous screen, they could easily navigate
back to the login page by clicking underlined here next to Login text and under “Already
have an account?” label.

44

Figure 4. OTP view

The OTP view (Figure 4) is very intuitive. Heading text label together with entry
placeholder tell user to enter their OTP and after entering the data, they should click the
button on the right to verify the OTP they received after entering their email in the
previous login view. After the successful authentication, session is established, and the
user is redirected to user space view.

Figure 5. User space view.

45

The application has one main folder called Main folder but behind the scenes it is called
UserFiles. On the left there are user folders and on the right files and folders indicated
with relevant file icons. In the upper right-hand corner encrypt, decrypt and back up
functionalities are represented clearly in the application toolbar.

2.5. Testing
Testing application functionality is essential to guarantee the usability of the application
and to verify that the use cases and implemented logic works. The testing approach
applied is traditional Test-Last or Test Later Development methodology because the fast
prototyping is one of the goals of this project due to limited time resources (Functional
Software Inc, 2022). The benefits of this approach also include writing less infeasible test
cases when starting from the blank slate.

2.5.1. Objectives
This test plan achieves to test functionality to ensure that the application is production ready.
The main objective is the verification of functional requirements so that business
requirements and use cases expectations are met. Secondly, the goal is to check system
performance through timed scenarios measuring application functionality response time
based on use cases. Thirdly, the goal is to validate different implemented security features.
Verifying system reliability and data integrity through the execution of functional testing plan
is also essential.

2.5.2. Scope
There are 9 cases of which 8 can be tested programmatically. There are 2 test cases per use
case to verify relevant functionalities. UC-8 is a use case based on third party systems because
my application is based on distributed architecture, and that use case would require an
instructions manual to be created for account recovery and general management. That is why
it is out of scope in this testing plan

2.5.3. Test Strategies
Each use case was tested with at least two test cases. Unit testing for models was performed
using popular open-source xUnit.net automated testing framework (.NET Foundation, 2024).
Automated unit tests were completed using Visual Studio 2022 IDE. The rest of the testing is
done mostly manually through functional and performance testing in the evaluation section
of this report.

2.5.4. Test Environment
Testing operating system is Windows 11 Home version 23H2 OS Build 22631.3958. From
hardware perspective, CPU is 13th Gen Intel(R) Core(TM) i9-13900H with the base clock speed
of 2.60 GHz. There is 32GB of installed RAM and the system is 64-bit operating system with
x64-based processor. There is 928 GB of SSD storage in the machine. The exact device model
is ROG Zephyrus M16 GU604VI from ASUSTek COMPUTER INC.

Windows 11 has been updated to the latest version and there is Bitdefender free antivirus
installed and actively monitoring the system.

46

2.5.5. Test Cases
Functional test cases are identified by abbreviation TC- and then then followed by the
number of the test case. There are two test cases corresponding to the associated use cases
marked in the tables below.

TC-1: Successful registration

Associated use case: Register account (UC-1)

Objective Expected Outcome

To verify that when valid data is provided
during the registration process, the system
successfully registers the user and displays
a success message to the user.

This test case covers the registration
functionality, ensuring that the system
correctly handles user data and
communicates with backend services to
create a new user account. It includes the
validation of data, interaction with
external services, and user feedback.

Scope

This test case covers the registration functionality, ensuring that the system correctly
handles user data and communicates with backend services to create a new user
account. It includes the validation of data, interaction with external services, and user
feedback.
Preconditions

1. The system is accessible and running.
2. The registration page or form is available and operational.
3. Supabase account has been created for the system with API credentials.
4. Necessary backend services (Supabase) is available and functional.
Test data

Email: real email address, for example “x20142269@student.ncirl.ie“
Password: "NCIIsCool"
Confirm Password: "NCIIsCool "
Test steps

1. Start the application.
2. Navigate to the registration page by clicking here link next to blue Register below
login form.
3. Enter the credentials.
4. Submit the registration form.
5. Get feedback from the system through display alert
Pass Criteria Fail Criteria

The test case passes if the success message
is displayed to the user. Additionally, the
data of the user must be correctly stored,
and the user should be able to log in with
the registered credentials.

The test case fails if an error message is
displayed indicating unsuccessful user
creation into the system.

Post conditions

The user account is successfully registered in the system.

Test results (Pass/Fail) Pass

TC-2: Password Mismatch

47

Associated use case: Register account (UC-1)

Objective Expected Outcome

Verify that when the password and
confirm password do not match, an error
is shown.

An error display alert message is shown to
the user indicating that passwords do not
match.

Scope

This test case focuses on validating the client-side logic that checks for matching
passwords during the registration process. It ensures that the user receives clear
feedback when the passwords do not match and the user cannot continue registration
without entering matching passwords.
Preconditions

1. The system is accessible and running.
2. The registration page or form is available and operational.
Test data

Email: real not yet registered email address for testing, for example
“x20142269@student.ncirl.ie“
Password: "NCIIsCool"
Confirm Password: "NCIIsNotCool"
Test steps

1. Start the application.
2. Navigate to the registration page by clicking here link next to blue Register below
login form.
3. Enter the credentials.
4. Submit the registration form.
5. Get feedback from the system through display alert
Pass criteria Fail criteria

The test case passes if the error message
is shown, clearly indicating that the
passwords do not match, and the user is
prevented from proceeding.

The test case fails if no error message is
shown, if the error message is unclear or
incorrect, or if the system allows the
registration attempt to proceed.

Post conditions

The tester clicks ok and returns to the registration page.

Test results (Pass/Fail) Pass

TC-3: Successful Passwordless Login to OTP Request view

Associated use case: Login (UC-2)

Objective Expected Outcome

Verify that when a valid email is provided,
the OTP request is sent successfully, and
the user is navigated to the OTP view.

The SendOtpCode method of
SupabaseService is called and executed
successfully. The user is navigated to the
OTP view.

Scope

This test case covers the login functionality, specifically the transition from the login
screen to the OTP request view upon providing a valid email. It involves verifying the
correct invocation of the OTP sending mechanism and ensuring proper navigation within
the application.

48

Preconditions

1. The system is accessible and running.
2. The registration page or form is available and operational.
3. The user has already registered to the system.
Test data

Valid user email: for example, x20142269@student.ncirl.ie

Test steps

1. Start the application.
2. Input valid email to the login form
3. Click login
4. Verify that you received OTP code in the specified email address
5. The application should redirect to the OTP view (in which the passwordless OTP code
can be entered)
Pass criteria Fail criteria

The test case passes if the OTP code is
successfully sent to the valid provided
user email address and the user is
navigated to the OTP view.

The test case fails if the OTP code is not
sent, an error occurs, or the user is not
navigated to the OTP view.

Post conditions

OTP view is open for user to input their OTP code to authenticate them to the system.

Test results (Pass/Fail) Pass

TC-4: Invalid Email Format during login

Associated use case: Login (UC-2)

Objective Expected Outcome

Verify that when an invalid email format is
provided, an error message is displayed.

The IsValidEmail method returns false. The
DisplayAlert method is called with a
message indicating that the email is
required and must be valid.

Scope

This test case focuses on the validation of the email format during the login process. It
ensures that the system can identify invalid email formats and provides clear feedback
to the user.
Preconditions

1. The system is accessible and running.
2. The login page or form is available and operational.
3. The email validation logic at the client-side is implemented and functional.
Test data

Invalid email input: “x20142269@” without the end

Test steps

1. Start the application.
2. Input invalid email to the login form
3. Click login
Pass criteria Fail criteria

49

The test case passes if the system
identifies the email as invalid an error
message is shown to the user.

The test case fails if the system incorrectly
identifies the email as valid or no error
message is displayed.

Post conditions

The user is not redirected to the OTP view but after clicking ok from the display alert
must input the correct email address.
Test results (Pass/Fail) Pass

TC-5: Successful File Encryption

Associated use case: Encrypt files at rest (UC-3)

Objective Expected Outcome

Verify that a file is successfully encrypted
and saved when the "Encrypt" command is
executed with valid file selection.

The file is encrypted and is named
accordingly (filename.encrypted). The
encrypted file is saved at the current
folder together with the respective AWS
KMS generated data key.

Scope

This test case covers the functionality of file encryption within the system. It ensures
that the selected file is properly encrypted, saved with an appropriate filename, and
stored in the current location with the necessary encrypted data key.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated with OTP, redirected to user space view and
ready to perform file encryption.
3. The AWS Key Management Service (KMS) is accessible and correctly configured.
4. A valid file to be encrypted is available for encryption that the user has created in
the system
Test data

Original file: test.txt (user created)
Expected encrypted filename: "test.txt.encrypted"
Test steps

1. Select the file "test.txt" for encryption.
2. Click Encrypt button from the upper right-hand corner of the application to start the
file encryption.
3. Get a success display alert “File encrypted successfully”.
4. Check that encrypted file is visible in the current folder and named
"test.txt.encrypted".
5. Check that the file is accompanied with “test.txt-key.base64 indicating that it is the
AWS KMS generated data key for file decryption.
Pass criteria Fail criteria

The test case passes if the file is correctly
encrypted, named appropriately, and
saved along with the AWS KMS-generated
data key.

The test case fails if the file is not
encrypted, incorrectly named, or if the
encrypted file and data key are not saved
as expected.

Post conditions

The user stays in the user space view ready to perform another function such as back
up, for example.

50

Test results (Pass/Fail) Pass

TC-6: Handle Encryption Failure Due to Missing Encryption Key

Associated use case: Encrypt files at rest (UC-3)

Objective Expected Outcome

Verify that an appropriate error message is
displayed when the encryption process
fails due to a missing or invalid encryption
key.

The application should display an error
indicating that the data key needed for
encryption is missing.

Scope

This test case covers the error handling functionality during the file encryption process.
It ensures that the system correctly identifies and handles situations where the
encryption key is missing or invalid, providing clear feedback to the user.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform file encryption in user space
view.
3. The AWS Key Management Service (KMS) is configured, but the encryption key which
should be generated by the service is missing.
Test data

Original file: “test-encryption.doc” (user generated)
From configuration file (appsettings.json) in the root folder of the program, leave empty
the parameter Kms-key-id (which you normally get from AWS KMS)
Test steps

1. Create the test file by right clicking on the right column where the files and folders
are located.
2. Select New from the fly out menu and then File from its submenu.
3. Write the test file name and click ok.
4. Select the test file for encryption
5. Click Encrypt button in the toolbar from the upper right-hand corner
6. Get the error message indicating of missing encryption key: “Error during encryption:
Error generating data key: 1 validation error detected: Value null at “KeyId” failed to
satisfy constraint: Member must be not null”.
Pass criteria Fail criteria

The test case passes if the encryption
process fails as expected and the user sees
an appropriate display error message.

The test case fails if no error message is
displayed.

Post conditions

The user clicks ok from the error display alert and sees the user space view, ready to
perform some other function.
Test results (Pass/Fail) Pass

TC-7: Successful File Decryption

Associated use case: Decrypt files at rest (UC-4)

Objective Expected Outcome

51

Verify that an encrypted file is successfully
decrypted and saved when the "Decrypt"
command is executed with valid inputs.

The file is decrypted and saved at the
output location (where the encrypted file
together with its base64 AWS KMS data
key was), restoring the original content.
The application should inform the user
that the file has been successfully
decrypted.

Scope

This test case covers the functionality of file decryption within the system. It ensures
that the selected encrypted file is correctly decrypted using the associated AWS KMS
data key, restoring the original content, and that the user is notified of the successful
decryption.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform file decryption in user space
view.
3. The user has created the test file and encrypted it.
4. Generated encrypted data key and encrypted file are present in the current folder in
user space view.
Test data

Encryped file “test.txt.encrypted”file and the associated data key “test.txt-key.base64”
in the currently open folder
Test steps

1. Select the encrypted test file (not the data key file) for decryption.
2. Click Decrypt button from the toolbar from the upper right-hand corner.
3. Success message “File decrypted successfully” should be displayed.
4. Click ok from the display alert.
5. Double click the decrypted file to verify it has the same contents as before and you
can read its contents.
Pass criteria Fail criteria

The test case passes if the file is correctly
decrypted, restored to its original content,
saved in the current folder, and the user
receives a success notification.

The test case fails if the file is not
decrypted correctly, the original content is
not restored, the decrypted file is not
saved, or the user does not receive a
display alert.

Post conditions

The user can see the user space and is ready to perform another function.

Test results (Pass/Fail) Pass

TC-8: Handle Decryption Failure Due to Incorrect Decryption Key

Associated use case: Decrypt files at rest (UC-4)

Objective Expected Outcome

Verify that an appropriate error message is
displayed when the decryption process
fails due to an incorrect or corrupted
decryption key.

An error message should be displayed to
the user, indicating the failure to decrypt
the file.

Scope

52

This test case focuses on the error handling mechanisms during the file decryption
process. It ensures that the system can correctly identify and respond to situations
where the provided decryption key is incorrect, providing clear feedback to the user.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform file decryption in user space
view.
3. The user has created the test file and encrypted it.
4. Generated encrypted data key and encrypted file are present in the current folder in
user space view.
Test data

Previously encrypted file “test.txt.encrypted” file and the associated data key “test.txt-
key.base64” which has been altered to “test2.txt-key.base64” in the currently open
folder
Test steps

1. Select the encrypted file (not modified data key)
2. Click Decrypt button from the toolbar from the upper right-hand corner.
3. Error message starting with “Encrypted key file not found” should be displayed.
4. Or if you edited the data key file content and removed a character at the end in
Notepad, you get error message including “The input is not valid Base-64 string” text
Pass criteria Fail criteria

The test case passes if the system correctly
identifies the incorrect data key, the
decryption process fails, and the user
receives a clear and appropriate error
message.

The test case fails if the system does not
detect the incorrect key, the decryption
process completes incorrectly, or no error
message is shown.

Post conditions

After clicking ok from the display alert, user can see the user space view and continue
to perform other function.
Test results (Pass/Fail) Pass

TC-9: Successful File Backup

Associated use case: Back up files (UC-5)

Objective Expected Outcome

Verify that a file is successfully backed up
to the specified S3 bucket.

The file is successfully uploaded to the
specified S3 bucket. The user is notified
with a success message, such as "File
backed up successfully."

Scope

This test case covers the functionality of backing up files to an Amazon S3 bucket. It
ensures that the file is correctly uploaded to the specified location in the cloud and that
the user receives appropriate confirmation of the successful backup.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform back up operation.
3. There is a test file created by the user in the current folder.

53

4. The AWS S3 bucket is accessible and configured with the appropriate permissions for
file uploads.
Test data

User created “test.ppt” file

Test steps

1. Select the test file
2. Click “Back up” button from the toolbar from the upper right-hand corner.
3. Success message “File backed up successfully” will be displayed.
4. (Optional) check AWS S3 and verify that the object can be found in the S3 bucket
Pass criteria Fail criteria

The test case passes if the file is
successfully uploaded to the specified S3
bucket, and the user is notified with a
success message.

The test case fails if the file upload fails,
the file is not found in the specified S3
bucket, or the user does not receive a
success notification.

Post conditions

After clicking ok from the display alert, user can see the user space view and continue
to perform other function.
Test results (Pass/Fail) Pass

TC-10: Failure Due to Network Connectivity Issues

Associated use case: Back up files (UC-5)

Objective Expected Outcome

Verify the behavior of the application
when there is a network connectivity issue
during the file backup process.

The application displays an error message
indicating the failure, such as "Error
uploading file". The file is not uploaded to
the S3 bucket.

Scope

This test case focuses on the ability of the application to handle upload error related
network connectivity issues during the file backup process to an S3 bucket. It ensures
that the application provides appropriate error feedback to the user and does not
incorrectly indicate a successful upload.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform back up operation.
3. There is a test file created by the user in the current folder.
4. The AWS S3 bucket is accessible and configured with the appropriate permissions for
file uploads.
Test data

User created large “failed-test.ppt” file

Test steps

1. Select the test file
2. Click “Back up” button from the toolbar from the upper right-hand corner.
3. Disable network connection temporarily (usually Wi-Fi settings) when uploading the
file.
4. Error message starting with “Error uploading file (file name here): Unknown error: No
such host is known” should be displayed to the user.

54

5. (Optional) Check AWS S3 bucket and verify that the file is not there.

Pass criteria Fail criteria

The test case passes if the application
correctly identifies the network issue,
displays an appropriate error message,
and the file is not uploaded to the S3
bucket.

The test case fails if the application does
not display an error message, incorrectly
indicates a successful upload, or the file is
uploaded despite the network issue.

Post conditions

After clicking ok from the display alert, user can see the user space view and continue
to perform other function.
Test results (Pass/Fail) Pass

TC-11: Successful File Restore From The S3 Backup

Associated use case: Restore files from backup (UC-6)

Objective Expected Outcome

To verify that a file can be successfully
restored from an S3 backup to the local
system.

The file "document.txt" is successfully
restored from the S3 bucket to the local
path. The user is notified of the successful
restoration with a message.

Scope

This test case covers the functionality of restoring files from an S3 bucket. It ensures that
the file is correctly downloaded from the specified location in the cloud and saved to the
local system.
Preconditions

1. The app must be deleted and installed again to simulate broken device or lost access
(for example theft).
2. The system is accessible and running.
3. The user is logged in, authenticated and ready to perform back up operation.
4. There is a test file created by the user in the current folder.
5. The AWS S3 bucket is accessible and configured with the appropriate permissions for
file uploads.
Test data

Previously backed up “test.ppt” file found in AWS S3 bucket

Test steps

1. Select the test file
2. Click “Recover” button from the toolbar from the upper right-hand corner.
3. Prompt should be displayed to the user so that they are able to copy and paste the
desired recovery path (if not the current folder).
4. Click ok after writing or pasting the file path.
5. The application starts the recovery process.
6. The application displays success message.
7. The recovered file can be found in the selected output location on the device.
Pass criteria Fail criteria

The test case passes if the file is
successfully restored and the user is
notified with a success message.

The test case fails if the file is not restored,
saved incorrectly, or the user does not
receive a success notification.

55

Post conditions

After clicking ok from the display alert, user can see the user space view, the recovered
file and continue to perform other function.
Test results (Pass/Fail) Fail (not implemented due to time

limitations)

TC-12: Handle Restoration Failure When Restoring File From S3

Associated use case: Restore files from backup (UC-6)

Objective Expected Outcome

To verify the behavior of the application
when attempting to restore a file but error
occurs during the process.

An error message is displayed to the user
indicating that there was an error during
restoration process.

Scope

This test case focuses on error handling when the specified file is not found in the S3
bucket. It ensures that the application provides appropriate feedback to the user.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform back up operation.
3. There is a test file created by the user in the current folder.
4. The AWS S3 bucket is accessible and configured with the appropriate permissions for
file uploads.
Test data

Previously backed up “test.ppt” file found in AWS S3 bucket

Test steps

1. Select the test file
2. Click “Recover” button from the toolbar from the upper right-hand corner.
3. Prompt should be displayed to the user so that they are able to copy and paste the
desired recovery path (if not the current folder).
4. Click ok after writing or pasting the file path.
5. The application tries to start the recovery process but cannot for some reason (for
example connection error due to network connectivity or S3 service down).
6. Error message is displayed to the user.
Pass criteria Fail criteria

The test case passes if the application
correctly displays an appropriate error
message.

The test case fails if the application does
not display any feedback to the user
indicating of error during restoration
process.

Post conditions

After clicking ok from the display alert, user can see the user space view and continue
to perform other function.
Test results (Pass/Fail) Fail (not implemented due to time

limitations)

TC-13: Successful Email Address Change

Associated use case: Manage user data (UC-7)

56

Objective Expected Outcome

To verify that the user can successfully
change their email address and complete
the verification process from the new
email.

A verification email is sent to user defined
new email address. The user clicks the
verification link and the email address is
successfully updated in the system.

Scope

This test case covers the functionality of updating the email address of the user in the
system (Supabase). It ensures that the user can request an email change, receive a
verification link, and complete the email address update process.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform email change operation in
user space view.
3. The user has another email set up with which they can verify the new email address.
Test data

New real email address, for example “x20142269@student.ncirl.ie”

Test steps

1. Select File drop down menu from the upper left-hand corner of the application.
2. From the submenu select “Change email address”
3. Prompt opens to enter your email address.
4. Enter the test email address.
5. Click ok.
5. You get a success message from the system indicating of successful sending of the
link.
6. Open the new email.
7. Click the registration link to verify your new email.
8. Log in to the system with a new email address.
Pass criteria Fail criteria

The test case passes if the new email
address is successfully updated and
verified, and the user can log in with the
new email address.

The test case fails if the verification email
is not sent, the email address is not
updated, or the user cannot verify the new
email.

Post conditions

The user should be sent OTP code to login with their new email address.

Test results (Pass/Fail) Pass

TC-14: Failure to Change Email Address Due to Invalid Email

Associated use case: Manage user data (UC-7)

Objective Expected Outcome

To verify that the system correctly handles
the input of an invalid email address
format during the email change process.

An error message is displayed, indicating
that the email address is invalid.

Scope

This test case ensures that the system validates the format of the new email address
and prevents the update if the email format is invalid, providing appropriate feedback
to the user.

57

Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform email change operation in
user space view.
Test data

Invalid email address: x20142269@

Test steps

1. Select File drop down menu from the upper left-hand corner of the application.
2. From the submenu select “Change email address”
3. Prompt opens to enter your email address.
4. Enter the test email address.
5. You get an error display alert indicating of invalid email address.
Pass criteria Fail criteria

The test case passes if the system correctly
identifies the invalid email format,
prevents the email change, and displays an
appropriate error message.

The test case fails if the system allows the
update with an invalid email or does not
display an error message.

Post conditions

After clicking ok from the display alert user can see the user space view and continue
with other function.
Test results (Pass/Fail) Pass

TC-15: Successful Logout

Associated use case: Logout (UC-9)

Objective Expected Outcome

To verify that the user can successfully
disconnect from the system through
Supabase and close the application
securely.

The user session is terminated, and the
application has closed.

Scope

This test case covers the functionality of logging out from the system. It ensures that the
session of the user is properly terminated, and any sensitive data is securely handled
during the logout process.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform operation in user space
view.
Test data

Valid credentials of a registered user: already registered email address

Test steps

1. Select File drop down menu from the upper left-hand corner of the application.
2. From the submenu select “Log out and exit”
3. Application should display prompt asking if the user is sure and wants to exit.
4. User clicks ok.
5. User session is terminated, and the application closed.

58

Pass criteria Fail criteria

The test case passes if the user is
successfully logged out, the session is
securely terminated, and the user is either
prompted to log out and close the
application.

The test case fails if the user remains
logged in, the session is not properly
terminated, or the user is not notified of a
successful logout.

Post conditions

The application is closed and can be opened again if the user wants so.

Test results (Pass/Fail) Pass

TC-16: Logout Cancellation

Associated use case: Logout (UC-9)

Objective Expected Outcome

To verify that the user can cancel the
logout process, ensuring that the session
remains active, and the application stays
open.

The user remains logged in, and their
session is not terminated. The application
remains open and functional.

Scope

This test case covers the functionality allowing users to cancel an initiated logout
request. It ensures that the user can abort the logout process and continue their session
without interruption.
Preconditions

1. The system is accessible and running.
2. The user is logged in, authenticated and ready to perform operation in user space
view.
Test data

Valid credentials of a registered user: already registered email address

Test steps

1. Select File drop down menu from the upper left-hand corner of the application.
2. From the submenu select “Log out and exit”
3. Application should display prompt asking if the user is sure and wants to exit.
4. User clicks cancel.
5. User returns to the current view as if nothing ever happened.
Pass criteria Fail criteria

The test case passes if the user can cancel
the logout process, remain logged in, and
continue using the application without any
interruption to their session.

The test case fails if the application logs
the user out despite selecting the "Cancel"
option, if session is interrupted, or if the
application closes.

Post conditions

The user can continue to perform other function in the current view.

Test results (Pass/Fail) Pass

59

2.5.6. Automated testing
Models from different DataAccessClassLibrary were tested with xUnit with the
following passing results. The test mostly evaluated the setters and getters of the
classes and InotifyPropertyChanged related to the property changes of the models.

I tried to automate integration and systems testing as well using testing frameworks
NSubstitute (2024) and Moq (2018) but always when I attempted to test, for example
RegisterCommand.cs class I got “The process has no package identity.”

2.6. Evaluation
The system is evaluated in terms of performance using quantitative metrics and its
scalability is evaluated based on overall architecture.

2.6.1. Functional evaluation
The application performs the use cases from UC-1, UC-2, UC-3, UC-4, UC-5 and UC-8
and UC-9 as expected based on functional tests in the previous section. However,
there is still room for improvement to mimic native Windows applications and their
smooth functionality better.

60

2.6.2. Performance evaluation
The system was evaluated based on response times for signing up, logging in,
encryption and decryption with three tests per use case and got the following average
results using Stopwatch class:

Test scenario: Register account (UC-1)
Test 1 3630ms
Test 2 3692ms
Test 3 3014ms
Average About 3445.34 ms (rounded up to 2

decimals)

Test scenario: Login (UC-2)
Test 1 1724 ms
Test 2 2151 ms
Test 3 1758 ms
Average About 1877.67 ms (rounded up to 2

decimals)

Test scenario: Encrypt files at rest (UC-3)
Test 1 1722 ms
Test 2 932 ms
Test 3 1232 ms
Average About 1295.34 ms (rounded up to 2

decimals)

Test scenario: Decrypt files at rest (UC-4)
Test 1 1479 ms
Test 2 1018 ms
Test 3 923 ms
Average About 1140 ms (rounded up to 2

decimals)

Test scenario: Back up files (UC-5)
Test 1 1592 ms
Test 2 1216 ms
Test 3 1560 ms
Average About 1456 ms (rounded up to 2

decimals)

Test scenario Average response time
Register account (UC-1) 3445.34 ms
Login (UC-2) 1877.67 ms

61

Encrypt files at rest (UC-3) 1295.34 ms
Decrypt files at rest (UC-4) 1140 ms
Back up files (UC-5) 1456 ms

Based on the results, it seems Supabase API is slower than AWS services altogether. Amazon
probably has better resources to handle the requests when compared to smaller actor
Supabase. When registering account, it may take time for Supabase to handle insertion to the
database through their Supabase Auth service and to send the verification link to the users
who register to the application for the first time.

The application was completed using asynchronous operations where possible to make it
more responsive to the user.

2.6.3. Scalability
The system uses scalable background infrastructure and technologies such as cloud based
PostgreSQL, AWS KMS and AWS S3. Thus, the scalability of the application would not be an
issue but the locally application is intended to be used on a single machine even though there
could be multiple users in the AWS or Supabase if configured that way.

2.6.4. Challenges faced
Multiple times documentation of Supabase was lacking and .NET MAUI features felt like they
were made more for mobile applications than native Windows desktop applications.
Supabase user registration was overcomplicated as, for example, registration functionality in
the API would let you think as a user that you could sign up to the application multiple times
and that is why I had to implement separate table for checking that using plsql. Due to
technological limitations and the premature nature of post-quantum algorithms themselves,
project focused on session handling, effective encryption and performant operations in the
perspective of ease of usability.

2.6.5. User Experience
The application attempts to mimic native Windows applications with smooth usability in
terms of user interface looking modern, features working simply and intuitively. The
application could be extended to other platforms as well so that it could be used with
mobile devices as well but that would need more synchronization.

2.6.6. Results and outcomes
The project was successful as 8 out of 9 use cases were completed successfully and even
some extra features like recursive folder loading for example. Authentication and
authorization for the user files works well. The security using different AWS IAM roles,
policies and permissions were implemented. Access control to AWS S3 bucket was enabled
through bucket policy.

2.6.7. Limitations
Use case Restore files from backup (UC-6) was not completed due to time constraints of this
project but the goal of backing up user files was nevertheless completed because the files
could be downloaded straight from AWS S3 bucket to the local computer of the user through
AWS console as well. Github actions for .NET MAUI project was too complicated to set up, so
CI/CD was in use only through using Git and Github.

62

3.0 Conclusions
The project tries to address growing concerns related to the risk of common cyber attacks
targeting home or work environment computer users and from “harvest now, decrypt later”
post-quantum computational attacks. Secondly, the aim is also to mitigate data storage issues
arising from GDPR requirements by applying post-quantum resistant encryption algorithms
for data at rest (and in transit in the future research or implementation). Overall, the project
was a success but could be developed further and be more modular so that it could be
connected to multiple different service providers. This would be great project for the masters
degree as well.

The official standardization process of post-quantum algorithms will take time and even if
they would get official standardisation in the next upcoming years, the industry would still
not have the same experience timewise as with traditional algorithms. This means that there
may be vulnerabilities in the technological approach of these algorithms which have not been
found yet, and which then again would render the usage of these algorithms dangerous from
data protection perspective. However, for example Google has already adopted Kyber768 for
their web browser and other systems but has had trouble with post-quantum TLS protocol
this year (Future US Inc, 2024).

4.0 Further Development or Research
With additional time and investment, this project could evolve into an enterprise-grade
product which could be sold at a reasonable price tag as a packaged comprehensive
maintained data security solution in terms of price-quality ratio to individuals working
remotely (for example, freelancers as well) or with other needs for storing sensitive data
securely. There could be also grounds for additional research when post-quantum algorithms
have been standardized and been in use for longer so that possible pitfalls have been
discovered from the security perspective already.

5.0 References
.NET Foundation (2024) About xUnit.net. Available at: https://xunit.net/ [Accessed 1 August
2024].

Amazon Web Services, Inc. (2024a) AWS Key Management Service. Available at:
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html [Accessed 1
August 2024].

Amazon Web Services, Inc. (2024b) Amazon's Free Virtual Cloud Server. Available at:
https://aws.amazon.com/free/compute/lightsail/ [Accessed 1 August 2024].

Amazon Web Services, Inc. (2024c) Amazon S3 security. Available at:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security.html [Accessed 1
August 2024].

Amazon Web Services, Inc. (2023a) AWS KMS concepts. Available at:
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html [Accessed 1
August 2024]

https://xunit.net/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://aws.amazon.com/free/compute/lightsail/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

63

Amazon Web Services, Inc. (2023b) Using server-side encryption with Amazon S3 managed
keys (SSE-S3). Available at:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
[Accessed 1 August 2024].

Amazon Web Services, Inc. (2023c) Post-quantum hybrid SFTP file transfers using AWS
Transfer Family. Available at: https://aws.amazon.com/blogs/security/post-quantum-
hybrid-sftp-file-transfers-using-aws-transfer-family/ [Accessed 1 August 2024].

Arqit (2023) QuantumCloud™. Available at: https://arqit.uk/quantumcloud [Accessed 1
August 2024].

Cloudflare (2023a) Cloudflare now uses post-quantum cryptography to talk to your origin
server. Available at: https://blog.cloudflare.com/post-quantum-to-origins/ [Accessed 1
August 2024].

Cloudflare (2023b) Do the ChaCha: better mobile performance with cryptography. Available
at: https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-
cryptography [Accessed 1 August 2024].

Functional Software Inc (2022) Test-driven vs. test-later development: when should you
write your tests? [Accessed 1 August 2024].

Future US Inc. (2024) Google Chrome's new post-quantum cryptography is causing some
issues [Accessed 1 August 2024].

Legion of the Bouncy Castle Inc. (2023) The Legion of the Bouncy Castle C# Cryptography
APIs. Available at: https://www.bouncycastle.org/csharp/ [Accessed 1 August 2024].

Microsoft (2021) Windows 11 design principles. Available at:
https://learn.microsoft.com/en-us/windows/apps/design/signature-experiences/design-
principles [Accessed 1 August 2024].

Microsoft (2018) Unit Testing: Moq Framework. Available at:
https://learn.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-
framework [Accessed 1 August 2024].

National Institute of Standards and Technology (2023) Post-Quantum Cryptography | CSRC.
Available at: https://csrc.nist.gov/projects/post-quantum-cryptography/faqs [Accessed 1
August 2024].

NSubstitute (2024) NSubstitute: A friendly substitute for .NET mocking libraries. Available at:
https://nsubstitute.github.io/ [Accessed 1 August 2024].

OWASP (2024) Cryptographic Storage Cheat Sheet. Available at:
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
[Accessed 1 August 2024].

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
https://arqit.uk/quantumcloud
https://blog.cloudflare.com/post-quantum-to-origins/
https://www.bouncycastle.org/csharp/
https://learn.microsoft.com/en-us/windows/apps/design/signature-experiences/design-principles
https://learn.microsoft.com/en-us/windows/apps/design/signature-experiences/design-principles
https://learn.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://learn.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://csrc.nist.gov/projects/post-quantum-cryptography/faqs
https://nsubstitute.github.io/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

64

Resend (2023) How to configure Supabase to send emails from your domain. Available at:
How to configure Supabase to send emails from your domain · Resend [Accessed 1 August
2024].

Statista (2023) Global market share held by operating systems for desktop PCs, from January
2013 to July 2023. Available at: https://www.statista.com/statistics/218089/global-market-
share-of-windows-
7/#:~:text=Microsoft%27s%20Windows%20was%20the%20dominant,a%20fifth%20of%20th
e%20market [Accessed 1 August 2024].

Supabase (2024a) Supabase vs Firebase. Available at:
https://supabase.com/alternatives/supabase-vs-firebase [Accessed 1 August 2024].

Supabase (2024b) Passwordless email logins. Available at:
https://supabase.com/docs/guides/auth/auth-email-
passwordless?queryGroups=language&language=js [Accessed 1 August 2024].

Tutanota (2023) The Race Is On: Tutanota Launches Development of Post-Quantum Secure
Cloud. Available at: https://tuta.com/blog/pqdrive-project [Accessed 1 August 2024].

6.0 Appendices
6.1. Project Proposal

6.1.1. Objectives
The primary objective of this project is to develop a secure and passwordless file
storage and backup solution for Windows, incorporating post-quantum cryptographic
techniques. The key goals include enhancing data security, simplifying user
authentication, and ensuring robust protection against emerging threats posed by
quantum computing while adhering to regulations such as European General Data
Protection Regulation (GDPR).

One of the main objectives is also to create a working prototype which could at least
encrypt the most common file types that office workers work with: Microsoft Word
files (*.doc, *.docx, *.rtf), Microsoft Excel files (*.xls, *.xlsx), Microsoft PowerPoint
files (*.ppt, *.pptx), PDF files (*.pdf), and Text files (*.txt).

The target user group of this application are Windows 11 desktop users because the
largest portion of desktop systems in the world, 70 per cent of all desktop systems,
still use the Windows operating system in the year 2023 according to Statista (2023).
The application aims to appeal to the user group by offering a simple and cost-
efficient, yet modern and easily marketable solution for remote or hybrid work
environments.

6.1.2. Background
This project stems from the increasing need for advanced security measures in file
storage and backup solutions in the future. This will be the reality also in light of the
General Data Protection Regulation (GDPR) data handling requirements due to the

https://resend.com/blog/how-to-configure-supabase-to-send-emails-from-your-domain
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:%7E:text=Microsoft%27s%20Windows%20was%20the%20dominant,a%20fifth%20of%20the%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:%7E:text=Microsoft%27s%20Windows%20was%20the%20dominant,a%20fifth%20of%20the%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:%7E:text=Microsoft%27s%20Windows%20was%20the%20dominant,a%20fifth%20of%20the%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:%7E:text=Microsoft%27s%20Windows%20was%20the%20dominant,a%20fifth%20of%20the%20market
https://supabase.com/alternatives/supabase-vs-firebase
https://supabase.com/docs/guides/auth/auth-email-passwordless?queryGroups=language&language=js
https://supabase.com/docs/guides/auth/auth-email-passwordless?queryGroups=language&language=js
https://tuta.com/blog/pqdrive-project

65

increase in remote after the coronavirus pandemic, especially considering the
potential vulnerabilities posed by quantum computers.

The objective is to design, develop and implement a user-friendly yet highly secure
system that eliminates the reliance on algorithms that are not ready for the post-
quantum era for the data in transit, and at least AES-128 encryption for data at rest
according to National Institute of Standards and Technology (NIST) (2023). To prevent
external security issues arising from the use of traditional password-based
authentication passwordless Windows Hello based authentication is used instead. The
project will leverage cutting-edge standardized cryptographic methods such as the
CRYSTALS (Cryptographic Suite for Algebraic Lattices)-KYBER ND-CCA2-secure Key
Encapsulation Mechanism (KEM) algorithm and CRYSTALS-DILITHIUM Digital
Signature Algorithm (DSA) to ensure data confidentiality through encryption, and both
authenticity and integrity through digital signature.

6.1.3. State of the Art
Currently, some cloud storage and backup applications exist in the market and they
are using quantum secure symmetric key encryption algorithms for data at rest. For
example, Amazon Web Services with their S3 storage (2023b) encrypts data buckets
using server-side encryption AES-256. From the perspective of post-quantum safe
data in-transit solutions, both Amazon Web Services (2023c) and Cloudflare (2023) are
forerunners of the new technology. However, there are some ready network
protection solutions which utilize post-quantum ready algorithms such as
Quantumcloud by Arqit (2023) but they are designed for enterprises rather than basic
consumers and their pricing is not transparent at the moment.

There are no easy to use all-in-one desktop Windows 11 applications which would
combine both data at rest encryption using passwordless authentication and a post-
quantum secure backup solution. Additionally, since NIST has not yet officially
standardized post-quantum secure algorithms, it may be difficult to launch new secure
products yet to the market. There is financial value in the post-quantum market as
demonstrated by the post-quantum cloud development project of Tutanota which
was backed by German government with 1.5 million euro this year (Tutanota, 2023).

This project stands out by integrating post-quantum-ready advanced cryptographic
methods seamlessly into a Windows environment using a beautiful user interface
providing both a secure and convenient solution. The differentiation lies in the
elimination of passwords, reducing the attack surface and enhancing overall security
in a cost-efficient way because your security should not cost a fortune.

6.1.4. Technical Approach
The project will adopt an agile development methodology, ensuring adaptability to
emerging challenges in more complicated projects and particularly Kanban to make
project management simple and concentrate on one feature at a time. Kanban board
will be used to manage the tasks visually.

66

This project will be divided into sprints of two weeks during which a specific set of
tasks are completed and each sprint has one or more deliverables as milestones. For
the work breakdown structure, the Gantt chart attached to this project plan can be
found in Appendix 1.

Different requirements for the project are identified by understanding the purpose of
the application and its target end-users. Secondly, researching present solutions or
classical solutions will help in understanding their strengths, weaknesses, and
common features to get a better perspective on the requirements and expectations
for this type of application. User personas could be created to represent different
types of users who might use this application. The personas have their needs, goals,
and pain points which can be listed. Additionally, different user scenarios could be
described and would include user actions, such as data encryption, cloud backup, and
passwordless authentication. Essential functional and non-functional requirements
could be listed based on these and then broken down further into sub-requirements
with different priorities.

Continuous integration and continuous delivery (CI/CD) are utilized during the project
to automate the building, testing, and deployment of the application. This contributes
to guaranteeing the application maintains a deployable condition consistently,
allowing for the swift and secure release of new features.

6.1.5. Technical Details
The implementation of the local desktop application will be in C#, leveraging the .NET
version 6 for Windows compatibility. Principal libraries will include those supporting
post-quantum cryptographic algorithms such as The Bouncy Castle Cryptography
Library For .NET (2023).

Key Management Service (KMS) virtual private server will run on Ubuntu Linux,
possibly running Docker container for Openxpki to act as a trusted authenticated
agent between the local environment and Amazon S3 cloud backup storage. VPS
implementation will use Amazon Lightsail.

Amazon S3 is a cost-effective object storage to be used for cloud backups in this
project. Amazon S3 automatically encrypts all new objects by default with server-side
encryption using Amazon S3 managed keys (SSE-S3) (Amazon Web Services, 2023b).
Therefore objects stored in S3 are encrypted using 256-bit Advanced Encryption
Standard (AES-256) before they are written to disk, and they are decrypted only when
they are read back by authorized users. This ensures that the user data is protected
from unauthorized access even if the S3 bucket is compromised.

Key algorithms under consideration include lattice-based cryptography, chosen for
their resistance to quantum attacks, respectively CRYSTALS-KYBER together with
classical Elliptic-Curve Diffie–Hellman (ECDH) forming Post-quantum (PQ) Hybrid Key
Exchange in SSH (SFTP). Furthermore, for digital signature authentication, a
standardized CRYSTALS-DILITHIUM algorithm will be used. The data will be transferred
by taking advantage of the Transport Layer Security (TLS 1.3) protocol because it uses

67

the ChaCha20-Poly1305 encryption cipher suite, which is more secure than the older
AES-GCM cipher suite (Cloudflare, 2023b).

6.1.6. Special Resources Required
Access to a testing environment that simulates quantum computing scenarios may be
necessary. Moreover, possible consultation with a post-quantum cryptography expert
and Microsoft Windows system architect regarding the reliability of the data in transit
algorithm and long-term competence and experience with the Windows operating
system environment could be of help with the project.

6.1.7. Project Plan
The project plan outlines a detailed timeline for development, with milestones such
as requirements gathering, algorithm selection, prototype development, testing, and
deployment.

Project start date: January 22nd, 2024

Project end date: August 5th, 2024

Week 1-2 (January 22nd - February 3rd)

Task: Develop a high-level system architecture and UI mock-ups for the application.

Deliverable: System architecture diagram with accompanying documentation and UI
mockups.

Week 2-4 (February 4th - February 17th)

Task: Develop a detailed requirements specification for the application.

Deliverable: Preliminary requirements specification document for submission, may
become more precise later.

Week 5-6 (February 18th - March 3rd)

Task: Implement the core functionality of the application, including post-quantum
encryption and passwordless authentication. Conduct unit testing. Preliminary
requirements specification submission by March 3rd 2024.

Deliverable: Working prototype of the application with core functionality
implemented.

Week 11-12 (March 25th - April 7th)

Task: Implement additional features, such as cloud backup, Openxpki public key
infrastructure key management service with a virtual private server, and digital
signature algorithm CRYSTALS-DILITHIUM. Conduct unit testing.

Deliverable: Working prototype of the application with additional features
implemented. Test reports documenting the results of unit testing.

68

Week 13-14 (April 8th - April 21st)

Task: Conduct integration testing.

Deliverable: Test reports documenting the results of integration testing.

Week 15-16 (April 22nd - May 5th)

Task: Conduct system testing.

Deliverable: System test report documenting the results of system testing. Midpoint
implementation, documentation and video presentation by 28th of April.

Week 17-18 (May 6th - May 19th)

Task: Deploy the application to a staging environment.

Deliverable: Deployment report documenting the deployment process and results.

Week 19-20 (May 20th - June 2nd)

Task: Conduct user acceptance testing.

Deliverable: Performance test reports, security test reports, and user acceptance
test reports.

Week 21-22 (June 3rd - June 16th)

Task: Fix any bugs found during user acceptance testing.

Deliverable: Bug fix report documenting the bugs that were fixed and the steps taken
to fix them.

Week 23-24 (June 17th - June 30th)

Task: Retesting critical functionality, resolving any outstanding issues, and preparing
the application for final deployment. Prepare the final deployment of the
application.

Deliverable: Final test reports summarizing the results of all testing phases.
Deployment plan documenting the steps that will be taken to deploy the application
to production.

Week 25-26 (July 1st - July 14th)

Task: Deploy the application to production.

Deliverable: Production deployment report documenting the deployment process
and results.

Week 27-28 (July 15th - July 28th)

Task: Prepare the final documentation and video presentation.

Deliverable: Final documentation and video presentation.

69

Week 29-30 (July 29th - August 5th)

Task: Submit the final documentation and video presentation to Moodle.

Deliverable: Final documentation and video presentation submitted to Moodle by
August 5th 2024.

6.1.8. Testing
Testing will include functional, unit and integration tests, and system tests to evaluate
the resilience of the system. Furthermore, non-functional testing in terms of usability,
performance and security will be executed.

Unit testing will concentrate on testing individual classes and functions with assertions
to identify and isolate possible errors early in development to reduce the risk of bugs
at that time and later on.

Non-functional testing utilizes performance testing to evaluate the application under
different loads and usage conditions. It also includes security testing which identifies
potential vulnerabilities and thus helps in avoiding incidents such as unauthorized
access and sensitive data leaks.

Integration testing will test that the local Windows 11 desktop application integrates
correctly with the Amazon S3 backup storage system using CRYSTALS-KYBER PQ-
hybrid key encapsulation mechanism (KEM) implementation. Related to this process,
testing that CRYSTALS-DILITHIUM digital signature algorithm (DSA) integrates with and
that it integrates correctly with the local file storage and cloud backup system.

System tests will include testing that the system can successfully generate and
exchange CRYSTALS-KYBER keys between two environments, local and cloud systems
(Amazon S3). Testing that the system can successfully encrypt and decrypt data using
CRYSTALS-KYBER keys is also necessary. Furthermore, for the cloud backups testing
that the system can successfully store and retrieve encrypted data from a remote will
be performed. Passwordless authentication is tested with practical authentication
scenarios in which the application can successfully authenticate users using Windows
Hello. Finally, testing that the system can successfully perform file storage and backup
operations is required as well.

User acceptance testing ensures that the system is easy to use for end users, is
performant and responsive and that it is also secure and reliable. Testing user-
friendliness can be implemented with user personas, scenario-based testing, heuristic
evaluation, and cognitive walkthroughs.

Performance testing and responsiveness of the application from the perspective of an
end-user can be carried out by measuring the time it takes for the system to execute
different tasks, such as generating and exchanging keys, encrypting and decrypting
data, storing and retrieving data, and authenticating users. The tests can be repeated
with a variety of different data sizes and system resource configurations using virtual
machines.

70

Testing that the system is secure can be carried out by running known answer tests
(KAT) for both CRYSTALS-KYBER and CRYSTALS-DILITHIUM. SAST (Static Application
Security Testing) and DAST (Dynamic Application Security Testing) will be used to find
possible vulnerabilities in the application code and mitigate them.

To test the system with real technical data, a variety of methods such as generating
set of test files, could be made use of. Another testing method could be using multiple
different file types and sizes to test the capabilities of the system. Furthermore, testing
the system with high latency and low bandwidth networks will help define
performance with different network conditions.

6.2. Reflective Journals
6.2.1. October 2023

6.2.1.1. What?
I pitched my final year project, a passwordless post-quantum file storage and cloud
backup application for Microsoft Windows environment. Coming up with an application
idea was not esay and I was able to select this one after critically evaluating my top five
project ideas within the framework of usefulness to the end user, market needs for such
an application, my competence, and available time resources. I also completed extensive
research which included reading NIST publications, mapping already implemented
applications, and studying possible existing post-quantum security implementations by
industry leaders.

The passwordless authentication was a relatively new technical concept for me but I was
able to select Windows Hello API for the task because the application will be implemented
to work in Windows environment after all. At first, I was also considering Auth0 by Okta
before I read that they had a recent security breach through their employees (social
engineering) and decided that it is better to be safe than sorry in case that happens again
in the future. For post-quantum encryption and decryption, I discovered that Amazon
already offers a Key Management System (KMS) that should be post-quantum secure due
to the algorithm it uses with in-transit data utilizing TLS encryption. For cloud backups, I
envisioned using Amazon Glacier S3 since they should be able to make cloud backups post-
quantum resistant to quantum computers soon enough, given that they have already
implemented secure methods for Amazon KMS.

I am proud of the research I have done so far because I have already learned a lot about
post-quantum cryptography and the current standards within that field. This research has
been invaluable in shaping my project.

6.2.1.2. So what?
While doing the research before recording the pitch I felt a bit overwhelmed by the topic
itself because it is so new to me, and the technologies themselves in addition to that.
However, I am quite sure other researchers and students probably feel the similar way.
However, after careful consideration I was able to critically evaluate the data available
and select the most relevant information to determine which algorithms to utilize for my
application. It was also helpful to learn about what industry leaders were doing to prepare
for the post-quantum era.

71

The idea of giving a presentation on something that I do not fully understand yet felt
intimidating initially. On the other hand, as I have got used to making presentations to my
clients working as chief operations officer in a marketing agency, I knew I just had to
prepare well and be mindful on what my audience would need to know about my project
and this topic, and then present everything in coherent way. The pitch went well overall
in terms of content in although the time to present all the technical details of the project
idea was too short in my opinion. Nevertheless, I realized that the main idea was to
present the idea in a lucrative way and briefly in this “elevator pitch”, and I just had to
adapt my delivery of the presentation to that. As a sidenote, I think it never feels super
natural when speaking only to a camera, especially without additional props but on the
other hand, there is no pressure of the physical audience. It also felt challenging to talk
about post-quantum project idea with confidence not having experience within that area
in computing. Despite of these matters I am quite sure that I was able to include all of the
necessary information though I was surprised at how quickly three minutes went by.

Pitching my project was an exceptional experience in the sense that I am sure it will
provide me with valuable feedback for the future (from my upcoming supervisor), and
furthermore, the whole research process preceding it gave me at some level clearer
perception of the whole current state of post-quantum cryptographic era within the
computing industry. Before starting this project I had no idea how much work there had
been already done by individuals and similarly by the big players such as Amazon,
Microsoft, Google, and IBM who clearly understood the importance of preparing for the
age of quantum computing. This exposure has been instrumental in shaping the direction
and focus of my project.

6.2.1.3. Now what?
I need to continue working on my project and ensure that I will be able implement all of
the features I have proposed and make choices for the coding language and architectural
choices within the project deadlines. The vision that I have for the user interface and
coding language is not final yet but I will specify the specifics after having done a bit more
research for my project proposal. I must also keep up with the latest developments in
post-quantum security and make any necessary changes to my project as needed. The
urgency of my work to be completed is highlighted by the very recent piece of news in
which a known researcher claims to have cracked the RSA-2048 algorithm. If his claim Is
true, the industry should already be using the post-quantum algorithms now.

Moving forward, my focus is on continuing the development of my project, ensuring the
implementation of all the proposed features, and keeping pace with the latest
developments in post-quantum security. I also will report my work to my upcoming
supervisor in the future reflective journals which also promotes my learning throughout
this whole project process. Adaptations and modifications to the application itself may be
necessary as the project progresses, but I am confident that I can successfully complete
this undertaking and contribute substantially to the domain of post-quantum security.

6.2.2. November 2023
6.2.2.1. What?
My supervisor was finally assigned to me and he is Rohit Verma. Immediately after I heard
the supervisors had been assigned, I promptly sent him an email regarding my project idea
and suggested a meeting in Teams to discuss project-related issues and the common plan.

72

At the start of the meeting, he asked me to explain my idea to him so that we had a
common understanding of the project idea. He understood quickly how this solution
would benefit the target users and that we should concentrate on the implementation
technologies and strategy.

We had a one-hour-long meeting during which we discussed different approaches to my
project idea depending on the current technologies available in the market right now. We
decided that we could use the CRYSTALS-KYBER algorithm for data in transit meaning
transferring data to Amazon Glacier or another suitable, possibly cost-free cloud
environment which I could investigate a bit further. For development and prototyping
purposes saving costs would be better than investing capital in the idea at this stage as
this is an academic project after all. Similarly, instead of using Amazon KMS which is a paid
service, I would be utilizing OpenXPKI for the key management system and X.509v3
certificates. Their system is an enterprise-grade solution and provides support for the
latest post-quantum technologies where possible.

Programming language and project architecture were discussed in the context that I
wanted to develop a desktop application for general computer users or workers who
would be mostly using the Windows operating system. We were also thinking of
possibilities in terms of post-quantum application testing which is at the moment
challenging as there are no quantum computers available to use for testing the
implementation of Kyber and Dilithium.

6.2.2.2. So What?
After having a debate with Rohit regarding my current skillset and the difficulty of
implementing the local client application in a Windows environment, I concluded that C#
would be a better option for this project because Microsoft owns its rights and for that
sake, it could be used extremely well for this software development project. After my
research on suitable technologies, I had previously been wondering whether to
implement this application with C++ or C# with .NET framework of which C++ would have
more performance than C# but only if configured right. Furthermore, for a beginner with
the coding language, either C++ or C#, the latter would be faster to develop and it would
probably turn out to be less challenging for me due to manual nature of C++
configurations such as memory optimization.

The main challenges at this stage after my initial research were how to secure the data in
transit and at rest. In transit data would be secured using CRYSTALS Kyber-768 and for
Dilithium for digital signatures. I did not know at our meeting how to make data at rest
post-quantum secure as well but later after researching more on the topic, I found out
that symmetric-key algorithm AES-256 could be utilized for that purpose. In the meeting
with Rohit we had already come up with backup plan in case there were no post-quantum
solutions for data at rest, I would only transfer the data securely using Kyber and Dilithium
with intermediary KMS server, and then, for example, Amazon S3 would probably be
quantum secure at the timeframe of application deployment in the year 2024.

6.2.2.3. Now What?
The most challenging issues at the moment are the perception on how these architectures
and technologies fit together and how to form a reasonable project plan in the project
proposal by the deadline. I also still have to research more on free tier cloud server

73

providers to implement KMS and file storage for the application and the testing methods
to form a high-level test plan.

For client authentication TLS1.3 protocol with Kyber should be implemented for the traffic
between the client and the KMS server and the storage server, however, TLS1.3 with
Kyber has not been standardized yet and there may be challenges in respect of packet
fragmentation due to the size of the algorithm key share. I may have to have a meeting
with my supervisor regarding this and how to take this technically into account.

Overall, the project architecture and implementation do not seem obscure to me as a
whole anymore and I have learned more about different approaches on how to tackle
post-quantum computational threats. For example, I was surprised to find out that current
AES-256 algorithm will probably be sufficient for a long time for encrypting the data at
rest. To break the algorithm, it can be mathematically calculated that at least a million
qubit quantum computer would be required and the current technological level is at a bit
above thousand qubits machines. However, nobody knows how fast the technology may
advance in the future but such a jump in qubit numbers would be carefully estimating
unlikely in the next five years at least.

6.2.3. December 2023
6.2.3.1. What?
I made progress with the project by doing additional research for the required proposal
that I submitted on the 20th of December 2023 just before Christmas. From C# libraries
for Windows that I had envisioned for the project at my earlier coding language
considerations, Bouncycastle seemed suitable for my CRYSTALS-KYBER and CRYSTALS-
DILITHIUM implementation because of its ready NuGet package available for .NET
framework. I was also able to choose Amazon S3 as my final service for cloud backups and
Amazon Lightsail for Openxpki trusted intermediary Key Management Service (KMS)
server. Amazon has a free tier that I can make use of which led me to choose it as the
cloud service provider.

The software development approach was still unclear to me at the beginning of writing
the proposal. Nevertheless, after looking into suitable methodologies, I decided to go with
agile and more specifically Kanban as this is a one-man project and requirements
specification is still to be defined at the next phase. I created a Gantt chart with the free
trial of Monday.com work management cloud application. The chart consists of two-week
sprints and relevant milestones and is attached to the proposal of the project.

6.2.3.2. So What?
After being able to move forward with the selected development software development
methodology based on the nature and technical aspects of the project and creating the
project roadmap in the form of Gantt chart, it feels like I have reached one step closer to
the actual implementation from abstract to concrete level. Although I have not previously
used Amazon or Openxpki for development projects, they have such a large user base and
are both enterprise-grade solutions that I am positive they will prove to be great tools to
work with despite their somewhat complex nature.

Similarly, C# is a rather old language by today’s metrics for the age of coding language and
.NET has had time to mature. Requirements gathering and design phase of the project are
critical for the later success of the project and my goal is to accommodate SOLID principles

74

with relevant design patterns for this project to ensure scalability and maintainability of
the application in the future as well. For example, algorithms may still change because
they are not yet fully standardized by the National Institute of Standards and Technology
or they may need to be altered.

While preparing the proposal for submission, I also had to address concerns regarding
testing, particularly unit, integration and end user testing. Thus, the required
functionalities and components should be designed in a way that relevant testing can be
performed straightforwardly on them. I follow this ideology during the whole software
development lifecycle.

6.2.3.3. Now What?
The next logical step of the project is to start the creation of a high-level system
architecture diagram to provide a better understanding of the interrelations of different
components for me as the project manager and team member and for the project
supervisor who can be seen as a stakeholder. The creation process of the diagram may
help me spot flaws in my software design and to reflect on the selected connections
between the components in terms of project requirements. Therefore I may need to
refine the diagram during and after the process of writing the preliminary software
requirements specification. The diagram and related textual documentation also help in
visualization of the overall software structure which helps to prevent functional or
integrational issues further down the software development lifecycle during this project.

Furthermore, I will create wireframes and mid-fidelity user interface mockups to guide
me in the software development process in a cohesive way and on the other hand, they
help meet the expectations of the stakeholders. The appearance of the final product must
be appealing to the target end-users because otherwise the whole project may end up
not meeting with its original purpose.

6.2.4. January 2024
6.2.4.1. What?
This month, I dove headfirst into the creation of the high-level system architecture
diagram and UI mockups as specified in the project plan that I created in December 2023.
It was not just about ticking a box in the project plan; it was a small journey of discovery.
Starting with just abstract ideas, I felt a thrill as they transformed into concrete visuals. It
was like taking a blurry photograph and sharpening it into focus. Suddenly, the
connections between different parts of the application became clear, and I could almost
see the potential problems lurking in the shadows. For example, I had to look into
OpenXPKI documentation again to ensure it worked as intended in the framework of the
project and to find out more about Amazon S3 as a multi-cloud environment.

The early design was not all smooth sailing. Despite all the research I had already done
before, there were moments of frustration, staring at a blank screen trying to translate
my thoughts into a clear design between components and their roles in the system. At
that moment, I decided to take a deep breath and face the problem head-on. Eventually,
the pieces clicked into place and a sense of accomplishment.

Prioritizing user experience on an ideological level while translating abstract ideas into
visual representations brought remarkable clarity to my software design. The system
architecture diagram exposed interconnections between components, allowing me to

75

identify and rectify potential flaws early on. This saved valuable time and effort compared
to encountering issues during actual development.

6.2.4.2. So What?
The proactive approach produced significant benefits in shaping the project towards user-
centered functionality and design. By constructing UI mockups, I was not only planning
the internals of the system; I was visualizing and iterating on the user interface itself.
Investing time in these visual aids was not just about efficiency. By crafting the UI
mockups, I also stepped into the shoes of the user. It made me think about how they
would interact with the application, what would be intuitive, and what might cause
confusion. It felt like a shift in perspective, a paradigm change that forced me to design
with the user in mind.

6.2.4.3. Now What?
As I prepare for the requirements gathering phase, I cannot help but feel excited and a
little apprehensive. The research I have done on environments, technologies, and libraries
has given me a solid foundation, but there is still so much to learn. We have reserved a
time slot together with my supervisor for the next week on the 8th of February to discuss
and review my project proposal. This upcoming meeting feels crucial. It is an opportunity
to get valuable feedback, to make sure I am on the right track before diving deeper into
the specifics. I hope to walk away with even clearer roadmap that I have right now, but I
am also prepared to adapt and adjust as needed. This project is an ongoing exploration
and learning experience, and I am ready to embrace the challenges and opportunities that
lie ahead.

6.2.5. February 2024
6.2.5.1. What?
We had a brief meeting with my supervisor on the 8th of February to discuss my project
proposal and the progress so far. I explained the initial analysis and design of my progress
through the demonstration of a high-level architecture diagram of the distributed system
and showcased the user interface of the application through the first version of a mockup
that I had created. The application idea began to take its shape even at a more detailed
level this month because I concentrated on the delivery of preliminary requirements
specification as stated in my project plan.

Being struck down by illness for a week threw my schedule off track. This unexpected
hurdle forced me to re-evaluate my time management strategies. While I managed to
catch up, I realized the importance of building buffer periods into my plans,
acknowledging that unforeseen circumstances can always arise.

6.2.5.2. So What?
When defining the requirements for the application, I did further research on how to store
the minimal user data for the user accounts. I had an eureka moment and realized that I
would have to use some generally used light database options for user data to support
the creation of user accounts, providing sessions and simple user data management for
name email. While crafting a use case diagram, I noticed that a recovery use case would
be essential in the worst-case scenario of the user losing access to their computer, for
example, due to device malfunction or theft.

76

Focusing on the requirements specification of the project proved to be a rewarding
experience. While researching user data storage, I experienced an "aha moment" that led
me to explore lightweight database options. This discovery significantly impacted the
direction of the project, highlighting the critical role of continuous research and learning
in software development.

Furthermore, I realized that Windows Hello does not really by itself perform the
authentication but helps to communicate with underlying layers of the system. Having
understood that, I figured out I could use Windows 11 Trusted Platform Module (TPM)
version 2.0 for authentication and for storing encryption and decryption keys for local
data encrypted with AES-128. In its current state, TPM 2.0 would appear to be not
quantum resistant but new quantum-resistant TPM is on its way and the industry seems
to rely on TPM as technology in the post-quantum future as well.

I also had to do some calculations for the file storage from the perspective of possibly
encrypting tens of gigabytes of user data in the application. While selecting and analysing
encryption algorithms, I encountered a fascinating trade-off. While AES-256 offered
superior security compared to AES-128, its computational demands were impractical for
the target hardware commonly available to the end users of the application. This
realization underscored the importance of considering resource constraints when making
technical decisions.

6.2.5.3. Now What?
Though the initial requirements are outlined, I acknowledge the need for further
refinement, particularly regarding file backup and account recovery functional
requirements. The iterative nature of software development requires constant evaluation
and adaptation. Similarly, non-functional requirements may need some fine tuning.

Looking forward, I am excited to establish a continuous development environment for my
Windows 11 application. Developing core functionalities like user registration, login, and
data encryption and decryption, alongside thorough unit testing, will be crucial steps in
solidifying the foundation of the project.

Overall, this month has been a period of significant growth and learning. The unexpected
challenges, coupled with the valuable guidance from my supervisor and my own research,
have equipped me with invaluable experience and knowledge. As I move forward, I am
determined to leverage these learnings to develop a secure and robust application
prototype. I feel especially motivated by the opportunity of transforming my initial idea
into reality.

6.2.6. March 2024
6.2.6.1. What?
I started the implementation of the application utilizing C# and .NET MAUI according to
the preliminary requirement specification document that I had created at the beginning
of March 2024. Development for Windows platform is all new to me since the only
experience I have is coding applications for Linux environment. Having created Github
repository for my project, I decided to use Github Actions for CI/CD as it is familiar to me
from the Cloud Application Development module. The first core functionalities of my
project are registration and login which I am currently working on using Visual Studio
2022.

77

6.2.6.2. So What?
During the preparations of my Windows development toolset, I found out that when
developing with .NET Multi-Platform App UI (MAUI) it is beneficial to utilize Model-View-
ViewModel (MVVM) design pattern to decouple the core functionality of the application
from its interface layer. After researching deeper into the .NET architecture, I felt that it
would be beneficial to choose a more modern cross-platform framework for the
development because older technology, Windows Presentation Foundation (WPF) will be
replaced by the MAUI in the future and this application project would benefit from the
expandability for future research or development. However, some of the basic
functionality such as cursor pointer hover events on buttons seem surprisingly challenging
to implement with MAUI as they have to be implemented using separate view models.
Despite the initial difficulties, I have learned to use Extensible Application Markup
Language (XAML) layouts to create relevant view presentation logic which is bound to
related background functionality.

Continuous assessment tasks of other modules have taken more time than expected
which has delayed the schedule of this project. Nevertheless, I have done my best with
the limited time resources I have as a part-time student to progress the software
development and to avoid burnout.

6.2.6.3. Now What?
To prepare for the midpoint presentation at the end of this month, I will complete at least
the login core functionality of the application and depending on the steepness of my
learning curve with the new technology to me, possibly user registration as well. Getting
accustomed to the development workflow for Windows environment is vital to the
success of this project.

The last month has been extremely busy in terms of work and school work. Yet I feel
determined to push my limits and learn more to get everything ready by the end of this
month to be able to showcase my development work so far and to answer the Q&A
questions during the video demonstration. If I could turn back time, I wish I had more time
to implement this project but I will adapt to the tight time constraints as well as I can.

6.2.7. April 2024
6.2.7.1. What?
I was excited that I was able to set up .NET MAUI development environment and work
with this new cross-platform framework using the latest Visual Studio 2022.
Unfortunately, database migrations using any other database than SQLite did not have
straightforward tutorials. Furthermore, SQLite would by itself not necessarily be very
scalable unlike other options such as PostgreSQL which Microsoft claimed .NET MAUI
would support. Nevertheless, I was able to create a dummy project and perform the
migration following one somewhat similar YouTube tutorial and referencing to this data
access project in my .NET MAUI main application. So, I could use that database for my
application if I wanted but I noticed that free plan of Firebase authentication by Google
would enable me to achieve user registration and login more securely using their external
API. This would also make sense because Google recently started using quantum resistant
X25519Kyber768 encapsulation in their browser in production. The only problem now is
that while Google has provided simple enough steps to implement passwordless email

78

link for signing in for Android and iOS, they have not done the same for desktop
environment.

6.2.7.2. So What?
Having done some additional research, I realized that I could not use Windows Hello API
as itself for authenticating users as combining Microsoft user account with a generic
application account would cause security risks. On the other hand, Windows Hello for
Business would be able to perform such functionality and the passwordless biometric
authentication if the device has necessary hardware for the authentication, although this
would require device management at the corporate level which would then again
introduce vendor lock possibly also involving high costs due to Microsoft 365 licensing
required. Because one of my core principles when starting this project was that anybody
could easily download and start using this program with rather simple configuration steps
and low costs, this would not help achieve this target. Despite of this, I also evaluated the
option to implement the authentication using Windows Hello for Business and the

justification based on the cost structure. Would it perhaps be more reasonable to use
corporate tools already available for this project even if an individual or organization must
pay a little more?

During my work with the database migration, I also reconsidered my approach in terms
of security and ease-of-use. I noticed Google Firebase would provide free features for
thousands of users to authenticate through their Firebase API and I was able to implement
registration after learning from several YouTube videos how to connect to the API.
Firebase would be easy for the end-users to set up and it offers great scalability as well.
However, the current problem is that I probably must create separate API with ASP.NET
Core or similar technology to support passwordless sign in through their API as Google
does not seem to be support Windows desktop environment in their documentation.

6.2.7.3. Now What?
Unit testing for the registration and login functionalities need to be implemented next.
This is important for the project in the longer run when the application gets more complex
and loosely coupled parts will need to work fluently. Additionally, I am getting ready to
present and record the mid-point presentation to show my progress so far. After that I
will concentrate on implementing the next core functionality which is the encryption for
the files at rest. I have initially planned to have that completed during May and June as
these features take more time to develop than I thought originally.

6.2.8. May 2024
6.2.8.1. What?
I am currently a bit stuck with the passwordless login utilizing Firebase. There does not
seem to be any similar implementations or resources available that would especially
target .NET MAUI windows application development with C#. However, I found out about
Firebase open-source alternative which had just finished their beta phase and would be
production-ready cost-efficient competitor with dedicated PostgreSQL capabilities. Thus,
I started it would be wiser to implement at least the first two use cases using Supabase
service as Firebase replacement. Additionally, quantum safe OpenSSH library that I had
planned for establishing remote connection for file transfers had become inactive.

79

6.2.8.2. So What?
Having faced major technological challenges in respect of the application development, I
felt lost. Nevertheless, I did not give up but kept trying to find alternative solutions to help
me solve the current functional problems as specified in my requirement specification
document. While browsing through documentation of Firebase and different other
players such as Auth0, I also realized that the development of mobile application would
have been easier than creating Windows application with the latest .NET MAUI
framework. Even the framework itself has technical problems in user authentication
according to Micorosoft online documentation as for instance, web authenticator does
not work at all. This really surprised me as I thought the latest framework would at least
fully support the basic functionality such as authentication.

6.2.8.3. Now What?
Due to technical limitations and development time constraints, it is reasonable at this
phase to implement the functional requirements without quantum algorithms planned
and move on with AES-256 encryption at rest with decryption keys stored in Amazon KMS.
I will replace the current Firebase registration and login functionality with the respective
Supabase Auth and their PostgreSQL database for other user data.

6.2.9. June 2024
6.2.9.1. What?
I have managed to implement the passwordless one-time password login after initially
registering the user for Supabase Auth. Furthermore, I managed to connect to Supabase
PostgreSQL and to create separate public users table for authentication using Argon2id
for password hashing and later, user verification and authorization. However, I quickly
realized that Supabase auth by itself provides auth.users table in which it enables the user
registration by itself and my solution would be redundant. Therefore, I decided to delete
the code and just move forward utilizing Supabase Auth for basic user management and
login. I managed to set up Amazon Lightsail VPS with automatically renewing SSL
certificates by Let’s encrypt to redirect email verified users to my ladeapp.live domain to
inform them about the successful user registration.

6.2.9.2. So What?
Supabase has provided documentation on their website for C# library, but the extent is
rather limited compared to other language libraries such as JavaScript. This makes it
difficult to implement some basic features such as listening to authentication events as
the documented pieces of code need certain name spaces and other definitions to work
as described. Simple things such reading email_created_at from users.auth table of the
service is restricted for security reasons and there is not really documented ways around
the problem. This makes me feel frustrated as I know that I can implement simple user
authentication according to the documentation very well but the technology itself does
not have sufficient methods of executing the login flow properly. Setting up the VPS at
Amazon with secure HTTPS was more straightforward process and it felt simple compared
to the development work related to Supabase user login and one-time password system.

6.2.9.3. Now What?
I will finish the passwordless user login and move on to the encryption and decryption
part of my technical specification document so that the end-users will be able to secure

80

their work-related assets. After that I will concentrate on backup functionality and logging
from security perspective. At the end of the month, I have allocated time for
documentation and preparation for the final submission of the whole project.

6.2.10. June 2024
6.2.10.1. What?
After having completed user registration and login functionalities use cases I created user
space view for the user file management in a local folder. Additionally, I have completed
and managed to get envelope encryption working using Amazon Web Services Key
Management Service (AWS KMS) for data keys together with AES-256 GCM for the file
encryption itself. To prepare for backup use case, I configured Amazon S3 with suitable
permission policies and attached them to the user group.

6.2.10.2. So What?
I had no previous experience working with AWS systems so hands on. Therefore, I was
excited to learn how to manage different permission policies through groups and create
my own policies based on required AWS permissions of the application features. The
system seemed rather overwhelming at first but then I realized how the role management
works effectively.

Additionally, I had major issues with data key decryption process until I finally recognized
that my encryption context had been different the whole time even though I thought they
were matching. After checking that they matched, I was able to successfully continue to
the next process with AES encryption.

Envelope encryption was a new practical concept for me to implement and there was a
lot of trial and error, for example, with encryption padding while trying to implement AES-
256 after being able to successfully connect to AWS KMS and utilize the decrypt function
to get the plaintext data kay for encryption. At first, I thought I had to use encrypt function
through AWS KMS but then after I had spent multiple hours reading Amazon
documentation carefully and researched online, I internalized the whole process and
completed the code.

6.2.10.3. Now What?
I am currently working on the backup and recovery use cases and finalizing both my
application and technical documentation for the final review and showcase. It has been
an extremely busy summer schedulewise, and I feel accomplished to have learned
numerous new things such as a completely new framework (.NET MAUI), C# as
programming language, using an external database applying novel Supabase API and
adopting multiple AWS services for the project. This final project is an important big step
for me to become an experienced software developer and cybersecurity expert.

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: Register account
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.1.5. Requirement 2: Login
	2.1.1.6. Description & Priority
	2.1.1.7. Use Case
	2.1.1.8. Requirement 3: Encrypt files at rest
	2.1.1.9. Description & Priority
	2.1.1.10. Use Case
	2.1.1.11. Requirement 4: Decrypt files at rest
	2.1.1.12. Description & Priority
	2.1.1.13. Use Case
	2.1.1.14. Requirement 5: Back up files
	2.1.1.15. Description & Priority
	2.1.1.16. Use Case
	2.1.1.17. Requirement 6: Restore files from backup
	2.1.1.18. Description & Priority
	2.1.1.19. Use Case
	2.1.1.20. Requirement 7: Manage user data
	2.1.1.21. Description & Priority
	2.1.1.22. Use Case
	2.1.1.23. Requirement 8: Recover user account
	2.1.1.24. Description & Priority
	2.1.1.25. Use Case
	2.1.1.26. Requirement 9: Logout
	2.1.1.27. Description & Priority
	2.1.1.28. Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.3.1. Main algorithms
	2.3.2. Classes
	2.3.3. Functions
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.5.1. Objectives
	2.5.2. Scope
	2.5.3. Test Strategies
	2.5.4. Test Environment
	2.5.5. Test Cases
	2.5.6. Automated testing
	2.6. Evaluation
	2.6.1. Functional evaluation
	2.6.2. Performance evaluation
	2.6.3. Scalability
	2.6.4. Challenges faced
	2.6.5. User Experience
	2.6.6. Results and outcomes
	2.6.7. Limitations

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	6.1.1. Objectives
	6.1.2. Background
	6.1.3. State of the Art
	6.1.4. Technical Approach
	6.1.5. Technical Details
	6.1.6. Special Resources Required
	6.1.7. Project Plan
	6.1.8. Testing
	6.2. Reflective Journals
	6.2.1. October 2023
	6.2.1.1. What?
	6.2.1.2. So what?
	6.2.1.3. Now what?
	6.2.2. November 2023
	6.2.2.1. What?
	6.2.2.2. So What?
	6.2.2.3. Now What?
	6.2.3. December 2023
	6.2.3.1. What?
	6.2.3.2. So What?
	6.2.3.3. Now What?
	6.2.4. January 2024
	6.2.4.1. What?
	6.2.4.2. So What?
	6.2.4.3. Now What?
	6.2.5. February 2024
	6.2.5.1. What?
	6.2.5.2. So What?
	6.2.5.3. Now What?
	6.2.6. March 2024
	6.2.6.1. What?
	6.2.6.2. So What?
	6.2.6.3. Now What?
	6.2.7. April 2024
	6.2.7.1. What?
	6.2.7.2. So What?
	6.2.7.3. Now What?
	6.2.8. May 2024
	6.2.8.1. What?
	6.2.8.2. So What?
	6.2.8.3. Now What?
	6.2.9. June 2024
	6.2.9.1. What?
	6.2.9.2. So What?
	6.2.9.3. Now What?
	6.2.10. June 2024
	6.2.10.1. What?
	6.2.10.2. So What?
	6.2.10.3. Now What?

