
National College of Ireland
BSc (Honours) in Computing - Evening

2023/2024

Michal Eichler

x20139462

x20139462@student.ncirl.ie

Computing Project

Technical Report

1

 Executive Summary

1.0 Introduction
1.1. Background
I chose to undertake this project as an opportunity to learn web graphics,
game programming and developing AI-powered applications. The
development methodology is to emphasize learning and creativity.

1.2. Aims
There are two end goals for the project itself. One is to create a game, e.g.
something playful, light-hearted and if possible, humorous. The other is to
introduce the audience (and me) to some basics of economics, by means
of play.

The project’s source code should open and be available free of charge for
anyone (post grading). If possible, I’d like to make the game playable for
free as well, but as currently developed, this could incur non-trivial cost,
due to the use of a paid AI model.

1.3. Technology
The front-end is developed using Three.js (threejs.org, n.d.) and standard
web technologies. Three.js enables 3D graphics.

The back-end is a FastAPI (fastapi.tiangolo.com, n.d.) app. A PostgreSQL
(www.postgresql.org, n.d.) database stores the game messages (the user
selections and the AI responses), without identifying the user.

The AI used for the project is Mistral Small (docs.mistral.ai, n.d.) large
language model, accessed over a REST API.

2

2.0 System
2.1. Requirements
The requirements of the application are few and straightforward, whilst
challenging in implementation. This is on purpose, to maximize learning
opportunities in development.

2.1.1. Functional Requirements
1. The user should be able to select a game.

2. The user should be able to update economic policy.

3. The user should be able to receive economic metrics updated over time
in response to the policy.

4. The game should periodically generate updated metrics, if the user
does not set the policy.

5. The user should be able to save the state of the game to his local
computer.

6. The user should be able to load a saved state.

7. The user should be able to terminate the game by winning or losing.

3

2.1.1.1.1. Use Case Diagram

4

2.1.1.2.Requirement 1: Game selection
Priority: essential.

The user should be able to select one of three games. All are essentially
the same, however each is governed by a di�erent set of rules. The rules of
each game are based on the economic principles of one of three famous
economists: Adam Smith, Karl Marx and John Maynard Keynes. The rules
are given by the system prompt. The LLM decides what values to return in
response to users input.

2.1.1.3.Requirement 2: Policy setting
Priority: essential.

The user selects values for the relevant economic settings of each game
(e.g. money supply, interest rate, government spending, tax rate). This can
be done often or not at all, the game starts with a hard-coded pre-set for
each value.

2.1.1.4.Requirement 3: Metrics update
Priority: essential.

The game responds to the user’s policy settings by updating a set of
metrics (population increase, unemployment, government debt, etc). These
metrics are to be updated over a set time (a month in game time for
example), simulating the e�ects of real-world economic policies.

2.1.1.5.Requirement 4: Periodic update
If the user does not set the policy over a set period of time, the game will
generate updates from existing state.

2.1.1.6. Requirement 5: Saving
Priority: essential.

The user should be able to save the entire state of the game to the
database.

2.1.1.6.1. Requirement 6: Loading
Priority: essential.

The user should be able to load a previously saved game.

2.1.1.6.2. Requirement 7: Termination

5

Priority: essential.

The user should be able to either lose or win the game, based on reaching
or failing to reach certain metrics values over a given time or based on
reaching values that are considered a “lost game”.

2.1.1.6.3. Use Cases
UC1 Select a Game
● Description: User selects a game to play
● Actor: User
● Triggers: The user selects one of the game titles
● Pre-condition: The user reached the site
● Post-condition: Game starts to play
● Normal flow:

○ The user clicks the game title of the game they want to play.
○ The screen changes, the selected game starts loading

● Exceptional flow:
○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database)

UC2 Policy Setting
● Description: The user selects the policy update UI element, sets the
policy and clicks “Send”.
● Actor: User
● Triggers: the user clicks the "Policy Settings" button
● Pre-condition: The game is being played.
● Post-condition: A new policy is set.
● Normal flow:

○ The user clicks on the “Policy” button.
○ The game presents the user with a policy selection UI.
○ The user sets the policy and clicks send.

● Alternate flow: The user cancels the action..
● Exceptional flow:

○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database)

6

UC3 Metrics Update
● Description: The game updates metrics.
● Actor: System
● Triggers: UC2
● Pre-condition: The game is being played
● Post-condition: Metrics are updated
● Normal flow: The game receives a response from the LLM with the
new data and displays it to the user.
● Exceptional flow:

○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database)
○ E3. The LLM replies with an unparseable response.
○ E4. The LLM can’t be reached.

UC4 Periodic Update
● Description: The game automatically updates metrics.
● Actor: System
● Trigger: Internal game clock.
● Pre-condition: The user has not updated policy over a certain time
period
● Post-condition: Metrics are updated.
● Normal flow: The system determines that the list of previously
obtained metrics is almost exhausted.. The game sends the current policy
to the LLM.
● Exceptional flow:

○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database)
○ E3. The LLM replies with an unparseable response.
○ E4. The LLM can’t be reached.

UC5 Save Game
● Description: The user saves the game.
● Actor: User
● Trigger: The user clicks on the “Save Game” button
● Pre-condition: The game is being played

7

● Post-condition: The game is saved.
● Normal flow:

○ The system saves the game state to the database.
○ The system saves the game ID in the user’s clipboard.

● Exceptional flow:
○ E1. Connection error (the frontend can't access the the server)
○ E2. DB error (the backend can't access the database)

UC6 Load Game
● Description: The user loads a previously saved game.
● Actor: User
● Trigger: The user enters the game ID and clicks on the “Load Game”
button.
● Pre-condition: The user has reached the site.
● Post-condition: The game starts playing.
● Normal flow: The system loads the previously saved game state.
● Exceptional flow:

○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database)
○ E3. The game ID is not found in the database.

UC7 Game Ends
● Description: The game play comes to a conclusion.
● Actor: System
● Trigger: Internal game clock
● Pre-condition: The game has been played for a set amount of game
time.
● Post-condition: The game has ended.
● Normal flow: The user is presented with a screen determining
whether the game was won or lost.
● Exceptional flow:

○ E1. Connection error (frontend can't access the server)
○ E2. DB error (backend can't access the database
○ E3. The LLM replies with an unparseable response.

8

2.1.2. Data Requirements
The game stores the following data points

● Scenarios: 3 di�erent scenarios that included system prompts and
relevant images for display.
● Games played, with times and results (if played to the end)
● Metrics: sets of metrics that were used by all of the games. Some
were generated by the LLM, some were interpolated.
● Policy settings, entered by the user (or the default “all zeros”, if the
user never entered any)
● Raw messages: the stored text of the exchanges between the API and
LLM

These are all stored in the above-mentioned Postgresql database. No
personal identifiable information (IP addresses, names, etc.) is kept.

2.1.3. User Requirements
User should be a regular person, capable of playing web games and
reading and understanding economic articles in the Irish Times.

2.1.4. Environmental Requirements
The final deployment will require a Linux virtual private server with Python
and Caddy installed.

2.1.5. Usability Requirements
The game should be intuitive and not require a manual.
Internationalization and accessibility features are not planned.

2.2. Design & Architecture
The back-end is a FastAPI application that serves the front-end and
provides communication between the front-end and the LLM. Standard
routing is used.

The front-end is a web interface, which consists of a main page with the
game scene, the game selection page and an information page. The game
gives the impression that several other pages are displayed (loading and
end of game) however those are just overlays on the main scene page.

9

The main page contains a main canvas element . ThreeJS is used to draw
the UI on the page and ensure user interaction.

The LLM is hosted by Mistral AI and configured by the “system” part of
each message.

2.3. Graphical User Interface (GUI)
The GUI is created from ThreeJS objects, a model made in Blender (Blender
Foundation, 2019), HTML elements and some assets generated using
Stable Di�usion (stabledi�usionweb.com, n.d.).

The AI-generated images have Stable Di�usion watermarks on them. In
order to reduce the cost of this project, I have not upgraded to the tier
that does not include them. The Stable Di�usion FAQs
(stabledi�usionweb.com, n.d., 2) do not mention any restricted use for their
images.

There is a background image of a space nebula on the main screen, which
is sourced from Space Spheremaps (TonyS, 2024). I have processed the
original image to reduce its size.

The first page that the user encounters o�ers the game selection.

10

Each game is represented by a generated image of the economist in
question. The user can click on the “PLAY” button under any of the images,
to start the given game.

This page also has a menu that allows for loading of a previously saved
game and provides a link to the info page.

When the user selects a game, it takes a while to load (in the background
the system is querying the LLM). When everything loads, the user is
presented with the main game screen.

This screen shows a console with display panels and a single button.

On the top of the console is a “calendar” panel that shows the in-game
date. The game starts at the current date and lasts 6 in-game months.
Each in-game day is 5 real-time seconds, however pressing the “Set Policy”
button stops the in-game clock.

The panels show the 10 di�erent economic metrics. Each panel starts
coloured in cyan. As long as the metric value is the same as the previous
day, the display’s color is cyan. When the value improves, the display turns
green, when it worsens, the display turns red.

In the middle, between the panels, is a chart showing the last 10 days worth
of values of a single metric. The UI periodically switches between the
metrics. The user can set the chart to a specific metric by clicking on the
metric’s display panel. Clicking on the same panel again, restarts the
rotation.

11

There is a limited zoom/pan/dolly movement available, using the built in
ThreeJS controls.

Behind the console, the user can see a slowly rotating nebula. When the
set policy button is clicked and policy setters show, the nebula stops
turning, reinforcing the impression of stopped time.

The user can set economic policy by clicking on the red “SET POLICY”
button. This will display a form. The user can click on the button again to
dismiss the form, or send the policy to the LLM. The policy does not have
to be changed when sent. Sending the same policy extends the period of
time before the system sends one automatically.

The current policy is displayed on five silver translucent panels between
the policy button and the metrics displays.

12

The form validates input, only integers and floats are allowed.

13

When the user sends the policy, or when the game sends one
automatically, the LLM is query and responds with a new array of 30 days
worth of metrics. This user is notified of this by a notification in the top left
corner of the screen.

The screen also provides the possibility to save the game state into the
database. When the state is saved, the user is notified.

The game runs for a set amount of 6 in-game months. When the system
determines that this period is finished, it asks the LLM to generate a result
and a verbal evaluation of the user’s game. The LLM is provided with two
sets of metrics to achieve this, one set from the start of the game and one
from the end. When the LLM sends back a response, the user is presented
with a screen that shows whether the game was won or lost. The screen
also provides the LLM evaluation.

The screen is dominated by a generated image of the given economist.
The image reflects the result, i.e. the image for a won game di�ers from the

14

image of a lost one. The “PLAY AGAIN” button leads to the game selection
screen.

2.4. Backend API and Client Side Processing
The FastAPI application accepts incoming connections from the web
frontend, facilitates communication with the LLM and stores and retrieves
data from the database. It provides formatting and calculations on the
retrieved, user-entered and generated data. It also generates some data
itself.

The core functionality of the backend is a HTTP server. It provides several
routes that can be accessed using either GET or POST methods.

The main route (“/”) leads to the game selection screen. When a user selects
a game, first a GET request navigates the browser to the main page. When
the page loads, the loaded JavaScript sends a POST request that starts
the initial metrics generation.

At the first time, the API sends a request for two sets of metrics to the LLM
- one for now and one for 30 days hence. When the LLM responds, the API
parses the response and interpolates metrics for each day between the

15

two endpoints (using simple linear interpolation). This is done in order to
limit the cost (both monetary and processing time). The array of 30 metrics
is then returned to the frontend process.

The client side code saves the array in an object that keeps the game
state. This object is a singleton, and is generated once for each game
session.

The main game loop is provided by a function named tick() which runs
from the game start until the game end.

The game loop calculates the days (a new one every 5 real-time seconds).
On each new day the set of metrics from the state object is selected to
populate the displays. Independently, the middle chart is rotated, unless
frozen by the user.

The game loop and the game state object are used to keep track of how
long (in game days) the average communication with the LLM takes, from
the request being sent to the receipt of the response. This average time is
multiplied by 2 to calculate the size of a bu�er of the metric array. Once
the bu�er is reached (i.e. once there are only so many days worth of
previously generated metrics left to be displayed), the game loop triggers
an automated request for new metrics with the currently set policy
settings. To ensure stability, the minimum days in the bu�er is hardcoded
to 3.

After the initial requests, all subsequent requests (user triggered or
automatic) set the current metrics and the policy settings to the LLM. The
LLM is only asked to provide one set of new metrics, an outlook of what it
predicts the economy is going to look like in 30 days. The API interpolates
the data between the current metrics and the ones generated by the LLM.

The API stores all interaction in the database, in multiple formats -
separated into tables (metrics, policy settings), as JSON objects using the
Postgresql JSONB format (game state). The communication between the
API and the LLM is also captured in a table.

I have exported all the tables after a single whole game, the data (in CSV
and SQL formats) is available here: .TheGame DB Exports

16

https://drive.google.com/drive/folders/1-eP1yPd2t3AKUjIE6z304v-AhrIeeCNg?usp=sharing

The user has the option to save the game. When the button is clicked,
several pieces of data from the game state object is exported as JSON
and the API stores it in the database. Unlike all the other tables, which are
indexed using regular integer primary keys, this table is indexed on UUIDs
generated by the API. The UUID is then sent back to the client side, which
stores in the user’s system clipboard. The user can use the form on the
game selection page to load the game and play it from the save point.

When the game loop determines that the game has taken 6 in-game
months, it sends two sets of metrics to the API, which passes them to the
LLM. The LLM responds with a judgment, as described above. This
concludes the game.

2.5. The LLM
The large language model is configured by system prompts (one for each
scenario). It is used as the only decision-making engine in the game.

The non-deterministic nature of large language models carries significant
risks of miscomunication. In my testing, an unparseable reply from the
LLM was the only source of non-coding runtime errors. Utmost care has
been taken to remedy this - the API tries various ways to parse the
response before throwing an error, and the system prompts have been
engineered to ensure maximum message compatibility.

However in some cases the LLM’s response is unusable. If this happens at
the first load, the user is notified and redirected back to the game
selection, where they can start a new game. If this happens on subsequent
loads, the user is notified, and they can try re-sending the policy settings.

The final response (the “judgment’) is not so sensitive to formatting,
because it does not contain numbers that need to be precisely processed.

2.6. Testing
To test the GUI and the user facing functionality, I let the game play many
times. A video of one such session, is provided here

. As shown, the game largely plays itself, if the2024-08-05 14-11-48.mkv
user does not provide any input. This is useful for the tester, who can
check that specific events trigger database writes or notification. The
tester can of course also participate in the game whilst testing.

17

https://drive.google.com/file/d/1Z7Xd7ln_j81XuBucLCeXb5RF_92QbyCj/view?usp=sharing

A separate Pytest tests have been run on all the API routes (excluding “/”
and “/info”, which are just HTML pages and can su�ciently be tested
visually).

The tests passed. The code repository has the relevant dota and test code
for replication purposes.

Note, the ignore::DeprecationWarning flag in Pytest ensures that the
output is not littered by warnings about code that I have not written.

3.0 Conclusions
The project certainly has a potential beyond mere curiosity, in multiple
aspects:

● In my opinion, LLMs are well suited for game engines. They provide
unpredictability that can be leveraged for engaging gameplay.
Whilst this project can not claim to be the most engaging game, it
shows the possibilities in this direction. There are 2 major hurdles
that any developer must work around: latency and parsing the
nondeterministic responses.

● ThreeJS (and the WebGL and WebGPU technologies that it is built on)
provide a pleasant and e�cient framework for 3D interface

18

development. What is more, because it is available in the browser, the
user does not need to install an application.

● Whilst the previous point is good for the user, it would a�ect
monetization. However, making money o� this has never been the
goal.

● This project generates interesting data sets that can be used to
compare multiple LLMs (the code would have to be expanded for
this). I can see something like this project being used for generating
all manner of data, to study both human and machine behaviour.

There are several points where I feel the project could be better, even given
the time it was developed in:

● Engaging game play
● Design

Those would require me collaborating with people who can think up games
and with artists (such collaboration is of course not possible on a graded
project).

4.0 Further Development or Research
I will keep on further exploring both 3D web development and interactions
with LLM, as the subjects fascinate me.

5.0 Bibliography
● threejs.org. (n.d.). three.js – JavaScript 3D library. [online] Available at:

https://threejs.org.
● fastapi.tiangolo.com. (n.d.). FastAPI. [online] Available at:

https://fastapi.tiangolo.com.
● www.postgresql.org. (n.d.). PostgreSQL: The world’s most advanced open

source database. [online] Available at: https://www.postgresql.org.
● docs.mistral.ai. (n.d.). Models | Mistral AI Large Language Models. [online]

Available at: https://docs.mistral.ai/getting-started/models/.
● Blender Foundation (2019). blender.org - Home of the Blender project - Free

and Open 3D Creation Software. [online] blender.org. Available at:
https://www.blender.org.

● stabledi�usionweb.com. (n.d.). Stable Di�usion Online. [online] Available at:

19

https://stabledi�usionweb.com.
● stabledi�usionweb.com. (n.d., 2). Stable Di�usion Online. [online] Available

at: https://stabledi�usionweb.com/#faq.
● TonyS (2024). Blue Nebulae Spheremaps - Space Spheremaps. [online]

Space Spheremaps. Available at:
https://www.spacespheremaps.com/blue-nebulae-spheremaps/ [Accessed 5
Aug. 2024].

6.0 Appendices

20

National College of Ireland

Computing Project (BSCCYBE4)

Project Proposal
BSc (Honours) in Computing - Evening
2023/2024
Michal Eichler
x20139462
x20139462@student.ncirl.ie

app://obsidian.md/index.html

Table of Contents
1.0 Objectives

2.0 Background

3.0 State of the Art

4.0 Technical Approach
4.1 Project Management

4.2 Identifying requirements

5.0 Technical Details
5.1 Frontend

5.2 Backend

5.3 Database

5.4 Container and Reverse proxy

6.0 Special Resources Required

7.0 Project Plan

8.0 Testing

1.0 Objectives
This projects has two objectives:

1. Educational, learning how to develop a web game, using state of the art technologies and learning
the basics of economics.

2. Effective, to produce a game that aims to educate its players about mainstream economic theories in
a highly engaging and graphically submersive environment. The game is to be free of charge,
available over the internet and playable in a browser. The source code is to be released under a
permissive open source license (after the project is graded).

2.0 Background
I chose to undertake this project because I want to both learn how to make a web game and gain basic
understanding of economic theories.
My motivation to make a game is to make something which is simultaneously demanding and not serious.
I have made plenty of data processing Python scripts, but a game is new and it should be fun to make (as
well as to play).
My motivation to make an educational game in the branch of economics is that I want to understand
economics. I want to gain some insight into how economists think. Economics is the one big part of our
society that I understand only very little.
My motivation to make an online game that's free of charge, is so that everyone can play it. I have a
preference for unusual hardware and software combinations, ones that games vendors usually don't
support. Everyone with a computer, or even a smartphone has a web browser. I will prioritize efficiency, so
as to minimize hardware requirements on behalf of the user.
My motivation behind the open source licensing is dual: for one, I am an open source enthusiast and I
believe that all source code should be open so that we all can learn from it and built upon it. For two,
given that there should be no fee to pay, I won't be able to afford to scale up the infrastructure in case the
game will achieve any degree of popularity. Making it open source will enable everyone to host their own
instance.
And finally, my motivation to make the game graphically submersive is so that it's fun to play. The danger
of educational games is that they prioritize the education over the gaming (see any gamified workplace
security quiz or tutorial.) I would like to avoid that danger by making a game that won't feel like a chore.
The above points are inline with the objectives from section 1.0, and I will fulfil those objectives by
following my motivation.

3.0 State of the Art
There are educational games on the web, like Vecon Labs [1] or Economics-games.com [2]. Those are
usually not what I would call graphically engaging, some resemble actual spreadsheets more than
anything else.
Then there are games that have an economy as part of their gameplay, usually strategy games like Anno
1800 [3]. In those, the economy is just one of the parts of the game (others being warfare, diplomacy, etc).
Most of these games, definitely the most known examples, are expensive to buy, and require a
programmed installed on a specific platform and often come with high hardware requirements.
The unique point of my project is that it will feel like a game, and it will be fun and engaging.

4.0 Technical Approach

4.1 Project Management

The principle place for project management will be GitHub Projects. This provides a Kanban board, an
issue tracker, Gantt timeline view and a space for documentation. I will use elements of the agile
methodology, namely incremental development in short cycles, flexibility and kanban. Some parts of agile
don't apply here, since I am not working on this with anyone else.
The flexibility and short iterations are important to me, because I am not at all familiar with the technology
that I'm going to use and I might discover that I need to adjust the requirements or move parts of the
timeline around.
Kanban is just what I'm used to for task management.

4.2 Identifying requirements

I am the only real stake holder in this project, or more to the point, I assume that I can represent the
intended audience (by virtue of intending the audience to be a lot like me). Therefore I can base the
requirements on the motivation and on the capabilities of the technology that I'm going to use.
Provisionally, many functional requirements are related to the gaming paradigm, eg. keeping score,
saving state, randomized game bahaviour, difficulty levels, scenario selection, options setting etc. Another
set of functional requirements will be derived from the economics part of the game, choosing the theory
for the game environment (eg. play as a gold trader in a fully Keynesian world).
Non functional requirements will be driven by my desire to make the game run as well as possible with the
lowest possible system requirements.
In order to finalize the requirements, I need the domain knowledge, both in terms of technology and
economics. To that effect, I'm planning on educating myself first. I have found several materials to utilize:

Master Java Web Services and REST API with Spring Boot [4], which will help me with the backend,
which is to be built using Spring Boot

Mathematics for Game Programming and Computer Graphics [5], as an introduction the the
underlying mathematics

Build Your Own 2D Game Engine and Create Great Web Games: Using HTML5, JavaScript, and
WebGL2 [6], to for the frontend

A Little History of Economics [7], an overview of economic theories
Once I have the theoretical background, I will be able to establish a clear picture of what the
technologies allow me to do. Then I will be able to think about how to express the theories I've
learned about as a game.
After this, I will be able to fully establish the functional and non-functional requirements, use cases

and testing procedures. I will first plan everything in a Gantt chart, and then translate it into issues,
milestones tickets, etc.

5.0 Technical Details
There will be 3 components to the deployed application: frontend, server and database. The application is
going to be containerized using Podman or Incus containers and running behind a reverse proxy (possibly
Caddy).

5.1 Frontend

The principal technology here will be WebGL [8]. I would like to be on the cutting edge and use WebGPU
[9], sadly there is very little adoption [10] yet and using such an unavailable technology would go against
my principle of availability.
WebGL is a low level graphics API, good for making games. I'm not sure yet which specific algorithms or
libraries I will use, as I have to do the above mentioned research first.
For the rest of the frontend (settings, account, leaderboards, about page, etc) I'm considering Thymeleaf
[11], because it works well with Spring.

5.2 Backend

I'll be using Spring Boot [12], a Java-based framework for the backend. This is a mature and well tested
framework that I hope will provide me with reliability and security. I'm going to use the Model-Viewer-
Controller pattern using the Spring MVC module.

5.3 Database

The database used will be Postgresql [13], chosen because it's mature with a reputation for stability and a
wealth of documentation that I can draw on.

5.4 Container and Reverse proxy

I will use Podman [14] or Incus [15] containers for the application to run in. These technologies are quite
different, Podman is close to Docker whilst Incus is an application container (eg, well suited for running
both the Spring Boot app and the Postgresql database in a single container). I have some experience with
both and will decide after further research, which one of these technologies is better suited for the project.

6.0 Special Resources Required
Except for the books mentioned above and other documentation, and my GitHub account, I will be using
my home lab for development and early testing.
For further testing and actual deployment, I will be using a Hetzner VPS [16] running either a Debian or a
Ubuntu server.
A generative AI service will be used to create assets, both graphics and audio.

7.0 Project Plan
The project has several distinct stages, marked by the milestones on the GitHub project page:

1. Knowledge acquisition, runs from 2023-12-26 to 2024-02-17

2. Preliminary requirement specification, runs from 2024-02-18 to 2024-03-03

3. Mid point implementation, runs from 2024-03-04 to 2024-04-28

4. Final implementation, runs from 2024-04-29 to 2024-08-05
The first stage will consist mostly of reading the above mentioned books and completing the above
mentioned course. I might do some exploratory coding, but won't attempt to seriously start putting the
project together yet. The information materials are sorted from the most demanding to the least, if I
get slowed down by vector maths, I can speedup through the less challenging subject of Spring Boot
development.
During the second stage will create the necessary planning materials for the development, eg ERD,
use cases, etc.
The third stage will start the actual development. From now on, each 2 week period marks a sprint,
during which a distinct part of the work will be done. At the end of stage 3, I expect to have all parts of
the application in a running if rudimentary state, with features missing, but a usable prototype.
The fourth stage will continue with iterative development. I expect to finish all development by the
end of sprint 10 (2024-06-21). The last week before the project submission is a buffer week, reserved
for emergencies.
Documentation is to be continuously updated during stages 3 and 4.
The plan for those stages is still rather vague, I need to first acquire the knowledge (stage 1) so that I
can design and plan the app (stage 2), before I can formalize the needed tickets.

7.1 Gantt Charts
The project plan is captured as a Gantt chart, kanban and issue list in the GitHub repository, which is
private. Please let me know if you require access.

Sprints are identified by colours

7.2 Task List

Title Start
Date

Due
Date

Milestone Sprint

1
Read Mathematics for Game
Programming and Computer Graphics

2024-
01-01

2024-
01-07

Knowledge acquisition
stage finished

2

Read Build Your Own 2D Game
Engine and Create Great Web
Games: Using HTML5, JavaScript,
and WebGL2

2024-
01-08

2024-
01-28

Knowledge acquisition
stage finished

3 Read A Little History of Economics
2024-
01-29

2024-
02-04

Knowledge acquisition
stage finished

4 Complete the course Master Java
Web Services and REST API with

2024-
02-05

2024-
02-17

Knowledge acquisition
stage finished

Title Start
Date

Due
Date Milestone Sprint

Spring Boot

5 Identifiy use cases
2024-
02-18

2024-
02-19

Preliminary requirement
specifications

6 Identify functional requirements
2024-
02-20

2024-
02-21

Preliminary requirement
specifications

7 Identify non-functional requirements
2024-
02-22

2024-
02-23

Preliminary requirement
specifications

8 Prepare data classification
2024-
02-23

2024-
02-23

Preliminary requirement
specifications

9 Design ERD for the database
2024-
02-24

2024-
02-24

Preliminary requirement
specifications

10 Design wireframes for the UI
2024-
02-25

2024-
02-25

Preliminary requirement
specifications

11 Design use case diagrams
2024-
02-26

2024-
02-26

Preliminary requirement
specifications

12 Design class diagrams
2024-
02-27

2024-
02-27

Preliminary requirement
specifications

13
Establish a concrete but flexible
testing plan

2024-
02-28

2024-
02-29

Preliminary requirement
specifications

14
Prepare preliminary requirement
specifications

2024-
03-01

2024-
03-03

Preliminary requirement
specifications

15 Database setup
2024-
03-04

2024-
03-04

Mid Point Implementation,
Documentation & Video
Presentation

1

16 Backend serving a static site
2024-
03-05

2024-
03-06

Mid Point Implementation,
Documentation & Video
Presentation

1

17 User managment
2024-
03-07

2024-
03-10

Mid Point Implementation,
Documentation & Video
Presentation

1

18
Game logic rudimentary
implementation

2024-
03-11

2024-
03-16

Mid Point Implementation,
Documentation & Video
Presentation

1

19 Sprint 1 testing
2024-
03-17

2024-
03-17

Mid Point Implementation,
Documentation & Video
Presentation

1

20
Game graphics rudimentary
implementation

2024-
03-18

2024-
03-24

Mid Point Implementation,
Documentation & Video
Presentation

2

21 Game logic improvements
2024-
03-25

2024-
03-30

Mid Point Implementation,
Documentation & Video
Presentation

2

22 Sprint 2 testing
2024-
03-31

2024-
03-31

Mid Point Implementation,
Documentation & Video
Presentation

2

Title Start
Date

Due
Date Milestone Sprint

23 Game graphics improvements
2024-
04-01

2024-
04-07

Mid Point Implementation,
Documentation & Video
Presentation

3

24 Backend improvements
2024-
04-08

2024-
04-13

Mid Point Implementation,
Documentation & Video
Presentation

3

25 Game logic improvements sprint 3
2024-
04-08

2024-
04-13

Mid Point Implementation,
Documentation & Video
Presentation

3

26 Sprint 3 testing
2024-
04-14

2024-
04-14

Mid Point Implementation,
Documentation & Video
Presentation

3

27 Game graphics improvements sprint 4
2024-
04-15

2024-
04-21

Mid Point Implementation,
Documentation & Video
Presentation

4

28 Documentation till mid point
2024-
03-05

2024-
04-25

Mid Point Implementation,
Documentation & Video
Presentation

4

29 Mid point testing
2024-
04-22

2024-
04-25

Mid Point Implementation,
Documentation & Video
Presentation

4

30 Mid point video presentation
2024-
04-26

2024-
04-27

Mid Point Implementation,
Documentation & Video
Presentation

4

31 Backend Improvements sprint 5
2024-
04-29

2024-
05-11

Final Implementation,
Documentation & Video
Presentation

5

32 Game logic improvements sprint 5
2024-
04-29

2024-
05-11

Final Implementation,
Documentation & Video
Presentation

5

33 Game graphics improvements sprint 5
2024-
04-29

2024-
05-11

Final Implementation,
Documentation & Video
Presentation

5

34 Sprint 5 testing
2024-
05-12

2024-
05-12

Final Implementation,
Documentation & Video
Presentation

5

35 Backend improvements sprint 6
2024-
05-13

2024-
05-25

Final Implementation,
Documentation & Video
Presentation

6

36 Game logic improvements sprint 6
2024-
05-13

2024-
05-25

Final Implementation,
Documentation & Video
Presentation

6

37 Game graphics improvements sprint 6
2024-
05-13

2024-
05-25

Final Implementation,
Documentation & Video
Presentation

6

38 Sprint 6 testing 2024-
05-26

2024-
05-26

Final Implementation,
Documentation & Video

6

Title Start
Date

Due
Date Milestone Sprint

Presentation

39 Backend improvements sprint 7
2024-
05-27

2024-
06-08

Final Implementation,
Documentation & Video
Presentation

7

40 Game logic improvements sprint 7
2024-
05-27

2024-
06-08

Final Implementation,
Documentation & Video
Presentation

7

41 Game graphics improvements sprint 7
2024-
05-27

2024-
06-08

Final Implementation,
Documentation & Video
Presentation

7

42 Sprint 7 testing
2024-
06-09

2024-
06-09

Final Implementation,
Documentation & Video
Presentation

7

43 Backend improvements sprint 8
2024-
06-10

2024-
06-22

Final Implementation,
Documentation & Video
Presentation

8

44 Game logic improvements sprint 8
2024-
06-10

2024-
06-22

Final Implementation,
Documentation & Video
Presentation

8

45 Game graphics improvements sprint 8
2024-
06-10

2024-
06-22

Final Implementation,
Documentation & Video
Presentation

8

46 Sprint 8 testing
2024-
06-23

2024-
06-23

Final Implementation,
Documentation & Video
Presentation

8

47 Backend improvements sprint 9
2024-
06-24

2024-
07-06

Final Implementation,
Documentation & Video
Presentation

9

48 Game logic improvements sprint 9
2024-
06-24

2024-
07-06

Final Implementation,
Documentation & Video
Presentation

9

49 Game graphics improvements sprint 9
2024-
06-24

2024-
07-06

Final Implementation,
Documentation & Video
Presentation

9

50 Sprint 9 testing
2024-
07-07

2024-
07-07

Final Implementation,
Documentation & Video
Presentation

9

51 Backend improvements sprint 10
2024-
07-08

2024-
07-20

Final Implementation,
Documentation & Video
Presentation

10

52 Game logic improvements sprint 10
2024-
07-08

2024-
07-20

Final Implementation,
Documentation & Video
Presentation

10

53
Game graphics improvements sprint
10

2024-
07-08

2024-
07-20

Final Implementation,
Documentation & Video
Presentation

10

Title Start
Date

Due
Date Milestone Sprint

54 Sprint 10 testing
2024-
07-21

2024-
07-21

Final Implementation,
Documentation & Video
Presentation

10

55 Finalized documentation
2024-
04-29

2024-
07-28

Final Implementation,
Documentation & Video
Presentation

11

56 Final testing
2024-
07-22

2024-
07-28

Final Implementation,
Documentation & Video
Presentation

11

8.0 Testing
At the start of each sprint, I will come up with relevant test cases, which are meant to be passing at the
end of the iteration. Most sprints have the last day reserved for testing (this is always a Sunday, so a day
is enough).
This includes unit testing for backend and non-WebGL parts of the fronted using the testing framework
built into Sprint Boot [17], and for the WebGL part I plan on using GLCheck [18]. I hope that this
emulation of Test-Driven Development [19] will enable me catch and solve bugs early.
Each sprint will also conclude with integration tests of what's been done, using the Spring built in test
framework, and Selenium [20]. I'm choosing Selenium over say Puppeteer, because it can use Firefox as
well as Chrome, again in accord with my principle of access.
Non-functional tests are going to be performed using JMeter [21] for the Java part, and browser developer
tools for the frontend part. Security testing will be done using ZAP proxy [22], also at the end of each
sprint.
The last sprint before the midpoint and the final half sprint before the buffer week will be dedicated to
testing. All tests will be repeated multiple times to ensure the quality of the finalized project.

References
[1] “Attacker Defender Game Features,” veconlab.econ.virginia.edu.
https://veconlab.econ.virginia.edu/ad2/ad2.php (accessed Dec. 18, 2023).
[2] “Classroom Games for Teaching Economics,” economics-games.com. https://economics-games.com
(accessed Dec. 18, 2023).
[3] “Anno 1800 on Steam,” store.steampowered.com.
https://store.steampowered.com/app/916440/Anno_1800/ (accessed Dec. 18, 2023).
[4] “Master Java Web Services and REST API with Spring Boot,” learning.oreilly.com.
https://learning.oreilly.com/course/master-java-web/9781789130133/ (accessed Dec. 18, 2023).
[5] P. de Byl, Mathematics for Game Programming and Computer Graphics. Birmingham: Packt
Publishing, 2022. Accessed: Dec. 18, 2023. [Online]. Available:
https://learning.oreilly.com/library/view/mathematics-for-game/9781801077330/
[6] K. Sung, J. Pavleas, M. Munson, and J. Pace, Build Your Own 2D Game Engine and Create Great
Web Games: Using HTML5, JavaScript, and WebGL2. New York: Apress, 2021. Accessed: Dec. 18,
2023. [Online]. Available: https://learning.oreilly.com/library/view/build-your-own/9781484273777/
[7] N. Kishtainy, Tran., A Little History of Economics. New Haven: Yale University Press, 2018. Available:
https://www.amazon.co.uk/Little-History-Economics-Histories-ebook/dp/B06XDHTFTL
[8] “WebGL - OpenGL ES for the Web,” The Khronos Group, Jul. 19, 2011.
https://www.khronos.org/webgl/
[9] “WebGPU,” www.w3.org. https://www.w3.org/TR/webgpu/
[10] “‘webgpu’ | Can I use... Support tables for HTML5, CSS3, etc,” caniuse.com. https://caniuse.com/?
search=webgpu (accessed Dec. 18, 2023).
[11] “Thymeleaf,” www.thymeleaf.org. https://www.thymeleaf.org/
[12] Spring, “Spring Projects,” Spring.io, 2019. https://spring.io/projects/spring-boot
[13] The PostgreSQL Global Development Group, “PostgreSQL: The world’s most advanced open source
database,” Postgresql.org, 2019. https://www.postgresql.org/
[14] “Podman,” podman.io. https://podman.io/
[15] “Linux Containers - Incus - Introduction,” linuxcontainers.org.
https://linuxcontainers.org/incus/introduction/ (accessed Dec. 18, 2023).
[16] “Dedicated Server, Cloud, Storage & Hosting,” www.hetzner.com. https://www.hetzner.com/?
country=ie (accessed Dec. 18, 2023).
[17] “41. Testing,” docs.spring.io. https://docs.spring.io/spring-
boot/docs/1.5.7.RELEASE/reference/html/boot-features-testing.html
[18] “glcheck,” npm, Dec. 02, 2019. https://www.npmjs.com/package/glcheck (accessed Dec. 19, 2023).
[19] J. Acosta and K. Gajda,
“https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/,” www.ibm.com.
https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/
 [20] Selenium, “SeleniumHQ Browser Automation,” www.selenium.dev, 2023. https://www.selenium.dev/
[21] Apache Software Foundation, “Apache JMeter - Apache JMeterTM,” Apache.org, 2019.
https://jmeter.apache.org/
[22] OWASP, “OWASP ZAP,” Zaproxy.org, 2020. https://www.zaproxy.org/

https://veconlab.econ.virginia.edu/ad2/ad2.php
https://economics-games.com/
https://store.steampowered.com/app/916440/Anno_1800/
https://learning.oreilly.com/course/master-java-web/9781789130133/
https://learning.oreilly.com/library/view/mathematics-for-game/9781801077330/
https://learning.oreilly.com/library/view/build-your-own/9781484273777/
https://www.amazon.co.uk/Little-History-Economics-Histories-ebook/dp/B06XDHTFTL
https://www.khronos.org/webgl/
http://www.w3.org./
https://www.w3.org/TR/webgpu/
https://caniuse.com/?search=webgpu
http://www.thymeleaf.org./
https://www.thymeleaf.org/
https://spring.io/projects/spring-boot
https://www.postgresql.org/
https://podman.io/
https://linuxcontainers.org/incus/introduction/
http://www.hetzner.com./
https://www.hetzner.com/?country=ie
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/reference/html/boot-features-testing.html
https://www.npmjs.com/package/glcheck
https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/,%E2%80%9D
http://www.ibm.com./
https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/
http://www.selenium.dev/
https://www.selenium.dev/
https://jmeter.apache.org/
https://www.zaproxy.org/

