

National College of Ireland
Computing

Cyber Security

2023/2024

Lee Campbell

X20115075

X20115075@student.ncirl.ie

PennyWise

Technical Report

1

Contents
Executive Summary ... 1

1.0 Introduction ... 2

1.1. Background .. 2

1.2. Aims ... 2

1.3. Technology .. 2

The technology stack: ... 3

Development and CI/CD ... 4

1.4. Structure .. 4

2.0 System .. 4

2.1. Requirements .. 4

2.1.1 Use Case Diagram .. 4

2.1.1.1 Requirement 1: User Registration (Passwordless Sign-up with OTP) 4

2.1.2 Use Case Diagram .. 6

2.1.2.1 Requirement 2: User Login (Passwordless Sign-in with OTP) ... 6

2.2. Design & Architecture ... 7

2.3. Graphical User Interface (GUI) .. 16

2.4. Testing ... 24

2.5. Evaluation .. 25

3.0. Conclusions .. 25

3.0 Further Development or Research .. 26

4.0 References ... 27

5.0 Appendices ... 27

5.1. Project Proposal .. 27

5.2. Reflective Journals ... 38

Executive Summary
This report provides a technical overview of the PennyWise application, which aims to
integrate personal banking and AI for financial analytics and insights. The purpose of the
report is to examine and document the background, objectives, problem areas,
development, system design, implementation, testing and evaluation of this application.

This report has highlighted the benefits of the current architecture, using Server Side
Rendering, the benefits of the technology stack used, the use cases, current implementation
and security considerations going forward and the current infrastructure and code.

2

This report provides a technical review of the PennyWise application, which aims to merge
personal banking with AI capabilities for financial analysis and insights. The report will
explore and detail the project's background, goals, challenges, development process, system
design, implementation, testing, and evaluation.

Key highlights of the report include:

• Background and Objectives: The report delves into the how and why of the
PennyWise application and how the current objectives came to be.

• Architecture and Technology Stack: Emphasizes the advantages of the current
architecture, particularly the use of Server Side Rendering, and discusses the benefits
of the chosen technology stack.

• Use Cases and Implementation: The report outlines various use cases, the current
implementation status, and how the application integrates AI for financial analytics.

• Security Considerations: Focus on security considerations in the application's design
and implementation, in an aim to highlight the importance of safeguarding user
financial data.

• Infrastructure and Code: It provides insights into the current infrastructure and
codebase, offering an overview of the technical aspects of the project.

1.0 Introduction
1.1. Background
Traditional financial management tools lack dynamic insights – PennyWise wants to
allow people to make more informed decisions on their money, and how to manage it.

PennyWise aims to give customers intelligent advice and personalised money
management techniques, similar to how diagnostics for cars can identify problems. This
initiative takes on a new relevance in the current context of the rising cost of living issue,
which is particularly evident in Ireland. The overall objective is to develop an application
that not only educates but also empowers people to manage their finances, in an aim to
transform personal banking.

1.2. Aims
The primary aim of the PennyWise project is to develop a financial management application that
provides users with personalised and dynamic insights on how best to manage their finances
effectively.

While PennyWise strictly does not give financial advice, it aims to provide insights –
which may help an end user in learning how to be more financially minded.

1.3. Technology
Technology used with this project, is NextJS, a full-stack offering, a react-based
framework built on JavaScript for building web applications. This framework uses React

3

and TypeScript for the Frontend, while NextJS offers functionality that makes this
application full-stack. TypeScript, which is a superset of JavaScript, brings static typing
and modern language features.

NextJS also provides out of the box functionality for server-side rendering, static site
generation, and creating API routes, enabling my application, PennyWise to implement
features as needed, both on the server and the frontend.

The technology stack:
Frontend

• Vercel: A platform for deploying frontend applications, commonly NextJS Applications,
o Automatic Deployments
o Multiple Environments
o Edge Functions
o Instant Scaling and Global CDN Distribution
o Can also host databases and other backend applications.

• TailwindCSS: A utility-first CSS framework used for designing the user interface, follows
a CSS-in-JS approach.

User Authentication

• Kinde: A user authentication provider used to manage user sign-ups, logins, and secure
access to the application.

Database

• PostgreSQL: An ACID-compliant, open-source relational database management system
used for storing and managing application data.

• Despite initial considerations, Prisma was not used due to issues with the generated
types, which led to its removal from the project.

• This also led to the retiring of the PostgreSQL database.

API and Data Management

• Zod: A TypeScript-first schema validation library, used for defining and validating data
schemas.

Additional Libraries and Tools

• @radix-ui/react-avatar and @radix-ui/react-scroll-area: Components from Radix UI
used for building accessible UI components – brought in from shadcn component library.

• lucide-react: A library for SVG icons.
• recharts: A composable charting library for React.
• react-markdown and rehype-highlight: Used for rendering and syntax highlighting

markdown content.
• sanitize-html: Used for sanitizing HTML to prevent XSS attacks.

4

Development and CI/CD

• GitHub Actions: Used for continuous integration and deployment (CI/CD), automated
workflows for building, testing, and deploying the application alongside Vercel.

• Prettier: A code formatter to maintain consistent code style.
• ESLint: A tool for identifying and fixing issues in JavaScript code.
• Playwright: A testing library used for end-to-end testing, ensuring the application's

functionalities work as expected across different browsers.

1.4. Structure
This report will follow a structured format, beginning with an section on system
requirements, followed by design and architecture, implementation, testing, evaluation,
conclusions, further development or research, references, and appendices.

Each section will provide insights into the different aspects of the project, including task
generation, milestone planning, system design, and testing strategies. Diagrams will be
shown in relevant sections where appropriate for added context.

2.0 System
2.1. Requirements

- User Registration: Users sign up for the PennyWise application using email and OTP for
authentication.

- User Login: Existing users can log in to the PennyWise application using email and OTP.
- Bank Connectivity: Integration with multiple banks in Ireland.
- Transaction Data: Ability to fetch transaction data securely.
- Dashboard: Authorised users can view a dashboard displaying financial analytics and

insights.
- AI Chatbot: Implement an AI-driven chatbot (PennyWise) to provide financial insights

about fetched transaction data.
- Secure Data Handling: Encryption of sensitive user data both in transit and at rest.
- Error Handling: No exposure of backend processes, graceful handling of errors.

2.1.1 Use Case Diagram
2.1.1.1 Requirement 1: User Registration (Passwordless Sign-up with OTP)
Description & Priority
This requirement entails users registering for the PennyWise application without passwords,
using a one-time password (OTP) for authentication.

Priority: High

Use Case Scope:
The scope of this use case is to allow users to register for the PennyWise application pass
wordlessly using a One Time Password (OTP)

5

Description:
This use case involves users entering their email address, first and last name, receiving an
OTP, verifying their email through OTP, selecting a bank, and gaining access to the
application's dashboard.

Use Case Diagram:

Flow Description:
Precondition:
The user is accessing the PennyWise registration page.

Activation:
This use case starts when a new user navigates to the registration page.

Main flow:
The user enters their first and last name, email address. The system generates a one-time
password (OTP) and sends it to the user's email. The user enters the OTP received in their
email to verify their email address. The user selects their bank from the available options.
The user successfully registers and gains access to the dashboard.

Alternate flow:
Register with Google

Incorrect email address format: The system prompts the user to enter a valid email address.

OTP not received: The system allows the user to request a new OTP or provides alternative
verification methods. Exceptional flow:

Email delivery failure: The system informs the user that there was an issue sending the OTP
and advises them to check their email address or try again later.

Termination
The dashboard is shown to user as user is logged in and credentialled, until token expiry is
activated.

6

2.1.2 Use Case Diagram
2.1.2.1 Requirement 2: User Login (Passwordless Sign-in with OTP)
Description & Priority
This requirement involves existing users logging into the PennyWise application without
passwords, using a one-time password (OTP) for authentication.

Priority: High

Use Case Scope:
This use case allows existing users to log into the PennyWise application without using
passwords, using a One Time Password(OTP) for authentication.

Description:
This use case involves existing users entering their email address, receiving an OTP, verifying
their identity through OTP, selecting a bank, and accessing the application's dashboard.

Use Case Diagram:

Flow Description:
The user enters their email address or click continue with Google. The system generates a
one-time password (OTP) and sends it to the user's email. The user enters the OTP received
in their email to verify their identity. The user selects their bank from the available options.
The user gains access to the dashboard

Precondition:
The user is accessing the PennyWise login page.

Activation:
This use case starts when an existing user navigates to the login page. Main flow:

Alternate flow:
Login with Google

Incorrect email address format: The system prompts the user to enter a valid email address.

OTP not received: The system allows the user to request a new OTP or provides alternative
verification methods. Exceptional flow:

7

Email delivery failure: The system informs the user that there was an issue sending the OTP
and advises them to check their email address or try again later.

2.1.3 Data Requirements:

- User must be logged in.
- User's GoCardless auth token must be saved in the user session.

2.1.4 User Requirements:

- User should have an email addressed
- User should have a supported financial institution with transaction history.

2.1.5 Environmental Requirements:

- TBD

2.1.6 Usability Requirements:

- Application should respond quickly.
- Ensure non-exposure of sensitive data.
- Implemented security measures.
- Design the application interface to look aesthetically pleasing.

2.2. Design & Architecture
Sample Diagram:

Current Design: secure and scalable server-side rendered (SSR) architecture:

- Authentication layer is managed by a Kinde server side.
- API layer serves as a shield, encapsulating and abstracting external API

interactions
- authentication process involves storing of access tokens within user sessions

objects, created and contained within a database.
- The server manages these user sessions, associating them with the

corresponding client requests

8

- If user is authenticated(client can make requests) – users gain access to
application features, including conversations with PennyWise(ChatGPT) and
retrieval of financial data.

Next Steps:

- Comprehensive Error Handling
- Secure by Design – adding auth to all routes
- Caching
- Data encryption and bolstered security.

Chat UI Functionality:

• Use Chat hook provided by Vercel to communicate with ChatGPT AI (OpenAI).
• Setting the ID as the date, the context tells the Agent what to be (sample).
• the useChat hook to manage chat-related functionality such as handling user

input, sending messages, and displaying messages.
• Handle submit supplies the information to my defined API route and sends it

back to OpenAI – which then streams a response.

Fetching GoCardless Token and Banking Institutions:

• First request obtains access token used for subsequent requests
• Access Token is used to get and return valid institutions based on the country

code (IE).

9

TypeScript serverless function for fetching data from OpenAI API:

- handles incoming POST requests, checks for the presence of a OpenAI API key, and
processes provided messages to create chat completions using the model gpt-3.5-
turbo.

- function then streams the generated responses back to the client using the
OpenAIStream

- errors handled appropriately with regards to current implementation.

10

Auth Route for GoCardless:

- handles incoming GET requests to obtain bank authentication tokens
- requests token using util function defined above.
- Extracts values from response and sets them as HTTP cookies.
- Security minded function.

11

Transaction Loader:

12

- Utilises custom hooks for fetch insights, balances and transactions.
o Each being separate API Calls

13

- Then checks the Data against the types of transactions (TypeScript)
- Passes them into a component to be displayed.
- Makes up the Dashboard component, DashCards, DashMiddle and DashAI are the

components that receive the data.

14

- Code to sort the data incoming into a component (DashMiddle)

Code for sorting transactions:

15

16

2.3. Graphical User Interface (GUI)
Dashboard: Homepage and how it looks, complete with header and footer. All responsive.

- Placeholders Images

Sign in and Sign out Forms – Provided by Kinde with Google Login and Password OTP
Functionality:

17

18

Contact Page:

19

- Validation using ZOD Library

Bank Selection UI – Data taken from Banking API and Presented in a UI Component:

- User needs to be logged in

20

About Page:

21

GoCardless:

- Showing Auth Process:

22

Dashboard:

Showing Data – My own financial data:

Each Section is its own component with different calls and formatting requirements:

Analytics Page:

23

- Interactive
- Shadcn UI charts

AI Chat Component:

Connected with ChatGPT AI – using next API route.
 Process-> Give instructions, wait for input, respond.

- Scrollable
- Uses a library to wrap the responses in Markdown, found in a GitHub issue and it

worked well for my use case and started researching how to format responses.

24

2.4. Testing
Testing Tools:

1. Bank Connectivity Testing:

• Tools: Dummy bank accounts, financial APIs.

2. Manual AI Models Testing for Financial Advisory Topics:

• Tools: AI models, financial advisory queries.

3. UI Testing using Playwright or Cypress:

• Tools: Playwright, Cypress.

4. CI/CD Pipeline Before Deployment:

• Tools: CI/CD pipeline tools (e.g., Jenkins, GitLab CI/CD).

Testing Plan:

1. Bank Connectivity Testing:

• Scenario: Simulate transactions and account activities using dummy bank
accounts.

• Evaluation Criteria: Ensure seamless integration with financial institutions
and transaction handling.

• Testing Approach: Conduct end-to-end system tests focusing on reliability
and connectivity consistency.

2. AI Models Testing with Sample Spending Spreadsheets:

• Scenario: Input financial simulated data and evaluate AI-driven insights.

• Evaluation Criteria: Assess accuracy and relevance of AI-generated financial
advice.

• Testing Approach: Systematically test different spending scenarios and refine
models based on results.

3. AI Models Testing for Financial Advisory Topics:

• Scenario: Generate financial queries and evaluate AI responses.

• Evaluation Criteria: Measure relevance and helpfulness of AI-generated
financial advice.

• Testing Approach: Create diverse queries, analyse responses, and refine the
model.

4. UI Testing using Playwright or Cypress:

• Scenario: Simulate user interactions with the interface.

25

• Evaluation Criteria: Ensure smooth user experience, identify UI issues.

• Testing Approach: Implement automated UI tests to test responsiveness and
functionality.

5. CI/CD Pipeline Before Deployment:

• Scenario: Automate build, testing, and deployment processes.

• Evaluation Criteria: Assess efficiency in catching errors and facilitating
deployments.

• Testing Approach: Implement continuous integration and delivery processes,
conduct automated tests.

2.5. Evaluation
- The model with the promise was ChatGPT 4o Mini – less cost in tokens and returned

data the way I expected it to.
o This model does not hallucinate as much as others and sticks to task well.

- UI Testing Completed With Playwright for pages that are accessible without security
tokens.

o Cannot mimic login like other testing frameworks as to not expose sensitive
data.

- CI/CD Pipeline was made easy using a combination of Vercel and GitHub.
o This included staging environments
o Prod environments
o Automated Linting, Formatting and Running of Tests

- Bank Connectivity Testing took some time due to the complex nature of how data
was returned, each bank kept a similar structure but with subtle differences.

3.0. Conclusions

Advantages:

1. Personalised Financial Guidance: Tailored Financial Insights and Guidance for people who
may be less financial inclined, being able to talk to wallet seems like a utility.

2. Integrated AI Models: Uses an integrated AI model to provide these insights – since AI is a
buzzword with regards to start-up, and the amount of data a AI model can handle, this is
both time saving and promotable.

3. Financial Management: Platform for users to manage financial accounts and access financial
information and tailored insights.

4. Clean UI: Clean and simple Interface built with Modern Web Development Infrastructure.

Disadvantages:

1. Dependency on External APIs: Relies on external APIs for fetching financial data, which
introduces points of failure for the application.

26

2. Privacy Concerns: Sensitive nature of financial data would require a large scale security
overhaul and security experts if the application was actually being built for wide-scale usage.

3. Limited Customisation: Lacks flexibility in regards to user preferences and financial goals.

Strengths:

1. Scalable Architecture: Built on a server-side rendered architecture, scalable, with regards to
Vercel who manage the scalability of applications deployed there.

2. Secure Authentication: Implements server-side authentication and session management for
enhanced security, limits client side vulnerabilities.

3. No Access to Data: Users of the site have a token that expires and with it, the ability to test
with your data.

o Being a Developer, I have a no access to the data from any real users.

4. Modern UI: Built with modernity in mind and the latest tools for web development.

Limitations:.

1. Complex Integration: Integrating with multiple APIs may prove complex and time-
consuming, could require ongoing maintenance and updates.

2. Limited AI Capabilities: While AI-driven insights are valuable, they may be limited in scope
and accuracy – may be difficult to refine in current implementation.

- Going forward training a custom model would be better suited for this use case.

3.0 Further Development or Research
1. Training my own AI Model: training a proprietary AI model tailored specifically for

financial analytics would be the main focus of further development. This would
involve getting largescale datasets and supervised and unsupervised learning, LLaMA
models provided by Meta show the most promise in respects to this.

2. Exploring Different Ways of Offering Financial Analytics: Research into more
innovative approaches for presentation of financial analytics to users. Predictive
modelling or visualisations.

3. More AI Functionalities: Expanding AI functionalities of the application which could
summarization techniques or more advanced insights generation.

4. Mobile Application: Development of a mobile application version of the PennyWise
platform could significantly expand its reach if taken serious.

5. Integration with Existing Applications: Offering APIs or integration modules,
PennyWise could seamlessly integrate with popular banking apps, budgeting
software, or personal finance platforms.

27

4.0 References

Build and deploy the best web experiences with the frontend cloud (no date) Vercel.
Available at: https://vercel.com/home (Accessed: 12 May 2024).

Group, P.G.D. (2024) PostgreSQL. Available at: https://www.postgresql.org/ (Accessed: 12
May 2024).

Simplify working and interacting with databases (no date) Prisma. Available at:
https://www.prisma.io/ (Accessed: 12 May 2024).

Typescript-first schema validation with static type inference (no date) TypeScript-first
schema validation with static type inference. Available at: https://zod.dev/ (Accessed: 12
May 2024).

Next.js by vercel - the REACT framework (no date) Next.js by Vercel - The React Framework.
Available at: https://nextjs.org/ (Accessed: 12 May 2024).

https://claude.ai/

5.0 Appendices
This section should contain information that is supplementary to the main body of the report.

5.1. Project Proposal
Contents

1.0 Objectives 2

1.1 Background 3

2.0 State of the Art 4

3.0 Technical Approach 5

4.0 Technical Details 6

5.0 Special Resources Required 8

6.0 Project Plan 8

7.0 Testing 11

1.0 Objectives

The PennyWise project's objectives are focused, clear, and serve as quantifiable targets that
guide the development of the application and to reach the intended results. These objectives,
which reflect practical deliverables and benchmarks, are separate from the higher-level project

28

goals, as stated in the clarification on project objectives found here:
(https://asana.com/resources/how-project-objectives).

Among these goals are:

Bank Connectivity and Secure API Implementation:

- Successfully integrate GoCardless to fetch any transaction data securely within a specified
timeframe.

- Ensure consistent and dependable connectivity, allowing users to access their financial
information via the PennyWise app.

- Integrations with at least two banks.

Development of Security Infrastructure:

- Use strong encryption and authentication mechanisms to protect sensitive financial data.

- Establish a secure key storage mechanism throughout the project to prevent unauthorised
access and to preserve user privacy.

- Establish a secure and fail-safe way to allow users to trust within the applications security
protocols and limit sensitive data exposure.

Backend Development:

- Utilise Docker for containerisation and compatibility with the selected programming
languages.

- Implement Docker containers with TypeScript for the back-end, enhancing code
maintainability and developer productivity.

- Possible Java or Python Integration dependent on further research.

Front-end Development:

- Based on research and user experience needs, select and deploy the best front-end
framework.

- Create an intuitive and visually appealing user interface that matches with the project's
goals and improves overall usability.

AI Model Integration:

- For personalised financial advice, use pre-trained AI models, with an emphasis on continual
reinforcement training to improve accuracy.

- Implement a system for updating AI models on a regular basis in order to respond to
changing financial trends and user demands.

Other Objectives:

29

- Testing and debugging: Perform extensive testing to discover and resolve issues, delivering a
dependable and error-free user experience.

- Validate the efficacy of encryption technologies and authentication systems through security
testing.

- Deployment & Launch: Carry out a deployment of the PennyWise application, ensuring that
all components are seamlessly integrated.

- Launch the application to the public, completing the project's objectives and providing a AI-
based financial tool.

- Establish systems for continual monitoring and improvement of the application's
performance, user input, and security measures.

- Make plans to update and improve your website on a regular basis depending on user input
and developing financial trends.

1.1 Background

The PennyWise project was inspired by a thorough assessment of the current AI startup
ecosystem, which revealed a significant need in complete financial management solutions. The
observation of ChatGPT releasing custom command or templated AI agents spurred the concept
for a pioneering "Talk to Your Wallet" application, amidst the proliferation of AI applications
mostly working as ChatGPT wrappers.

PennyWise intends to give customers intelligent advice and personalised money management
techniques, similar to how diagnostics for cars can identify problems. The initiative takes on a
new relevance in this context of the rising cost of living issue, which is particularly evident in
places such as Dublin. The objective is to develop an app that not only educates but also
empowers people to manage their finances.

The chosen technology stack, which includes a combination of Java and TypeScript for the
backend and Angular for the frontend, provides a twofold benefit. On the one hand, it enables
skill development inside the stack which is used within my professional work and life. On the
other hand, it makes use of languages that are trusted by large-scale institutions, resulting in a
solid and scalable design. The use of Docker improves the project's efficiency and compatibility.

Though seemingly difficult, integrating AI models is an intriguing challenge. The initial phase
involves utilising APIs to customise the models to the demands of the project, opening the path
for further training and the absorption of critical vectored information. This method not only
corresponds with the project's aims, but it also provides a vital learning opportunity in the field
of AI development.

30

Cybersecurity is a critical component of the PennyWise initiative. The crucial relevance of
cybersecurity within this project underscores the commitment from me, the developer to
understanding and implementing comprehensive cybersecurity measures. Access to lecturers
and materials will be a valuable tool in learning cybersecurity procedures, assuring the
application's resilience in the face of potential threats.

PennyWise emerges as a project anchored on meeting a real-world need in the middle of an
ever-changing field of AI applications. The project's comprehensive approach is aided by the
technological stack chosen, the integration of AI models, and a significant emphasis on
cybersecurity.

2.0 State of the Art

PennyWise sees itself as the "one tool to rule them all" in financial management, providing a
game-changing solution that goes beyond the constraints of existing applications. The ability to
effortlessly interface with any bank within Ireland is at the heart of its distinctiveness, offering
consumers with unprecedented access and control over their financial data and to talk to a
financial advisor through the clicking of a few buttons.

What sets PennyWise apart is its distinctive focus on integrating artificial intelligence, through
advanced language models like ChatGPT, to offer personalised and dynamic on the fly financial
advice. While existing applications may provide static budgeting and tracking features,
PennyWise aims to enhance the user experience by allowing individuals to engage in meaningful
conversations with their own financial advisor.

Similar Applications:

Revolut – Offers financial insights, subscription tracking, budget or cost alerts and charting to
allow users to better visualise spending.

MeetCleo – allows users to upload a payslip, which can then create budgeting, bill planning,
overdraft alerts, spending tracking.

Wally.me – Allows user to utilise connectivity with a bank and follow a similar approach
compared to my application, users can ask questions about specific transactions, spending
habits and ask how best to budget and save.

My Application:

PennyWise distinguishes itself as a unique solution in the Irish market. Unlike other applications,
comparable tools have received less attention, and PennyWise intends to fill the hole by offering
a specialised solution for the Irish market. The lack of a comparable application in Ireland
highlights PennyWise's unique character, which not only integrates current capabilities but also
pioneers the integration of powerful AI models for unrivalled user engagement

31

Pennywise aims to be more than just a “wrapper” for more large scale models. PennyWise aims
to be “the” personal adviser application existing within the Irish market. A major benefit is
allowing people to build before you, and try to rectify any shortcomings and critiques that may
be found.

3.0 Technical Approach

1. Task Generation:

- Daily Planning: Set aside one day every week to plan out small, doable projects for the next
week. Divide features and functions into discrete tasks that can be performed in a week.

- Prioritise activities based on their dependencies, significance, and overall project goals.
Ascertain that key tasks correspond to project milestones.

- Detailed User Stories: Supplement your task descriptions with extensive user stories that
outline the user's point of view as well as the intended outcome of each activity.

2. Kanban Development:

- Use Atlassian or Trello to create a Kanban board where all tickets and work can go. Columns
for To Do, In Progress and Done will be visible to provide a clear overview.

- Set Work in Progress Limits to prevent overload and maintain a steady flow of work.

- Leave comments on stories about how difficult or easy the previous story was, this will allow
me make adjustments going forward to the my Kanban process and provide a route for
continuous improvement.

3. Milestone Planning:

- Strategic Milestones: Determine strategic milestones that are in line with the overall project
objectives. Milestones might include successful GoCardless integration, completion of AI model
integration, or the first user testing phase.

- Timeline Adjustments: Regularly review your project timeline and milestones. Changes may
be required as a result of progress, difficulties faced, or comments received.

4. Continuous Documentation:

- Documenting progress, decisions and any challenges faced – this documentation will serve
as a tool for fully comprehending the things I will do, and why – and will provide a knowledge
base for looking back on in the future.

5. Consistent and Thorough Testing:

- Including testing milestones, even if they are tiny. Document any feedback to confirm
assumptions and ensure the applications meets expectations.

- Make time for comprehensive testing and troubleshooting. Putting my application's
dependability and stability first.

32

- Include security audits in my milestone planning. Ensuring that security precautions are built
into the development process.

6. Time Management:

- Allocate specific time blocks for development, testing, and documentation. Effective time
management is crucial for balancing various aspects of the project.

- Use the resources provided by the college for effective time management and creating work
schedules.

4.0 Technical Details

Java:

- Backend Development: Java is renowned for its reliability, scalability, and security. It's well-
suited for building the backend infrastructure, handling data processing, and for integrations
with financial institutions.

Frontend Development(Angular, TypeScript):

- Angular, a powerful frontend framework for building dynamic, single-page web applications.

- TypeScript, a superset of JavaScript, brings static typing and modern language features. It's
ideal for developing a dynamic and responsive frontend, and is the underlying language used
with Angular, ensuring a smooth user experience.

Spring Boot (Java):

- Purpose: A r widely-used framework for building robust Java-based, microservices-driven
applications.

- Benefits: Offers functionality out of the box like security, dependency injection, and
integrations with other Spring projects, facilitating rapid development.

Docker:

- Purpose: For containerization, enabling consistent deployment across different
environments.

- Benefits: Enhances scalability, isolation, and simplifies deployment and testing processes.
Allows for simple testing in a secure environment.

GoCardless API:

- Purpose: Integrating with financial institutions to fetch transaction data securely.

- Benefits: An API that simplifies access to bank transaction data, supports secure and
seamless integrations.

Possible:

Hugging Face Transformers (AI Models):

- Purpose: Pre-trained language models for natural language processing and understanding.

33

- Benefit: Easy integration of powerful ai capabilities that run offline or locally. Can be easily
trained on user data.

Important Algorithms and Approaches:

1. Encryption Algorithms:

• Purpose: Protect sensitive financial data both in transit and at rest.

• Approach: Implement industry-standard encryption algorithms (example: AES-256) to
ensure the highest level of security.

2. Least Trust Principles:

• Purpose: Minimise trust assumptions within the system to enhance security.

• Approach: Granting only the minimum access necessary for each component or user.

3. CIA Triad (Confidentiality, Integrity, Availability):

• Purpose: Ensure the core principles of information security.

• Approach: Implement measures such as access controls, data validation, and redundancy to
safeguard confidentiality, integrity, and availability.

4. MVC (Model-View-Controller) (Possible):

• Purpose: Provide a structured architecture for the frontend application.

• Approach: Implement a separation of concerns, with the model representing the data, the
view managing the user interface, and the controller handling user input and system events.

5. Singleton Pattern (Where Applicable):

• Purpose: Ensure a single instance of a class, particularly useful for managing shared
resources.

• Approach: Implement a singleton pattern for components that could or may have a single
instance throughout the application, optimising resource usage.

6. Microservices Architecture (Possible):

• Purpose: Divide the application into small, independent deployable services.

• Approach: Considering a possible microservice architecture for the differing AI
functionalities, ensuring modularity and scalability. Each microservice can focus on specific AI
tasks, promoting maintainability.

5.0 Special Resources Required

1. Angular Documentation (angular.dev):

34

• Purpose: Angular is a key framework for the frontend development of PennyWise. The new
official Angular documentation provides comprehensive guides, tutorials, and references
necessary for building user interfaces.

2. TypeScript Resources (Total TypeScript Course by Matt Pocock):

• Purpose: TypeScript is the chosen language for frontend development. The "Total TypeScript
Course" by Matt Pocock is a valuable resource for in-depth learning, covering TypeScript
fundamentals, advanced features, and best practices. I have started this course and plan to
finish before beginning my project.

3. YouTube for Security Implementations:

• Purpose: Security is a critical aspect of PennyWise. YouTube tutorials and educational
channels focused on security implementations, encryption methods, and best practices will
provide practical insights and guidance.

4. School Lecturers:

• Purpose: Use the expertise of school lecturers for guidance, mentorship, and academic
insights

5. Baeldung for Java (if used):

• Purpose: Baeldung is a well-known resource for Java developers, offering tutorials, articles,
and best practices. If Java is used in the backend development of PennyWise, Baeldung will serve
as a reference for Java-related implementations.

6.0 Project Plan

Project Timeline:

Start Date: 19 Dec 2023 Target Completion: End of July 2024

Milestones:

1. Bank Connectivity and Secure API Implementation (Estimated Completion: Jan 2024)

• Tasks:

• Research and select financial institutions for initial integration.

• Set up and test connections with GoCardless API.

• Implement secure transaction handling.

2. Security Infrastructure Development (Estimated Completion: Feb 2024)

• Tasks:

35

• Implement robust encryption algorithms for data at rest and in transit.

• Develop secure authentication mechanisms.

• Establish key storage procedures.

3. AI Model Integration (Estimated Completion: March 2024)

• Tasks:

• Research and choose pre-trained AI models for financial insights (e.g., Hugging Face
Transformers).

• Large Scale Model Wrappers

• Research prompt training, input training and limiting malicious input.

• Integrate chosen AI models into the application architecture.

• Conduct initial testing of AI-driven features.

4. Front-end Development (Estimated Completion: April-May 2024)

• Tasks:

• Investigate Angular and TypeScript for the front-end.

• Choose the most suitable framework based on research and requirements.

• Develop the user interface with a focus on user experience.

• Make Frontend Secure and implement measures in line with modern software applications
according to NIST.

5. Back-end Development (Estimated Completion: April-May 2024)

• Tasks:

• Docker for containerization during development.

• Implement backend functionality using Java and TypeScript.

• Ensure seamless integration with the front-end and AI components.

6. Testing and Debugging (Estimated Completion: Jun 2024)

• Tasks:

• Conduct rigorous testing to identify and rectify issues.

• Perform security testing to validate encryption and authentication effectiveness.

• Iteratively debug and refine the application.

36

7. Application Refinement (Estimated Completion: Jul 2024)

• Tasks:

• Gather user feedback on the application's usability.

• Make iterative improvements to the user interface.

• Ensure the application meets user experience standards.

8. Deployment and Launch (Estimated Completion: End of July 2024)

• Tasks:

• Prepare the application for deployment.

• Gather Documentation

• Conduct final testing in a production environment.

• Officially launch PennyWise for public use.

9. Continuous Monitoring and Improvement (Jun-Ongoing)

• Tasks:

• Establish mechanisms for monitoring application performance.

• Implement user feedback loops for continuous improvement.

• Plan for future updates and enhancements.

Resource Allocation:

• Tools and Platforms:

• Angular, TypeScript

• Java

• Docker

• GoCardless API

• AI Models

Risk Management:

• Identified Risks:

• Integration challenges with financial institutions.

37

• Potential security vulnerabilities.

• User interface design not aligning with user expectations.

• Mitigation Strategies:

• Regular security audits and updates.

• Continuous testing and feedback loops for application refinement.

Monitoring and Evaluation:

• Testing Sessions:

• Bi-weekly user testing sessions for feedback and improvement.

• Midpoint Documentation:

• Detailed documentation and analysis at the project midpoint for refinement.

7.0 Testing

1. Bank Connectivity Testing:

• Scenario: Simulate transactions and account activities using dummy bank accounts.

• Evaluation Criteria: Ensure seamless integration with the chosen financial institutions,
transaction fetching, and data handling.

• Testing Approach: Conduct end-to-end system tests, focusing on reliability and the
consistency of the bank connectivity.

2. AI Models Testing with Sample Spending Spreadsheets:

• Scenario: Input financial simulated data into the application and evaluate AI-driven insights
and recommendations.

• Evaluation Criteria: Assess the accuracy and relevance of financial advice generated by AI
models based on simulated spending patterns.

• Testing Approach: Systematically test different spending scenarios, measure AI responses,
and refine models based on the results.

3. AI Models Testing for Financial Advisory Topics:

• Scenario: Generate queries related to financial advisory topics and evaluate AI responses.

• Evaluation Criteria: Measure the relevance, and helpfulness of AI-generated financial advice.
Try to limit hallucinations.

• Testing Approach: Create a diverse set of financial queries, analyse the AI models responses,
and refine the model for improved advisory capabilities.

38

4. UI Testing using Playwright or Cypress:

• Scenario: Simulate user interactions with the application interface.

• Evaluation Criteria: Ensure a smooth and intuitive user experience, identify and fix any UI
issues.

• Testing Approach: Implement automated UI tests using tools like Playwright or Cypress to
test the responsiveness and functionality of the UI.

5. CI/CD Pipeline Before Deployment:

• Scenario: Automate build, testing, and deployment processes using a CI/CD pipeline.

• Evaluation Criteria: Assess the efficiency of the CI/CD pipeline in catching errors early and
facilitating deployments.

• Testing Approach: Implement continuous integration and delivery processes and conduct
automated tests at each stage of the pipeline.

6. Routes Testing, UI Testing, Security Testing, Zap Scanning:

• Scenario: Test application routes, UI components, and security measures.

• Evaluation Criteria: Ensure the correctness of routes, the resilience of UI components, and
the effectiveness of security implementations.

• Testing Approach: Conduct route testing, UI testing, and use tools like Zap Scanning for
security assessments. Address any vulnerabilities identified.

5.2. Reflective Journals
6.0 Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing, Final Project, Fourth Year

Supervisor Enda Stafford

7.0
8.0 Month:

What?

Reflect on what has happened in your project this month?

This month, was an important month for the Project. I had to think of an idea, create a written and video
based pitch. The video pitch was made by me, because I felt I needed something to put the idea in my mind
onto “paper” and document it. The idea for my project is a talk to your wallet application, where you
essentially have your own personal financial advisor and something you can use to talk to your wallet and
money and see where you can make savings. I thought of this idea since myself and my sisters in my family
seem to have a real issue with “pacing” your money out over a month and seemingly buying into things

39

without much thought. I personally think this is an issue with how all money in today’s age is essentially
digitised and we do not get to feel the money in our hands, with new applications and fintech like Revolut
and PayPal for example.

For a project idea to be worthy, in my head, it has to solve a problem and have a possible start-up style to it,
because I think its important to understand development fully, from idea to execution and delivery.

I completed my project pitch and uploaded it, and seemingly Enda Stafford, my Computing Project Lecturer,
seemingly liked it – which pushed me to pursue it even more. I think it always helps when someone sees your
version and adds some positive feedback. I also thought of a cool name, PennyWise.

I research a number of applicable resources that I can use for my project, but at this stage I am not really sure
what’s needed, since I haven’t done a full-stack application build before. It’s hard to discern what’s over-
development or what is actually needed. I have found a website, GoCardless, which allows you to essentially
import your account from a bank, create an api and query it. So for each customer that uses my application,
I will try and implement this.

However I will need to complete a Proof of Concept on this first to see if I can even do it. As it needs to be
agnostic and work for each user that interacts.

Another Proof of Concept I need is testing a number of AI’s through APIs and see how I can use models. I was
thinking of training my own on Budgeting/Financing Books but seems like more work than it is worth. I will
research this further though.

In terms of languages and frameworks I will use, it will probably be a full-stack application, using Node,
TypeScript, Next and React. With some database connectivity and strong security. I will reach out to my
security fundamentals teacher for help with this task.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Challenges that remain are implementing the Proof of Concepts (POCs) mentioned before, and trying to
navigate what is over-development and essential for development. The overall challenges that remain are
actually finding and splitting my time to build the application. I am currently pursuing an Azure Fundamentals
and AWS Developer Associate Certificates. These can aid my project if I needed to implement some AI Model
training or use hosting provide my these services. My worry as always, is time management, since I am
completing certifications, completing other modules applications and CA’s and trying not to fall behind in
work, my current work-life is quite stressful.

So challenge one is time management, and I would say a close secondary is understanding and implementing
what’s needed for the task. A big worry is getting halfway or close to an end and realising it cannot be done
how I initially envisioned.

40

My successes were coming up with the idea, completing the written and video-based pitch, which essentially
created a visualisation of what is needed to complete my project and it has given me a vision. On the idea
front, I am extremely happy about the idea, how unique it is, how people react when I tell them, and how it
seemingly hasn’t been solved currently.

Now What?

What can you do to address outstanding challenges?

Proper Time Management Schedule

Talk with more experienced Developers on the Implementation Front

Complete Proof of Concepts and try to understand them deeply.

Research and complete write ups on the benefits of certain tools over another

Make sure I understand each aspect of the project

Make the project into Deliverables and follow an MVP (Miniumum-Viable-Product) Approach to Development

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year – Part Time

41

Supervisor Shivani Jaswal

Month: November

What?

This month, my focus was primarily on meeting college deadlines, which significantly limited my ability to
make progress on my project. Despite this, I achieved two notable certifications: Azure Fundamentals and
Java IT Specialist through Pearson Vue. While these accomplishments are significant, they consumed much
of my time, leaving me feeling somewhat unproductive and frustrated about not advancing my project as
planned.

In the moments I managed to dedicate to the project, I developed a basic conceptual framework for the
application's architecture. Initially, I considered a serverless approach, but a late-night reflection led me to
lean towards a monolithic structure. This idea was inspired by the banking sector, which often favors
monolithic systems for their proven reliability, despite not being the most cutting-edge technology.

Ethical considerations also came into play, particularly regarding the application's reliance on user
integration. I've decided to use my personal banking information from Revolut and Permanent TSB as test
data, ensuring the project's initial testing phase is both practical and ethically sound.

During my initial meeting with Shivani, my supervisor, we discussed the project's technical aspects. We
decided that the primary programming languages would be TypeScript and Angular, covering both front-end
and back-end development. This decision opens up new avenues for exploration, particularly in areas like
Node.js, Express, Mono-Repos, and Bun, a runtime bundler I'm eager to experiment with.

So What?

The completion of the two certifications, while time-consuming, has undoubtedly added to my skill set,
potentially benefiting the project in the long run. The decision to adopt a monolithic architecture marks a
significant step in defining the project's direction. It reflects a thoughtful consideration of stability and
reliability over trendier technological choices.

The ethical decision to use my own banking data for initial testing underlines my commitment to responsible
development. It also simplifies the initial testing phase, allowing for a more controlled and personal
understanding of the application's functionality. I am hoping to try and extend the application to use any end-
users data, however this needs to be discussed more with Shivani at a later date.

However, the challenge of balancing academic responsibilities with project development remains. My limited
progress this month highlights the need for a more effective time management strategy, especially as I delve
into new technologies like Angular and Node.js. The one benefit from all this, was my Lecturer, Enda Stafford,
gave a great lecture last week on the importance of time management, understanding how to plan effectively
will be essential as the project progresses.

Now What?

42

Moving forward, my immediate goal is to deepen my understanding of Angular, which is crucial for the
project's development. I plan to create diagrams and detailed plans to better visualise the application's
structure and implementation strategy. This has a two-fold benefit, it will add to my comprehension of what
I am developing, it will also provide a clear roadmap for development and allow me to better break down my
work tasks.

The upcoming Christmas break presents an ideal opportunity to get started with the actual development and
research phase of the project. I intend to utilise any free time I have to overcome the setbacks experienced
this month and make some substantial progress.

 By immersing myself in new technologies and dedicating focused time to development, I aim to address the
current challenges and move the project forward significantly.

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year – Part Time

Supervisor Shivani Jaswal

Month: December

What?

This month, the focus was primarily on finishing studies and preparing for tests, having decided to take a
break from my Azure and Java Certifications, this month was more about research, researching the different
tools I could use, basic principles of what I am building and how best to go out about.

I also began researching about how I could implement proper security procedures within the application and
how best to go about adding users, the overall design and how I should make my project look. This ultimately
concluded with a better mental framework of what I was doing. I did a small Angular course, tour of heroes
and watched some videos of new features added in Angular 17.

So What?

Since I now know what I am doing, how it should look, it’s just about making that jump and to begin building
it, having decided December was more of a mental break, something I had not anticipated last month, but

43

the constant study and programming while working in a software based role, has made me to decide to take
a break, as I have struggled with meeting deadlines and have begun to feel the allure of procrastination.

Now What?

Moving forward, January will be the official start date, where I will begin building the project, I hope to no
longer feel the burnout and began actual development, as the process and tools I am using is all well-defined
and I can picture in my head what I need to do.

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year

Supervisor Shivani Jaswal

Month: January

What?

Reflect on what has happened in your project this month?

In January, the journey began with the actual development and setup of the Angular 17 project. The
foundational steps included setting up a GitHub repository and creating a Kanban Board within it. The
decision-making process led to the selection of Angular 17, a technology familiar to my team, to streamline
development. A key milestone was the completion of the project setup, which included efficient bundling,
code quality linting, and the implementation of pre-commit hooks and formatting tools.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

This month was more than just technical setups; it was a deliberate effort to lay the groundwork for a strong
and collaborative development environment. The decision to use Angular 17, despite its unfamiliarity, was
motivated by a need for being practical and attempting to develop a modular, scalable and strict architecture.
Every step, from bundling to linting, was designed to maintain high code standards and ensure a smooth
development process.

44

Challenges that remain include picking an AI Model, possibly picking an Algorithm or developing a complete
process for linking up with the service that provides banking details. Also, keeping on top of work and college
commitments with other subjects.

Now What?

What can you do to address outstanding challenges?

Looking ahead, the groundwork laid in January provides a solid foundation for the journey ahead. The
reflection entails more than just completing tasks; it also includes considering how these decisions set the
tone for the entire project. The emphasis now is on keeping up the progress, the work/life balance at the
moment within my life is difficult, as I am also undertaking a exam for AWS Developer Associate, which
requires a lot of attention, on top of trying to balance personal commitments and my own work and career.
Ultimately I know I can continue and complete this project, I just need to implement proper time management
and at least get a MVP up and running with the coming months

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year

Supervisor Shivani Jaswal

Month: February

45

What?

Reflect on what has happened in your project this month?

February marked a shift towards frontend development, as well as the realisation that React could have been
a more straightforward option. However, the benefits of learning Angular 17 remained since my team in work
use it and I do not want to fall behind with our tech stack. The month saw the completion of a visually
appealing Landing Page with animations designed in a bento-style layout. Since the application will only have
me as a User, and I wanted to complete a comprehensive web application, I decided I would add the front
end components for logging in and signing up. Just to make it somewhat complete.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Despite the perceived ease of React, the decision to stick with Angular 17 demonstrates a personal
commitment to growth and a willingness to take on new challenges in my opinion. The finished Landing Page,
with an emphasis placed on modern design and engaging features, reflects my desire for a visually appealing
and user-centered frontend. Creating authentication pages, even for personal use, is me demonstrating a
commitment to providing a comprehensive web application experience.

Overall I was happy with the progress I made this month, it was quite difficult to actually begin and get down
to it so this was a huge hurdle to overcome, thankfully there is plenty of time left and I plan to incorporate a
number of hours a week to development.

Challenges that remain are designing the forms with Angular’s new form functionality and features.

Now What?

What can you do to address outstanding challenges?

To address existing challenges:

Investing in Education:

I enrolled in a course covering the new features of Angular 17. This move is an attempt to broaden my
comprehension and possibly offer solutions for resolving issues with form functionalities.

Reading Documentation:

Reading the angular.dev new docs for any pointers or help. My understanding of Angular 17's features will
improve as a result, facilitating problem-solving and development.

Effective Time Management:

46

I find that blocking off time on my calendar for extended periods of deep work helps me face obstacles with
concentration and productivity.

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year

Supervisor Shivani Jaswal

Month: March

What?

Reflect on what has happened in your project this month?

March started on a more solemn note, unfortunately I ran into some issues with Angular v17, and with the
lacking documentation online, and this not being my knowledge base. I made the decision to jump into Next
and React for building out my project. React and Next being extremely well-maintained, used throughout the
industry and well documented, it was a massive mistake to begin with a language I was not well informed on.
This has made me doubt the deadline, I am feeling a level of dread having wasted so much time.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

“Despite the perceived ease of React, the decision to stick with Angular 17 demonstrates a personal
commitment to growth and a willingness to take on new challenges in my opinion”. My quote from last month
it this second, however I think actually delivering on what I have said I would, and my knowledge base on
React, I should have went with this in the first place. In terms of progress, I have begun again, and have
completed the landing, contact and about page over a weekend. I was determined to build as much as
possible, I first begun my taking the NextJS course on vercel, which gave me the foundation to begin building,
I studied different UI libraries, how people build things with TailWind, and begin building immediately. This
was a huge success. Challenges remain and I am worried about progressing into the dashboard/bank
integration part, as this will be the biggest hurdle, however I have a picture of the UI component in my head
of how it should look like. Adding Authorisation may also prove difficult.

Now What?

47

What can you do to address outstanding challenges?

To address these challenges, I will start building parts of UI components every day, leveraging NextJS features
for ease, and my already existing knowledge of TypeScript which I use every day in work – this is something I
am comfortable with and hopefully will be in my favour over the coming weeks. I have also began researching
Auth Providers with more simple setup – in an attempt to outsource the burden of comprehensive auth to
people who know what they are doing. This will cut down on actual development time and I am hoping it can
shave down the already missed time, and I suppose if I have time at the end I can simply complete it from
scratch.

Student Signature Lee Campbell

Supervision & Reflection Template

Student Name Lee Campbell

Student Number X20115075

Course Computing – 4th Year

Supervisor Shivani Jaswal

Month: April

What?

Reflect on what has happened in your project this month?

Over the last month, I have even more progress which I am happy with. I made a diagram which explains the
authorisation flow for getting the bank account data and have tested it locally using tools like Postman and
the CLI with curl commands. I have updated my projects processes and have setup a new GitHub. I am using
Linear, workflow management tool for documenting my progress and creating tickets. I also learned about
Server Actions and API Routes in NextJS, and decided to implement simple API Routes for fetching and making
the initial GoCardless(Banking) requests. I rejigged the projects structure to make it more in line with what I
had seen in other NextJS Project GitHub, and have chosen an Auth Provider in Kinde, testing both the
login/signup functionality, bonus is it allows logging in/logging out with Google which is a nice touch, for both
me and the potential “users”. I have also built a dashboard, with a number of subheadings , one of these
headings is chat with pennywise, comprising of a API Route that creates a simple chat with AI functionality,
and streams into back into the UI. I also managed to create API routes for passing the secrets to the Banking
API, and getting back a list of banking institutions and logos, which I can show in a UI component.

So What?

48

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

My project is coming along really nicely, I can already see that this is achievable, having built the majority of
the UI and understanding more about how NextJS works under the hood, this allowed me to actually deliver,
I felt as if this last month was make or break, and I managed to make.

Challenges that remain include, the banking flow, although I made the diagram, and can show the banking
institutions, there is a number of requests that need to be made behind the scene, currently trying to figure
out how best to do this, possible loading screen or something similar, that has proved difficult. Also, since I
built so quickly, I have not setup the cypress for testing UI components. This will be added but have not had
the time to make something appropriate for the midpoint presentation. One more thing is creating User
Sessions, from researching, it’s better to save accessTokens and secrets into a user session that is saved in a
database, so this is something that needs more research.

Now What?

What can you do to address outstanding challenges?

Research more in depth on user sessions, complete the banking flow and think about loading later or what to
display to the user later, create more refined tickets and again, time management is always key.

Student Signature Lee Campbell

Please fill in the following sections, if you think your idea is innovative:

1. Title of Invention

PennyWise, Financial Insights

2. Inventors

Nam
e

School/Resear
ch Institute

Affiliation
with
Institute
(i.e.
departmen
t, student,
staff,
visitor)

Address, contact phone no., e-
mail

%
Contributi
on to the
Invention

49

Lee NCI Student X20115075@student.ncir
l.ie

100%

3. Contribution to the Invention

Each contributor/potential inventor should write a paragraph relating to his/her
contribution and include a signature and date at the end of the paragraph.

My contribution is I have built this application from the ground up, I originally had the
idea around one year ago, and decided to create this application for my final year
computing project, I have always been interested in building my own things, and this
was my first idea for something to build by myself that I thought could be completed.

Lee Campbell

4. Description of Invention

 (Please highlight the novelty/patentable aspect. Attach extra sheets if necessary including
diagrams where appropriate). What is novel, the ‘inventive step’? For more information
on patents, please look at http://www.patentsoffice.ie/en/patents.aspx

Integration of AI Models – for insights rather than advice. Improvements upon this POC
could lead to automated budgeting, budgets alerts, re-structuring, and being able to
converse with “wallet”, something that knows your spending habits and available funds.

Seamless Banking Connectivity. Join any bank available in Ireland. One centralized place
for all your accounts, and the different information within.

I/we acknowledge that I/we have read, understood and agree with this form and the
Institute’s Intellectual Property and Procedures and that all the information provided in
this disclosure is complete and correct.

I/we shall take all reasonable precautions to protect the integrity and confidentiality
of the IP in question.

Inventor: Lee Campbell Date: 5th August, 2024.

http://www.patentsoffice.ie/en/patents.aspx

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	The technology stack:
	Frontend
	User Authentication
	Database
	API and Data Management
	Additional Libraries and Tools

	Development and CI/CD

	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1 Use Case Diagram
	2.1.1.1 Requirement 1: User Registration (Passwordless Sign-up with OTP)
	Description & Priority
	Use Case Scope:
	Description:
	Use Case Diagram:
	Flow Description:
	Precondition:
	Activation:

	Main flow:
	Alternate flow:
	Termination

	2.1.2 Use Case Diagram
	2.1.2.1 Requirement 2: User Login (Passwordless Sign-in with OTP)
	Description & Priority
	Use Case Scope:
	Description:
	Use Case Diagram:
	Flow Description:
	Precondition:
	Activation:
	Alternate flow:

	2.2. Design & Architecture
	2.3. Graphical User Interface (GUI)
	2.4. Testing
	2.5. Evaluation

	3.0. Conclusions
	3.0 Further Development or Research
	4.0 References
	5.0 Appendices
	5.1. Project Proposal
	5.2. Reflective Journals

