

National College of Ireland
Documentation
CodePulse
Computing Project BSHCSD4
Cybersecurity
Djena Siabdellah
20344256
2023-2024

1

Table of Contents

Executive Summary .. 2

Introduction.. 3

Background ... 3

Aims .. 3

Technology .. 4

Structure ... 5

System .. 6

Requirements .. 6

Functional Requirements ... 7

Use Case Diagram .. 7

Requirement 1 : User Registration and Email Verification .. 9

Description & Priority .. 9

Use Case .. 9

Requirement 2 : Secure User Login .. 11

Description & Priority ... 11

Use Case ... 12

Requirement 3 : Vulnerability scanning for URLs and Code ... 13

Description & Priority ... 13

Use Case ... 14

Data Requirements ... 16

User Requirements ... 16

Environmental Requirements ... 16

Usability Requirements ... 17

Design & Architecture ... 17

Implementation .. 21

Graphical User Interface (GUI) .. 43

Testing .. 51

Evaluation .. 61

Conclusions ... 63

Further Development or Research .. 63

References .. 64

Code References ... 66

Appendices ... 69

Project Proposal ... 69

2

Objectives ... 69

Background .. 70

State of the Art ... 70

Technical Approach .. 71

Technical Details .. 71

Special Resources Required .. 72

Project Plan .. 72

Testing ... 73

Reflective Journals .. 74

Executive Summary

The CodePulse project was created to be an advanced, interactive web application security
solution that helps developers identify and fix common vulnerabilities like Cross-Site
Scripting (XSS) and SQL Injection. Created with the Django framework and SQLite3,
CodePulse integrates improved scanning features into a simple user interface, aimed mainly
for education and development areas. The speed in which regular security breaches in
online applications—which frequently arise from vulnerabilities that are missed—prompted
the creation of this project. CodePulse attempts to increase understanding and allow
developers for more secure protection of their applications by offering a useful tool that
simulates actual online attacks in a safe environment.

The application gives users the ability to test parts of code or URLs in order to identify
potential risks. It provides instant feedback and complete report message on vulnerabilities
that are discovered. This proactive approach to vulnerability management highlights the
value of security in software development lifecycles and helps developers improve their
coding standards. In addition, the project was designed to be flexible and scalable, and
future developments are anticipated to provide wider security investigations and a wider
range of testing features to keep up with the rapid growth of web technology and new
security risks.

As a college project, CodePulse also acts as a link between theoretical cybersecurity
concepts and real-world implementation, giving experts and students equally a useful tool
for investigating and successfully reducing online risks. With continued improvements and
developments, CodePulse is expected to evolve into a more complete security solution with
automated analytics for enhanced detection abilities and predicting threat assessment,
potentially changing the way that sector explores security training and application testing.

3

Introduction
Background

I conducted my own research on issues in the current cyber security environment in order
to come up with ideas for my project that would match the subject matter. When I asked
one of my mentors from my former internship at Dell Technologies for guidance on project
ideas, he came up with some great ones that caught my attention. I came up with a few
intriguing concepts and brainstormed what would be the best idea. The Open Web
Application Security Project (OWASP), which outlines important security threats to web
applications, provided information that significantly influenced my investigation into the
nature of cybersecurity vulnerabilities today. The significance of creating accurate tools that
can identify and reduce such risks has been highlighted by this research.

I made a choice to base this project on Django as it is well known for its built-in security
features, which significantly reduce the probability of common security issues. With its
"batteries-included" approach, users can rapidly and efficiently create safe websites using
pre-made components. Django is a great option for constructing security-focused apps
because of its reliable documentation, ORM system, and dynamic community. Furthermore,
scanning methods and security measures can be implemented effectively by using Django's
framework structure, Python's understandable language, and SQLite3 database

The two vulnerabilities that I choose to concentrate on are SQL Injection and Cross-Site
Scripting (XSS), which are serious vulnerabilities that are mentioned in OWASP's Top 10
Vulnerabilities list. These vulnerabilities should be the primary focus of any security tool
since they are widespread and have a significant potential impact on web application
security. XSS vulnerabilities commonly lead to unwanted access to user data by taking
advantage of the way browsers parse HTML and JavaScript. On the other hand, SQL
Injection attacks use faulty SQL queries to modify backend databases. The project directly
deals with some of the most significant and frequent security risks that web developers now
encounter by choosing these targeted areas.

The main objective of this project was to improve my knowledge of online safety in addition
to learning a new web framework and Python programming. My goal was to create a
resource that would help developers improve the security of their apps by creating a tool
that scans and indicates vulnerabilities based on the OWASP principles. This project is a
useful resource for the developer community as well as a learning experience for me in the
area of cybersecurity. I wanted to use my project to help create safer online spaces by giving
developers the knowledge and resources that they need to use against these common
security threats.

Aims

The main goal of the CodePulse project is to give developers a safe and convenient
environment users can manage their authentication and do thorough security scans in a
safe and accessible environment because of the use of the Django web framework, which is
known for strong security architecture. The aim of this project is to particularly address two

4

of the most significant threats facing web developers today - SQL Injection and Cross-Site
Scripting (XSS). Due to the possibility of revealing private user information and
compromising the integrity of application systems, these vulnerabilities create serious risks
to online applications. In order to take on these issues directly, I want to assure that
CodePulse gives developers the ability to run thorough security analyses of individual lines
of code or whole webpages using URLs through the website application itself.

My objective is to make sure that users have access to a range of security features in
CodePulse after registering and completing the authentication process. With the use of
these implements, given code or URLs will be scanned to find vulnerabilities that may
remain unnoticed until they are exposed. The outcomes of these scans are carefully
collected into thorough message reports that describe in detail the kind, severity, and
possible impact of every vulnerability on the application. These reports also provide
developers actual solving instructions, helping them in understanding and putting security
best practices into effect. Additionally, my aim is to make sure that CodePulse makes sure to
give the user a proper message report of what vulnerabilities whether it’s in their code or
URL scan.

CodePulse aims to improving web applications' security measures by completely integrating
security testing into the development process. The platform's goal is to make sure that
security is an essential component of the development lifecycle rather than a secondary
concern. This protective approach lowers the risk of security breaches, increases the
resilience of applications, and develops a security-aware culture among developers. The
project's goal with CodePulse is to enable developers to produce software that is safe,
dependable, and capable of handling the changing demands of the cybersecurity.

Technology

My approach of developing the CodePulse project makes use of the powerful features of the
Django web framework along with Python as the chosen programming language with some
other languages, HTML/CSS, Javascript, jQuery. The choice of using Django was made due to
its high degree of transparency for database operations and its integrated support for
necessary web application features like session management, user authentication, and
templating. Because of these qualities, Django is the best option for creating safe, scalable
web apps efficiently. In addition, Python is a strong and approachable language for creating
advanced web applications given its clear syntax and common adoption in the programming
development. Additionally, I have chosen SQLite3 for the database backend, because its
simplicity and it integrates well with Django, allowing minimal configuration difficulties and
a simpler setup for my application. I chose it because it is smaller and doesn't require a
separate server to run, it's a great option for prototypes and development phases as it
makes development and testing easier.

Javascript and jQuery – I used javascript with the help of jQuery to make my web application
more interactive by making responsive user interfaces, also dealing with the security
scanner and the users interactions. jQuery basically simplifies the event handling, Ajax
interactions, and making it easier to get stuff like the asynchronous data loading, and form

5

validation. In my project I have used jQuery to manage AJAX operations, so it displays the
scanner result without the page reloading.

HTML and CSS – I used these for my applications structuring and styling the frontend. I used
HTML because it provides the basic framework to host all the pages. While CSS I used to
enhance the appearance of these elements. I used the bootstrap frontend framework to use
a responsive design for my application. By combining HTML, CSS, and Bootstrap, I made
application adaptable for all devices and improve user engagement by making web pages
more easier to make responsive

I chose Visual Studio Code (VS Code) as the development environment because of its broad
support for Python and Django, which is achieved through plugins and built-in features that
improve productivity and simplify the coding process. The web application development
process is made considerably easier by this Integrated Development Environment (IDE),
which is well known for its advanced debugging tools and user-friendly interface, as I
thought this would be a good environment for my project.

CodePulse's primary technology objective is to improve web application security by
incorporating vulnerability detection tools right into the development process. The goal of
this project is to give developers fast feedback on any security flaws in their code, such as
SQL Injection and Cross-Site Scripting (XSS). I intend to apply strict input validation using
Django's ORM in order to reduce the possibility of SQL Injection attacks. Additionally, strong
techniques for automatically escaping output are provided by Django's template system,
avoiding XSS issues.

I will put in place extensive authentication processes to make sure that only authorized
users can access key functionality in order to improve the security of the application. This
strategy makes use of Django's features to efficiently handle user sessions and permissions,
while also following to recommended practices for online security. The use of Python and
Django in CodePulse is essential to building a safe framework that not only satisfies the
functional needs of developing web applications but also addresses important security
issues. Developing, testing, and deploying secure online applications can be made easier by
the simple process made possible by the integration of these technologies within the Visual
Studio Code environment.

Structure

CodePulse's documentation structure is deliberately created to cover all aspects of the
project, from concept to implementation and onward. A broad overview of the project is
given in the Introduction section, which provides opening for a more in-depth look at its
early days in its background section, which addresses the state of cybersecurity today and
the thinking beyond chosen solutions. In the Aims and Objectives section, the specific goals
and expected outcomes of the project are detailed, clarifying the choice of security
vulnerabilities that the project targets. The use of technology area goes into detail about the
frameworks and technologies used for the project, such as Django and SQLite3, and covers
their use according to the demands of the project.

6

The System Architecture section of the document includes an extensive diagram and
detailed explanations of how each component of the system interacts, demonstrating the
flow from the user interface down to the database operations. This brings us to the
Implementation section, which includes full explanations of the implementation procedures,
code samples, and the features of various modules. In the Graphical users interface section,
there are CodePulse’s detailed pages and what each page is expected to do alone with some
screen shots of the running website. Testing describes the procedures used to ensure the
tool's reliability and efficiency. The Evaluation section next evaluates the tool in relation to
user input and planned performance metrics. Structured data is used in this part to
demonstrate the tool's performance and flexibility. Conclusions and Future Work, which
summarise the project's effects and suggest possible upgrades to improve its features.

System
Requirements
Security Features
To protect user data and interactions, the program incorporates advanced security
mechanisms. This involves preventing cross-site request forgery (CSRF) in all of its forms,
which is a crucial security precaution for any modern website or application. Additionally,
users may check for common online vulnerabilities by using the content scanning
functionality included in scanner.html. This adds an extra layer of protection by empowering
users to identify and minimize potential security risks in their own inputs.

Session Management
Strong session management is used by the application to maintain user states between
pages and browsing sessions. By having this feature, users may browse the program without
having to constantly log in. In public or shared computing settings, security features like
timeouts and automated logouts after inactivity are essential for safeguarding user data.
These features are also included in session management.

Responsive Navigation Menu
The application's responsive navigation menu is essential to the user experience across a
range of devices. To make this menu work on PCs, tablets, and mobile phones, extensive
HTML, CSS, and JavaScript were used in its implementation. Because the menu is evolving, it
can adapt its functionality and style to the viewing device, making it the most user-friendly
option and guaranteeing that navigation components are always easily accessible.

CSS and JavaScript Integration
The application makes extensive use of both custom style definitions and external CSS
libraries to provide a visually pleasing and consistent appearance throughout all pages. To
improve interactive features like form validations, dynamic content modifications without
page reloading, and responsive navigation menu, JavaScript is carefully incorporated. The
creation of a smooth, user-friendly interface that is both visually appealing and practical
depends heavily on these connections.

7

Functional Requirements
User Registration and Verification
The system has a comprehensive user registration mechanism that enables users to register
by completing a detailed application (RegistrationForm). Important data like email address,
password, and username are gathered by this form. The creation of a special verification
code is one of the security and user verification processes that are included into the
registration process. As part of the multi-step verification procedure to make sure the user
owns the email account, this code is delivered to the email address provided. The user's
account is activated, moving from an inactive to an active state, upon entering the right
verification code on the given verification page. This improves security by confirming the
user's identity before granting full user access.

User Authentication
Using the LoginForm, the application provides a safe login method that verifies users'
identities using their username and password. The purpose of this form is to thoroughly
check user credentials against the database records that have been saved. The system
creates a session for the user after successful authentication, allowing access to secure
sections of the application along with customized user interfaces.
Based on the server-side logic and user context, the system dynamically helps creates pages
like home.html, about.html, and others using Django's reliable templating engine. With the
help of this feature, users may have a highly interactive experience where web page content
adapts to their choices and actions. The involvement of users and the applicative utility are
improved, for instance, when unique greetings, links, and navigation choices are provided
based on the user's authentication state.

Vulnerability Scanning
This feature targets SQL injection and Cross-Site Scripting (XSS) threats by allowing users to
input URLs and code snippets into a form where they are examined for security flaws. To
find potentially dangerous patterns in the incoming data, the system should parse it
securely. It is recommended that the system performs checks on URLs to make sure they do
not include vulnerable scripts or redirect users to malicious websites. If the system finds
patterns in code that might point to SQL injection vulnerabilities or scripts that could be
exploited for cross-site scripting attacks (XSS), it should be able to evaluate the code. The
system has to clearly display the findings of the review, indicating any vulnerabilities that
were discovered or verifying that there were none. For users who need to make sure their
own websites are safe from frequent online vulnerabilities, this functionality is essential.

Use Case Diagram

8

The interactions and functionality that are accessible to two different user types – New
Users and Registered Users—are displayed in the CodePulse System use case diagram. From
the first user interaction with the website's public pages via user registration and
verification to the exclusive features available only to registered users, the figure aims to
show the steps required.

Public access pages are used to introduce new users to the CodePulse system. They get
access to the Home Page and the About Page, which give a comprehensive rundown of all of
the features that CodePulse offers. In the event that they choose to interact further, they
have the option to Register an Account, which requires email verification. After completing
the Verify Email use case, users can move to Registered User.

The features provided to registered users are more broad. After entering in via the Login use
case, users are sent to certain pages like the Scanner Page, which acts as the entry point to
the main features of the system. From this point on, users have the option to submit codes

9

or URLs for scanning. The system processes each submission and produces a comprehensive
Scan Report that lists any security flaws discovered. Users may discover possible security
concerns with the help of this comprehensive review.

Additionally, Registered Users can access educational resources specific to web security
issues. The XSS Info Page, SQL Injection Info Page, and CSRF Info Page provide valuable
insights into various types of web vulnerabilities, helping users with knowledge to better
understand and mitigate these risks. Finally, users can securely Sign Out of the system.

Requirement 1 : User Registration and Email Verification

The system must allow new users to register by providing essential details and must verify
their email addresses to activate their accounts.
Description & Priority

To help to maintain system security and integrity, only verified users must be able to access
the program. This is made possible through the user registration and verification procedure.
Since it is the initial line of security against illegal access, this procedure is given top
attention.

Use Case
Scope
The scope of this use case includes the collection of data, creation of an account, and email
verification.

Description
This use case allows new users to register for an account and verify their email to activate
their account.

Use Case Diagram

10

This use case diagram visually represents the process of user registration and email
verification for new users of the system. It includes one actor and two primary use cases
connected by an “include” relationship indicating that email verification is an essential part
of the registration process.

Actors
New User – This actor represents any individual who wishes to create a new account on the
system. The New User initiates the registration process and follows through to email
verification.

Use Cases
Register Account – This use case involves the New User entering their personal information
such as username, password, and email address into the registration form provided by the
system. The primary objective of this use case is to collect and validate user data to create a
new, inactive user account pending email verification. The system captures the information,
performs validations to ensure data integrity (format of the email, password strength), and
creates a new user account in its database. The account remains inactive until the email
address is verified.

Verify Email – This use case is an extension of the "Register Account" use case. Once the
new account is created, the system automatically sends a verification email to the email
address provided by the New User. This email contains a verification code that the user
must enter to activate their account. The activation of this use case depends on the
successful completion of the "Register Account" use case. The relationship shown in the
diagram with an "include" arrow from "Register Account" to "Verify Email," this relationship
indicates that email verification is a compulsory action following the account registration.

11

The user must enter the verification code to confirm their email address. Upon successful
verification, the system activates the user account, granting access to the user-specific
features.

Flow Description
Precondition
The system is now ready to accept new user registrations to sign up.

Activation
This use case starts when a New User accesses the registration form.

Main flow

1- The system shows the registration form
2- The New User then fills in the registration form and submits it. (See A1)
3- The system validates the input and creates a new, inactive account for the user. (See

E1)
4- The system then sends a verification email with a unique code to the new users

email address.

Alternate flow
A1- User enters invalid data

1- The system displays an error message to the user.
2- The new user then corrects the data and resubmits the form.
3- The use case continues at position 3 of the main flow (The system validates the input

and creates a new account)

Exceptional flow
E1- Email fails to send

4- The system logs the error and displays a message to the user to try again later.
5- The new user retries registration.
6- The use case continues at position 4 of the main flow (The system then sends a

verification email with a unique code to the new users email address.)

Termination
The New User clicks the verification code, the system verifies the code, activates the
account, and the user is redirected to the main page which is the scanner page.

Post condition
The new user has now an active account and is able to login and access the scanner page.

Requirement 2 : Secure User Login

The system must authenticate users by verifying their credentials against stored data in the
database to check of their account is already existing.
Description & Priority

12

User authentication is essential for access control and security, ensuring that only registered
and verified users can access their accounts. This requirement is of high priority due to its
role in securing user data and system resources.

Use Case
Scope
The scope of this use case is to authenticate the registered users to grant them access to
their accounts.

Description
This use case describes the process by which users that log into the system using their
username and password.

Use Case Diagram

The use case diagram represents the "User Authentication" process within the CodePulse
System. It depicts the interactions between the system and the external actor, the
Registered User, specifically detailing the login functionality.

Actors
Registered User – This is a user who has already completed the registration and email
verification processes. The Registered User wants to gain access to their account and the
system's features by logging into the system.

Use cases
Login – This use case enables the Registered User to enter their credentials (username and
password) to access their account. The purpose is to authenticate the user’s identity against
the system's stored credentials and give or deny access based on the validation outcome.
After receiving the credentials, the system verifies them against its database. If the

13

credentials match, the system grants access to the user, allowing them to interact with
various secure features. If the credentials do not match, the system denies access and offer
the user options to retry logging in.

Flow Description
Precondition
The user is registered and has verified their email account.

Activation
This use case starts when a registered user accesses the login page to login.

Main flow

1- The system identifies the login form
2- The Registered user then enters their username and password and submits the form.

(See A1)
3- The system verifies the credentials the registered user adds against the system. (See

E1)
4- If the user is verified, then the system grants them access to the scanner page.

Alternate flow
A1- Incorrect credentials

1- The system displays an error message about incorrect credentials.
2- The Registered User has to re-enters their credentials.
3- The use case continues at position 3 of the main flow (The system verifies the

credentials the registered user adds against the system.)

Exceptional flow
E1- Account cannot be accessed

4- The system will reload the page for the user to try again.
5- The user needs to enter the valid credentials for their account.
6- The use case ends without a successful login.

Termination
The user successfully accesses the scanner page.

Post condition
The user is finally logged in and can interact with the system as per their access levels.

Requirement 3 : Vulnerability scanning for URLs and Code

The system must allow users to submit URLs and code snippets for scanning to identify
potential security vulnerabilities like XSS and SQL Injection.
Description & Priority

Vulnerability scanning is a core function of the application, critical for detecting and
reporting potential security threats in user-submitted URLs and code snippets. This is a high-

14

priority requirement given its direct impact on the application's value proposition in
enhancing cybersecurity.

Use Case
Scope
The scope of this use case is scanning the URLs and code snippets to detect security
Vulnerabilities.

Description
This use case describes the scanning of the users submitted data for vulnerabilities.

Use Case Diagram

This use case diagram shows the steps involved in the vulnerability scanning procedure that
a Registered User initiates within the CodePulse System. The diagram shows the direct

15

relationship between selecting a submission type and the next required steps and report
output.

Actors
Registered User – An authenticated user of the system, who has the ability to submit data
for vulnerability scanning whether it’s a URL or Code submission.

Use Cases
Choose Submission Type – The user selects whether to submit a URL or code for
vulnerability scanning. This is the starting point for further actions.
Submit URL for Scanning and Submit Code for Scanning – Depending on the user's choice,
they proceed to submit either a URL or code. These submissions are necessary steps that
follow the user's initial choice.
Receive Scan Message Report – This use case is automatically triggered after a submission is
made, generating a detailed report of the scan results. This step is essential for providing
the user with feedback on potential vulnerabilities identified during the scan.

Flow Description
Precondition
The users logged in and on to the scanning page to scan their URLs/code.

Activation
This use case starts when the user submits a URL or code snippet for scanning.

Main flow

1- The user enters the URL or code snippet into the system.
2- The system processes the input and performs the scan. (See A1)
3- The system identifies any vulnerabilities and complies a message to the user based

on what has been detected. (See E1)
4- The user views the message report detailing the vulnerabilities.

Alternate flow
A1- No vulnerabilities found

1- The system informs the user that no vulnerabilities were detected.
2- The user decides whether to submit more data for scanning.
3- use case ends with the user taking further action or signing out.

Exceptional flow
E1- Scanning error

4- The system encounters an error during the scanning process.
5- The system logs the error and informs the user to try again (if the URL in invalid).
6- The user then has to resubmit the data for scanning (valid URL/code.).

Termination
The user reviews the vulnerability message report.

Post condition

16

The user resubmits any data (URLs/code) for scanning.

Data Requirements
The CodePulse website's data requirements cover every aspect required for maintenance
and functioning of the website's primary features. User data management, including safely
storing registration data such usernames, emails, and secure passwords, is an essential for
the system. To ensure user validity, verification mechanisms like email verification codes
need to be maintained and essentially maintained.

The website also requires that vulnerability scan data is handled with accuracy This includes
scan results, and supplied URLs and code stored. Strong encryption and access restrictions
are necessary to ensure the data's integrity and confidentiality. The system must also deal
with a range of contents inside its educational pages in order to improve user engagement
and offer educational value. This calls for a dynamic content management system that
administrators can use to update information on vulnerabilities such as XSS, CSRF, SQL
Injection, and others vulnerabilities that are added as a new feature every few months for
an update.

User Requirements
The features and accessibility that various user types look for from the CodePulse website
are outlined in the User Requirements. The registration process should be simple for new
users, with step-by-step instructions and quick feedback on requirements like email
verification. After registering, users should have no trouble accessing the website, and
security features like 2FA should improve account security.

The scanning features should be simple to use for registered users, who can submit URLs
and code snippets straight through a simple interface. The outcomes of these scans must to
be provided in an understandable and helpful way, outlining any possible vulnerabilities and
providing guidance or connections to other resources. Additionally, comprehensive
instructional pages that offer insightful information on a variety of web security risks should
be accessible to registered users.

Environmental Requirements
The CodePulse website's environmental requirements focus on the operating environments
in which the web application has to function. High availability and capacity should be
prioritised with the goal to ensure that the website is capable of handling large user loads
without experiencing performance decrease. To be useful to a wide range of users, it should
function on many platforms and technology, assuring responsive design and compatibility
across all main browsers.

Strong security measures should be in place in the hosting environment to stop illegal
access and data breaches. To fix new vulnerabilities as they appear, regular security audits
and upgrades are necessary. Additionally, the system needs to be scalable in order to
change resources in response to user usage and data load, ensuring effective operation both
during periods of high demand and low demand.

17

Usability Requirements
Usability Requirements for the CodePulse website ensure that the site is user-friendly and
accessible to users with different levels of technical knowledge and easy to use is the goal of
its requirements. To help users in performing security scans and gaining access to
educational content, the website should have a clear and user-friendly interface. Accessible
menus, regular page layouts, and clear labelling should all be features of simple navigation.

Design & Architecture

Diagram Description

Front-End Layer
In the Front-End layer there contains multiple of pages, home, about, registration, Login,
scanner, verification, and three informational pages (XSS, SQL Injection, CSRF). This diagram
shows the user interaction with the application.

18

Home page – functions as the user's first point of contact and offers navigation options and
basic information.

Registration Page – functions by allowing new users to create an account by entering their
credentials and verifying their email, this is important to know that they have a valid email.

Login Form – This form allows existing users to access their accounts by entering valid
credential’s, which they are then are authenticated by the back-end.

About page – Gives users detailed information about how the website operates and other
relevant information, informs users about the security measures and technologies used.

Scanner page – important component where users are able to input URLs and codes to
detect vulnerabilities, receiving feedback on the detection.

Vulnerability information pages (XSS, SQL Injection, CSRF) – These provide educational
content about the vulnerabilities, guiding the users on how to mitigate these risks in their
pages.

All of these pages are connected to the back-end through HTTP POST/GET requests,
showing that the data submitted and received gets the necessary information web content
delivery and user interaction.

Back-End Layer
In the Back-End, the applications logic is being processed.

Controllers – These handle the incoming requests by implementing the websites response
logic. It determines what type of response is returned to the front-end based on the users
action.

Servers – These are responsible for the authentication process during user login and the
overall maintenance of the user sessions, ensuring secure and stable connectivity.

Data Handling – This manages all the interactions with the database, with data storage,
retrieval, and validation. This ensures data integrity and security.

Database Layer
In the Database (SQLite3), this is where all the applications information is stored.

Users – This stores the users account information, which supports the registration and login
processes.

Sessions – This manages user sessions, keeping the users logged In and maintain their state
across different pages of the application.

19

Scan Results – this captures and keeps the outcome of vulnerability scans. this is important
for the further if users want to review their past scans.

Connections
The application's operating flow depends on the connections made between these
components. The HTTP POST/GET arrows show how the front-end and back-end interact by
allowing data submission through forms (POST) and page retrieval (GET). Based on the logic
specified in the controllers, the back-end handles these requests, interacts with the
database, and delivers the appropriate responses.

Server and Client Interaction – The program uses a client-server architecture, and to provide
flexibility and convenience of testing new features, the Django development server is used
throughout the development and testing stages. Through an HTML, CSS, and JavaScript-built
web interface, clients communicate with the server. The flexible design of this interface
allows it to respond to HTTP requests and present the user with server-side data in a simple
and interactive approach.

Backend Logic and Data Handling – Python and the Django framework, which control
operations, user application, and session management, are the backend building blocks of
CodePulse. The backend of the program handles data processing, control logic
implementation, and database interaction to store and retrieve user data, including session
information, login credentials, and scan results.

User Authentication and security features – Django's inbuilt user authentication mechanism
handles authentication in CodePulse, ensuring that passwords are hashed and not kept in
plain text in the database. Django views, which process POST requests with user credentials,
provide the login functionality. This function demonstrates how the system authenticates
users by comparing their credentials to the database. The user is logged in and taken to the
scanner after successful authentication; if not, an error message appears.

For my frontend design I created a responsive and user-friendly design for my user interface
using Django templates alongside with HTML, CSS, and JavaScript. I have designed CSS style
ensures an appealing and easily navigable user experience on a range of screens and
devices. Additionally, I have handled asynchronous requests like real-time vulnerability
scanning results by using interactive components like JavaScript and AJAX, which minimize
the need to reload the website. This improves efficiency and user involvement.

Components
The data interaction in this project is based on Django models. To make the special
requirements of this application better, I have developed a ‘CustomUser’ model that builds
on ‘AbstractUser’. Another important model is ‘ScanResult’, which is intended to record
vulnerability scan outcomes, including URLs searched for detection time, and vulnerability
kind.

The application logic, request processing, and response generation are all handled by the
views component. For example, the ‘verify_email’ view handles user email verification using
a code given to the user's address, whereas the register view handles user registration.

20

These views work along with templates and models to provide an overall functionality.
Views such as ‘url_scanner’ and scanner, which handle URL content scanning and code
snippet scanning for vulnerabilities, respectively, are used to start security scans.
Django uses forms for both data validation and input. Before any data is processed or stored
in this application, forms like ‘RegistrationForm’ and ‘UrlForm’ make sure that the
information users enter follows the specified security standards and formats. This is
essential to keeping harmful data from interfering with the security or functionality of the
system.

As for my templates, I’ve created HTML files to create templates that allow dynamic data
display based on views' context. It creates a structured and user-friendly display of forms
and information is made available by templates such as ‘register.html’ and ‘scanner.html’.
Additionally, they include links to CSS files that specify how these pages are visually
presented and interact.

Main Algorithms
Cross Site Scripting (XSS Detection)
The application's powerful Cross-Site Scripting (XSS) detection mechanism searches input
and retrieved HTML text for possible XSS vulnerabilities. Using regular expression (regex)
patterns, this technique finds popular XSS vectors like:

Inline Scripts – An attacker can directly insert malicious JavaScript into web pages by using
the regex pattern .*? to identify any inline script elements.
JavaScript URI: Any situation in which a JavaScript URI may be maliciously used to run code
when a user interacts with a link or an embedded resource is caught by the pattern
javascript:[^\s]*.
Event Handlers – Regular expression (on\w+=['\"]?)(?!http|https)[^\s>]*) is used to find
inline event handlers (e.g., onclick, onerror) that may unexpectedly cause JavaScrpt code
execution.
Suspicious Attributes – Using (src|href)=['\"]?I (!http|https|\/)[^\s>]*['\"]?This algorithm
step looks for features that might be used to launch cross-site scripting (XSS) attacks,
especially when such attributes differ from standard, secure URLs.

Every pattern is assessed, and in the event that a possible vulnerability is found, the system
classifies the threat's severity and offers recommendations for fixing it. This guidance might
involve applying safe coding standards to reduce the risk of XSS, sanitize inputs to remove or
escape harmful characters, and putting Content Security Policies (CSP) into place to stop the
execution of inline scripts.

SQL Injection Detection
The system's similarly effective SQL Injection detection feature looks for malicious SQL code
in user inputs or transactions within the database. It makes use of certain regex patterns to
identify common SQL injection techniques:

SQL Injection using tautologies – Identifies patterns such as OR 1=1, which is frequently used
in SQL injections to change query logic so that it always returns true, possibly revealing
private information.

21

The insertion of Malicious SQL Code – In order to detect direct attempts to insert SQL code
that could alter or obtain data without authority, the pattern
(SELECT|INSERT|DELETE|UPDATE).* is used.

Authentication
Authentication and Session Management: To protect user data and ensure that access is
only provided to verified users, CodePulse uses advanced algorithms for user
authentication, including password hashing and session management.

CSS and Design
My Website application incorporates CSS to improve the user interface and give it an
appealing, modern appearance. It has a dark theme, which works especially well for apps
that are security-focused. Animated GIFs are used in interactive components and navigation
bars to provide a dynamic user experience that increases user engagement and improves
interface simplicity. Using responsive design principles, the application is made to work and
be available across a range of screens and devices. The navigation bar's integration of media
components, such as GIFs, is managed by CSS, which defines both the look and function of
these aspects. This improves the application's visual communication of its functions and
boosts its aesthetics, all of which contribute to a more engaging user experience.

Implementation

Views

User Registration and Verification

The register function manages user registration. It checks if the request method is POST,
then retrieves user details from the form data. It creates a new user using Django’s User
model but sets ‘is_active’ to ‘False’ to prevent user from logging in before email verification.
A verification code is generated and sent via the ‘send_verification_email’ function.
Starting with the function definition, ‘Request’, an object with all of the information of the
‘request’ is sent to the server, including form data and HTTP headers, this is the only
parameter accepted by the function register. Regarding the Method Check The code initially
determines whether ‘POST’ is the requested method. When a user submits data through an
HTML form, the ‘POST’ method is used. To make sure that the function only handles form
submissions and not ‘GET’ or other request types, this check is crucial.

22

Using request, the code extracts the email address, password, and username from the
‘request.POST.get('name_field')’. If the key is missing, this function returns ‘None’.
Otherwise, it returns the value from the form data that corresponds to the supplied key.
'password1' in this case refers to the main password field from a registration form.

This section verifies that all of the form's mandatory fields have been completed. The
system creates an error message and reloads the registration page to request the user to
complete all needed forms if any of the fields password, email address, or username are
missing. This is a simple validation step to make sure that there are no blanks in any of the
important fields. This verifies that the password entered matches the confirmation. If not,
the registration form is reloaded and an error message indicating that the passwords
submitted do not match is sent back to the user using the messaging system. This is
essential to prevent user mistakes when several passwords might be accidentally set,
affecting future login attempts.

This part of the code establishes an extra security measure by comparing the password to
rules that have been specifically set. Most likely, ‘CustomPasswordValidator’ is a class that
verifies that a password satisfies a set of requirements (e.g., length, includes specified
characters). The Custom Password Validator has the ability to verify passwords for a number
of security factors, including minimum length, digit and symbol inclusion, and more. A
‘ValidationError’ is raised in the event that the password does not match the requirements
specified. The ‘except’ block is where a ‘ValidationError’ is caught if it happens. The form is
then shown again to provide the user the opportunity to change the password when the
error message from the exception is sent to them through the messaging system.

The Django function called ‘User.objects.create_user()’ is used to create a new user object.
This approach is useful since it manages some of the backend tasks required for managing
users, such as hashing the password. ‘User.is_active = False’ indicates that the user's

23

account is originally set to inactive. This security measure makes sure that the user can't
access the account until their email address has been validated.

For my website’s Generating Verification Codes and Sending Emails I Used
‘random.randint(100000, 999999)’, a random integer between 100000 and 999999 is
created, and this is used to construct a verification code. The user will receive an email with
this code to validate their account. The custom method ‘send_verification_email(user,
verification_code)’, this is supposed to send the user an email with the verification code.
The function takes the user to a different page (one where they must enter the verification
code) if the email is successfully sent. The user record is erased and the registration form is
reloaded so the user may attempt registering again if the email cannot be delivered (the
method returns False).

The registration form is shown again if the request type is not POST (for example, the user
has simply switched to the registration page without submitting the form), or if the form
submission fails for any reason and does not meet all requirements. This enables the user to
try completing the form once again or to see it when they go to the registration page for the
first time.

Email Verification
This view compares a code provided to the user's email address with one that is saved in the
session to perform email verification. The user can log in and use the system after
successfully validating their email address, which activates their user account. When a user
enters the verification code they got in their email upon registration, the function is
activated. It compares the code that was submitted with the code that was kept in the
session. After successful verification, if the codes match, it labels the user as active, signs
them in, and redirects them to scanner page. It gives the user the proper indicator if there is
a mismatch between the inputs or if there is any problem.

Starting off the view begins to fetch the data from the request by extracting the code that
the user submits through the form. It gets the user ID and verification code that were saved
in the session at the user's first registration. This data is important in determining the right
user account and guaranteeing the security of the verification procedure.

24

Statements for logging are given so you can track the process and troubleshoot it if needed.
These logs contain the session's user ID and verification code, which are very helpful for
fixing email verification problems.

This verifies that the code input by the user matches the code that was supplied to them
and kept in the session is the main function of this view. In the event that a match is found,
the user's account is activated.

Using the ‘user_id’, the method then tries to get the user from the database. A ‘404’ error
will be raised if the user does not exist. Next, it determines if the ‘verification_code’ and the
‘user_input_code’ match. It then activates the user's account and logs them in if they
match.

The user's ‘is_active flag’ is set to True after a successful verification, and the database is
updated accordingly. The user's account status changes from inactive to active with this
modification, making it possible for them to log in and use the system. After a successful
verification, the database saves the user's ‘is_active’ flag as True. The user may now log in
and access the system as a result of this important change, which changes their account
status from inactive to active. By simplifying the registration to first login process, the view
improves user experience by automatically logging in the user following successful
verification.

The verification code and user ID are removed to tidy up the session when the verification is
finished. In order to prevent sensitive data from being in the session longer than is
necessary, this step is essential for security. Finally, a success message appears and the user
is sent to a the scanner page. The user is directed to try again or double-check their inputs
via the relevant error messages if the verification fails.

25

For the Missing information If any required information is missing, the system prompts the
user and redirects as necessary. If No such user exists, Handles cases where the user ID does
not correspond to any existing user. Captures and logs unexpected exceptions, providing
error feedback to the user.

Sending Verification
As a part of the account registration or email verification procedure, users can get an email
with a verification code by using the send_verification_email process. The email function
sends emails using the Simple Mail Transfer mechanism (SMTP), which is a widely used
system for delivering emails over the web. This function is essential to the security and user
verification process since it deals directly with the transmission of confidential information
that enables users to authenticate themselves. A user object and a verification code are the
two parameters required by this method. It initially verifies if the user's email address is
active. If not, an error is recorded and False is returned. It creates an email message,
establishes a connection with an SMTP server, sends the email, and records the success or
failure of this process if the user has a working email address.

The function first checks if the user object is connected with an email address before
attempting to send an email. The function records an error and returns False, meaning that
the email could not be sent, if there is no email address. By taking this action, more
execution stops, unnecessary processing is prevented, and potential errors are prevented.

In this case, the email message is created by the function. It creates a text message with the
given verification code using ‘MIMEText’, ensuring compatibility and proper presentation
across different email clients by setting the content type to 'plain' and character encoding to
'utf-8'. The sender, receiver, and topic of the email are changed accordingly.

26

The function logs the email data, including the sender and recipient addresses, for
debugging and transparency. Checking sure the email is being delivered appropriately and
to the intended recipient with the help of this information is helpful.

The function establishes an SMTP connection on port 587, which is the default for email
submission with encryption, using Gmail's SMTP server at ‘smtp.gmail.com’. In order to
ensure that the user credentials and email content are transferred safely, it initiates TLS
(Transport Layer Security) to encrypt the connection. It sends the email after signing in to
the server using the given email address and password. Then, in order to conserve resources
and uphold security, the SMTP server connection is terminated using ‘s.quit()’.

The function logs this event and returns ‘True’, signifying success, if the email is sent
successfully. An error is caught, reported, and ‘False’ is returned if it occurs throughout the
process, for example, when the email cannot be sent or the SMTP server cannot be reached.
This method provides the caller function with strong error handling and feedback, which
makes debugging and user notification easier when needed.

Logging in

27

The function first checks whether the request method is POST in the Request Method
Check. Form data, including private information like usernames and passwords, is submitted
through POST requests. This method corresponds with highest standards for secure data
transmission and ensures that this data is not exposed in URLs. When retrieving data, the
POST request's provided data is where the login and password are found. In order to
prevent a ‘KeyError’, the ‘POST.get()’ function properly retrieves data from the POST
dictionary and returns None if the key is missing. The method in the authentication process
uses ‘authenticate()’ from Django, which internally verifies the provided credentials against
the database. It returns a User object if the credentials match an already-existing user; if
not, it returns ‘None’.

The user is logged in using ‘login()’, which controls the session and cookie to save the user's
state, if authentication is successful. The function either re-displays the login form with an
error message indicating unsuccessful login, or redirects the user to another page
representing successful login based on the outcome of the authentication process.
Managing Not POST. The function essentially shows the login form if the request method
isn't POST, which suggests the user is accessing the login page without submitting the form.

Valid URL

A string representing a URL is supposed to be the only argument accepted by this url
function. By using a set of established patterns that are frequently connected to local
locations, the function evaluates whether this URL matches them.

This functions starts by defining a list of regular expression patterns that represent the URLs
associated with the local development environments. Initially, the function defines a
collection of regular expression patterns that stand in for the URLs that are usually
connected to local development environments.

Addresses that begin with ‘http://localhost’, which is frequently used to indicate a local
server that is only accessible from the host computer. URLs that start with
‘http://127.0.0.1’, which is the host machine's a loopback address and a common method of
accessing the server that is operating on the same machine. URLs that frequently appear on
local networks and begin with ‘http://192.168’. These IP addresses belong to a range that is
set aside for private networks, which are often used in settings for local development. The
function compares each pattern to the given URL using Python's ‘re.match’ function within a
generator expression. Since it looks for a match just at the beginning of the string, the

28

re.match function is ideal for this kind of task because it makes sure that the URL must begin
with one of the designated patterns in order to be accepted.

URL Scanner

The main purpose of the ‘url_scanner’ function is to verify a URL, get its content, and check
it for common security flaws like SQL Injection and XSS after receiving URL input through a
POST request. Applications with a high degree of security, especially those handling
sensitive data or operating in settings where security is of the highest priority, need this
feature.

The first thing the function does is see if the request coming in is a POST request. This is
important because GET queries should not be used to provide sensitive data, such as URLs
for scanning, as these requests may be logged or stored in server logs or proxies.
The POST data contains the URL that has to be scanned. For security concerns, if the URL
fails ‘is_valid_url's’ initial validation check that verifies it follows typical local development
patterns, a JSON response with an error status of 400 is returned right away. The user is
informed that the URL they entered is incorrect through this response. After validation is
successful, the function uses the fetch_url function to retrieve the HTML content of the URL.
In the event that fetching is unsuccessful (for example, because the server is unresponsive
or the URL is inaccessible), the method sends a 500 status code along with a JSON response
stating that the data was not accessible.

These two functions ‘detect_xss_vulnerability’ and ‘detect_sql_injection’ are used to search
the HTML text for vulnerabilities. In order to find any patterns or code snippets that

29

correspond with known XSS and SQL Injection vulnerabilities, accordingly, these initiatives
scan the code. The method creates a JSON response outlining the types of vulnerabilities
discovered and any particular information related to each identified issue if vulnerabilities
are found. For developers or security analysts using the program, this answer is essential
since it offers information about possible security flaws in the scanned URL. The function
ensures effective error handling in the event that the request method is not POST by
sending a JSON response with a 405 status code, which indicates that the request method is
restricted.

The initial section verifies the user's authentication and determines whether the request
type is POST, indicating that the user is attempting to send data for scanning.
This method can only be accessed by authorized users due to the ‘@login_required’
annotation. Next, the function determines if the current request is a POST request, which
indicates that the user has sent information through the form.

The code input is retrieved from the form in this area. It retrieves the ‘code_input’
parameter from the POST data using a secure method. It returns an empty string by default
if no data is supplied. This line is essential to getting the user-submitted data. Using
‘request.If’ the ‘code_input’ key is missing from the POST data dictionary, ‘POST.get’
provides secure access to the data without running the risk of a ‘KeyError’.

To be able to verify whether the code provided has any XSS and SQL Injection
vulnerabilities, this section calls custom functions. Here, the user's code is entered into the
functions ‘detect_xss_vulnerability’ and ‘detect_sql_injection’. These functions are meant to
create lists of problems found by scanning the input for patterns that match to known
vulnerabilities.

30

This section shows messages for the user and handles the results of the vulnerability checks.
The function creates a list of messages by compiling every relevant vulnerability
information. These notifications give the user thorough feedback by outlining the
vulnerabilities, their level of severity, and recommended solutions.

In this stage, the user receives the information that was collected and is presented with the
scanner.html template containing the vulnerability messages and the code that was initially
supplied. The function renders the scanner.html template, supplying the username,
vulnerability warnings, and the original code input, if vulnerabilities are identified. It simply
reloads the scanner page in the absence of a POST request. The login page is displayed to
the user if they are not authenticated.

With user input, the ‘has_xss_vulnerability’ function looks for Cross-Site Scripting (XSS)
vulnerabilities. It sanitizes the input by escaping HTML characters using Django's escape
function. If the code is different from the original input, this indicates that the original input
could have contained components (such as <script> tags or other HTML/JavaScript code)
that might be executed in a browser and result in cross-site scripting (XSS) attacks.

31

The user's sign out process is managed by the ‘signout’ function. To end the current user's
session and make sure that any session data is erased and the user is safely logged out. The
user is sent to the application's home page after logging out. By guaranteeing that user
sessions are correctly ended and avoiding illegal access that may happen if the session
remained ongoing, this function improves security.

The ‘xss_page’ function renders a template named xss.html. This page has information on
cross-site scripting vulnerabilities. By limiting access to this page to just authorized users,
the ‘@login_required’ decorator protects sensitive data from unwanted access. The goal of
the ‘sql_injection_page’ function, like that of the ‘xss_page’ function, is to show a template
that is specific to SQL Injection, a common and serious web security issue. As the same goes
to the ‘csrf_page’, renders a html named csrf.html, and have information on the CSRF
vulnerabilities.

Models

By extending Django's ‘AbstractUser’ model, the CustomUser model inherits all of its
features and functions, like email, password, and username. Any custom user fields you may
wish to add in the future will be built on this model.

32

‘ManyToManyField’ connects to the auth.Group of Django. "custom_user_set" is the related
name. The name of the reverse relationship is changed from default ‘user_set’ to
‘custom_user_set’ by this important change. It is used, for example, in
group.custom_user_set.all(), to retrieve the user from the group instance. By doing this,
name conflicts with any other models that could expand upon the User model by default are
avoided.

in the linked query name = "custom_user", Like ‘related_name’, this enables the use of a
custom query name to query the connection from the Group model, avoiding conflicts and
improving query clarity. ‘blank=True’ shows that this field is not essential. Therefore,
admission in any organization is not required of a user. In ‘help_text’, it describes the field
and makes its function clear in the Django admin and other forms that use the model.

The results of security scans performed on URLs are captured by the ScanResult object. In
this model, every record is a scan event that stores information about the scan, including
the scanned URL, and whether or not vulnerabilities were found. ScanResult's ‘__str__’
function was built to return a string representation containing the URL and the scan date,
which facilitates the identification of specific entries in the application's logs or during
administrative procedures.

Forms

33

The most important part of the user registration process is the RegistrationForm. It expands
on the ‘UserCreationForm’ that comes with Django by including a required email field to
collect the user's email address during the registration process. This form was created to
work in accordance with an individual user model, making sure that the required data is
gathered and verified.

To improve user identification and enable features like password recovery, an email field
has been added and created as essential. This makes sure that each user account is linked to
a different email address. The Meta Class defines the fields that need to be on the form and
links it to the custom user model. It instructs the form to handle particular user object
attributes, like username, email, password1 and password2, by doing this. In regards to the
save method It creates the user instance without committing it to the database
straightaway, enabling additional customisation, like email configuration. The user is saved
to the database when all changes are finished and, if commit is set to ‘True’.

34

The LoginForm makes it easier for users to authenticate. It provides a safe method of
comparing user credentials with the database, based on the ‘AuthenticationForm’. To be
able to simplify form interaction, the Meta Class specifies CustomUser as the model. As a
result, the form's fields are restricted to username and password for authentication. By
dividing the processing into only the necessary fields, security and clarity are maintained.
The Code Input is suitable for contributing code since it uses a ‘CharField’ and a ‘Textarea’
widget to manage bigger text inputs. This configuration ensures that the code input is
processed as text, preventing execution or interpretation during the form handling process.
Input URL implements a ‘URLField’ that checks if the input is a well-formed URL by default.
The application's URL scanning function depends on this parameter to ensure that only valid
URLs are handled further.

Utilities

First, the script configures the application's logger. This logger is used throughout the script
to record failures and helpful messages, which helps with debugging and tracking the flow
and problems found throughout the execution of the application. The purpose of the
fetch_url function is to get the HTML content from a specified URL. It sends an HTTP GET
request to the URL using the requests library. The text content of the response is returned if
the request is successful; if not, an error is logged and None is returned. Collecting online
data that will later be examined for vulnerabilities needs the use of this function.

This function looks for patterns in HTML material that could point to XSS vulnerabilities. It
was made possible by my broad research and understanding, and found this to be an

35

interesting implementation in my code. It makes use of a list of patterns linked to several
XSS vulnerability types, each with a corresponding severity and repair solution. The function
looks for each pattern in the HTML content and adds the vulnerability information to a list
that is returned at the final stage of the function if it finds any. It provides a list stating that
no XSS vulnerabilities have been detected if there are none.

Detect_sql_injection uses established patterns to search HTML text for SQL Injection
vulnerabilities, much like the XSS detection function does. The function looks for certain
patterns in the HTML text, and each pattern is linked to a particular kind of SQL Injection
danger. Vulnerabilities that are found are noted together with information on their type,
severity, and recommended solutions. One of the most major threats to websites is SQL
Injection attacks, that can be easily detected due to this function. Developers are able to
take precautions to protect their applications by identifying such vulnerabilities.

36

Javascript and AJAX

Home Page

For the home page, I decided to use a typewriter effect. The moving typewriter effect on
CodePulse's home page grabs the user's attention right away. JavaScript is used to create
this effect, which simulates typing and visually displays the goal of the application. In order
to simulate someone typing on a typewriter, the script selectively displays characters of a
specified text string one at a time.

This script creates the illusion of text being written out by delaying the start of the script and
then continuously appending characters to a placeholder element. A controlled display of
each character is made possible by the use of ‘setTimeout’, which improves both the visual
impact and user engagement from the very first interaction.

Scanner Page

AJAX is used in the Scanner page to manage URL and code scans in real time. Through
forms, users can submit URLs or code snippets. AJAX handles these contributions on the
server, exposing vulnerabilities straight on the page without requiring a page reload.

37

This AJAX method collects form submissions for URL and code scanning, catches them,
forwards the information to a processing script on the server, and refreshes the page with
the appropriate error messages or results. It makes sure the user gets feedback on the scan
findings right away, which improves the scanner feature's responsiveness and usability.

When a user submits a form by ‘#url_scan_form’, ‘event.preventDefault()’ is used to stop
the standard submission procedure by capturing the form submission event using jQuery's
‘submit()’ function. Next, the form data is serialized by encoding the form components as a
string that can be sent using jQuery's ‘serialize()’ function. In order to ensure flexibility and
minimize implementing, this serialized data is sent to the server using an AJAX POST
request, the URL for which it is generated automatically from the form's action element.

The alert box is an essential component of the CodePulse program, especially on the
Scanner page, since it improves interaction with the program by giving quick feedback based
on the AJAX calls performed during URL and code scanning processes. This warning box is
hidden by default ‘(style="display:none;")’ and only shows up when there's an essential
information to show, such scan results or error messages. JavaScript controls this dynamic
visibility by manipulating the alert box to display success messages or warnings/errors in
response to a response from the server. The alert box's display style attribute is used to
toggle its visibility, and the inner HTML of a specific paragraph inside it (#alert-content) is
set to dynamically fill the alert box's content.

38

The purpose of the JavaScript function ‘getCookie(name)’ is to get the value of a given
cookie by name. This function determines whether the page has any cookies and whether
they are filled in. In the event that cookies are present, the cookie string is divided into an
array by semicolons since each cookie is saved in the format "key=value;". The trim()
function in jQuery is then used to remove any whitespace from each cookie in the array so
that the comparison is correct.

After trimming each cookie, the function cycles over them, comparing the string's beginning
to the name of the required cookie, followed by an equals sign ‘(name + '=')’. In the event
that a match is discovered, the system exits the loop and returns the value after decoding
the cookie's value using ‘decodeURIComponent’ to handle any special characters or URL-
encoded symbols. The method returns null, that is, the cookie is not present, if no cookie
with the given name matches.

HTML Templates

About page

CodePulse's About page was specifically created to provide users with an eye-catching and
educational experience. The website has an eye-catching fixed backdrop picture that
doesn't move while the user scrolls, creating a depth illusion that makes the user more
engaged. This is accomplished by using CSS attributes to make sure the picture is centred
and fills the full backdrop. In order to centre information both vertically and horizontally and
make the website responsive and visually appealing across a range of devices, flexbox is
widely used.

39

Most of CodePulse pages have a basic design that establishes an overall visual idea for the
program as a whole. This common design frequently consists of a black backdrop, white text
for sharp contrast, and a contemporary sans-serif font Roboto is a popular choice because
of its professional look and readability. The same background colour helps the text and
interactive features stand out, which is important for keeping the user's attention and
making navigating easier. Disabling horizontal scrolling on all pages guarantees that the
layout stays clear and simple, which is especially crucial for readability and consistency in
the user interface.

Home Page & About Page

The full-screen backdrop visuals on the Home and About pages are clear and moving. As the
user scrolls across the information, these fixed backgrounds offer depth using a parallax
scrolling effect. The background pictures will have to fill the viewport completely and
without distortion due to the CSS background-size: cover property.

These pages' content sections have semi-transparent backgrounds created with RGBA
colour values, letting the background graphics show through discreetly. This design decision
not only integrates the visual components but also improves readability of the text without
taking away from the visually appealing backdrop.

40

Login & Registration Forms

Forms on the Login and Registration pages are key to user interaction, requiring responsive
design and easily understood input fields. These shapes are contained in containers that use
backdrop filters to gently modify the background in order to draw attention to the forms
themselves.

The CodePulse application's login and registration pages feature ‘a.forms-container’ design
that is a prime example of a contemporary and user-friendly style. The forms appear in a
neat vertical stack due to the use of CSS flexbox features ensuring a straightforward user
flow. With a constant width of 300 pixels, each form element is centred horizontally, giving
the user a consistent and targeted area to interact with. A backdrop filter that produces a
frosted glass look adds a bit of improvement while the semi-transparent background with a
light white tint provides depth while keeping a sleek, modern style. The form's rounded
corners reduce the interface's strong visual effect.

The form is well-framed and appears to be floating with its simple border and visible box
shadow, which help lead the user's attention to the input fields. By making the form both
aesthetically pleasing and easily accessible, this design not only increases the visual appeal
but also supports a seamless and simple user experience while registering or login on the
website.

Scanner page & Info Pages

The Scanner page, as well as the information pages on XSS, CSRF, and SQL Injection, are
made with functionality and content delivery in focus. To improve readability and focus, the

41

major important is centred and narrowed in width. This is particularly important for
educational information, which must be easily comprehended and free of interruptions.

The content is easier to read since there is enough space between each segment and
separate sections of text on these pages. Improved learning and user experience are
promoted by the constant use of text colours and backgrounds, which guarantee that the
user's attention is not distracted.

Password Validator

To protect user accounts, Django's CustomPasswordValidator class enforces strict password
policies. In order to do thorough tests, this validator makes sure passwords are at least eight
characters long, contain one uppercase letter, and one special character from a specified list
‘(like!@#$%^&*(),.?":{}|<>)’. Regular expressions and Python's built-in functions are used by
each condition to verify the input. The method generates a ValidationError with a detailed
message outlining the defect if a password fails any of these tests. Additionally, the class has
a ‘get_help_text’ function that offers a clear explanation of the password requirements. This
helps users and developers both understand the application's password regulations. This
implementation follows to cybersecurity best practices by strengthening security and
helping users with creating strong passwords.

42

Admin

The admin.py file of Django's ‘CustomUserAdmin’ configuration improves user account
management by displaying crucial user properties right within the Django admin interface.
Administrators may easily evaluate important user data by using this class customisation,
which shows fields like username, email, and ‘is_active’ in the admin list view. Furthermore,
user searches by email and username are supported, making it easier to navigate through
quite large user lists. Also, fast user management and sorting according to their function in
the company and account status is made possible by the addition of list filters for the
‘is_active’ and ‘is_staff’ statuses. It greatly improves administrative operations, maintains
good user management practices inside Django applications, and increases interface
usability by registering this setting with the Django admin site.

43

Graphical User Interface (GUI)

Home page

When a person visits this page, their initial view is this home page. This page includes a get
started section, which is the about page where users can learn more about our website and
get an idea of the purpose of my website application. Additionally, there is a get started
page that directs users to the registration page, where they may register and log in.

About Page

44

In the about page, the users are able to see what this website application is all about, how it
works, what our mission and vision is, why they should choose to work with CodePulse and
more. In addition to providing users with information on the main features and advantages
of using CodePulse, this page confirms the application's commitment to security and quality
in vulnerability detection.

45

Registration page
The user can register for a CodePulse account on this page, however they must use their
email address because the sign-up process requires two-factor authentication and email
verification (Gmail). The user must fill in all the required areas above with their login
information, being careful to include all system requirements (such as using a valid email
address, ensuring that passwords match, and requiring at least eight characters in length in
addition to one capital letter and one special key). The user may get further information
about the web application on the about page or return to the home page, which serves as
the program's first page of interaction, using the navigation bar. In essence, the user may
click the "already have an account?" option at the bottom if they already have an account. this
points the user in the direction of the login page so they may use an existing account to log in.
The background is a GIF so the user can see movement in the background, I thought this
would be really cool as a background making this aesthetically pleasing to the users eyes.

Login page
This is the login screen. If the user already has an account, they may use it to log in; if not,
they must register in order to use the scanner. If the user clicks the bottom link, they will be
sent to the registration page where they can create an account. The user will be sent to the
scanner page after entering the required data.

46

Verification Page
The user must input the code provided to their email on this verification page; it is a six-digit
code that is generated at random. The user must complete this step in order to proceed
with the email verification and account creation; if not, they will need to return to the
registration page and start the process again from scratch. The user will see an invalid
verification code, as seen below, if they enter an incorrect code.

Scanner page after Verification

47

The user should see this after logging in with their email and being sent to the scanner page,
which is the main page. Now that the user has access to the scanner URL, they may use
Code Scan to find any vulnerabilities in their code or URL. As soon as the user enters the
website, they will be able to view their username as seen above. I used a GIF backdrop for
the navigation bar because it is visually appealing to users. I purposefully avoided using any
design on the scanner page since it would distract users from trying to scan their code.

Scanner page Code scan
The user can test if their code is susceptible to SQL Injection or XSS by entering a piece of
code on this page. This is an illustration of how my code scanner will find the xss present in
the code above. The user should be able to see a report message detailing their vulnerability
detection and potential solutions after scanning for this code. This report message should
include resources such as the OSWAP websites, which are updated every three months due
to the ongoing increase in security vulnerabilities.

48

Similarly, for the SQL injection vulnerability (which I used as an example, see OSWAP SQL
injection code samples), users who wish to test their code against it will discover that it has
been detected and should either follow the link on OWSAP or the report message that
appears.

After discovering the vulnerabilities found in their codes, the user should adhere to the
report message provided.

URL scanner

49

If the user's website is not operating on a local host or address, the scanner will generate an
error, therefore in order for the user to detect their websites, they must have their projects
running locally. The user may check for vulnerabilities in their website by running it locally.
They should then take the necessary steps to address any vulnerabilities found.

The testing website I'm using in this example, Juice Shop OWSAP, is primarily checked for
vulnerabilities. By adding the local host port, http://localhost:3000/#/, I can now check this
website for vulnerabilities.

The user will be presented with the vulnerabilities that were detected, and if they would
want to repair the issue or learn more about how to prevent it, they may follow the
instructions in the provided report or resource.

50

51

Educational page on Cross Site Scripting, SQL Injection, and CSRF
This page contains some information about what cross site scripting, SQL injection, and
cross site request forgery is, how the user can prevent cross site scripting, and some
additional resources on where they can go for further information. Only users with active
accounts may access this. These pages are restricted to registered users only, thus new
users cannot view them. This website is constantly being developed, and each month we
will be able to update the vulnerabilities for scanning and offer additional options to
registered users. Once the user has accessed every page, they may safely log out, leaving
their account inactive. If the user wants to get back in, they simply locate the login page and
input their valid account credentials.

Testing

Unit Testing

52

During the CodePulse application development process, I used Django's inbuilt ‘TestCase’
framework for unit testing. This framework is important for building a testing environment
that separates database operations and maintains consistency across test cases. Every test
executes using a new database, which is restored to its original state at the end of each test,
thanks to the ‘TestCase’ class. I am able to continuously test the application's models, views,
forms, and other components without experiencing any unexpected results from previous
tests by using this method, which offers a consistent and regular environment for all testing.
My main plan for the unit testing was to make sure that the integrity and functionality of
the application’s individual components before they were integrated into the larger system.

Models

Models are the foundation of the data structure of the CodePulse project. These
components represent difficult SQL queries into Python code, making database interactions
easier. They are developed using Django's ORM (Object-Relational Mapping). This improves
the readability and maintainability of code by enabling developers to deal with database
entities as Python objects.

When making my tests I started off with the ‘CustomUserModel’ which expands Django's
built-in User model, adding more properties as needed. It inherits attributes that are
necessary for user administration and authentication, such password, email address, and
username. Future expansions are supported via the ‘CustomUser’ concept, which makes it
simple to incorporate more user data as new requirements come up.

53

This ‘ScanResult’ model is important to the applications security analysis features. With the
goal to make sure that all fields are allocated successfully and that the default values are set
correctly, this method verifies the construction of a ScanResult class. Specific properties are
produced for each ‘ScanResult’ instance, such as a URL, indicators for discovered
vulnerabilities (XSS and SQL injection), and an additional info field. The test then verifies
that the data storage procedure is operating properly by claiming that the URL supplied and
the URL recorded in the database match. It confirms that the default settings are set
appropriately by ensuring that the boolean columns for XSS and SQL injection detection are
‘False’. It ensures that all supplied data is appropriately kept by verifying that the additional
information field corresponds to the input.

I added the ‘test_str_method’ so When trying to make sure the string returned by the
ScanResult model's string representation function ‘__str__’ appropriately reflects the
instance, this method verifies it. The XSS detected flag is set to True, and a new instance of
ScanResult is generated with a URL. The test verifies that the ‘__str__’ method returns the
desired format, which comprises the scan URL and the time and date of the scan. Because it
makes it simple for developers and system administrators to recognize scan findings from
log files or admin panels, this is essential for debugging and logging.

Views

CodePulse views function as a link between the application logic and the user interface by
managing user interactions and data processing. The testing of these components might be
documented as follows:

54

For ‘LoginViewTest’ The purpose of this test is to confirm that the login process works. It
ensures that users can access the right page after successfully logging in and that they can
log in using valid credentials. Across several test methods, the ‘setUp’ function sets up a
user with a known username and password. The ‘test_login_success’ function sends the
appropriate credentials in a POST request to the login view. The answer is then verified to
ensure that it successfully redirects to the desired location, which is the scanner page after
logging in.

For the purpose of ‘UrlScannerViewTest’ With the goal to make sure that the system can
process submissions appropriately and that the relevant service logic is activated, this test
assesses the URL scanning capabilities. The test mocks the ‘fetch_url’ method, which would
otherwise try to visit a real URL, using the patch decorator from ‘unittest.mock’. It confirms
that the mocked function is appropriately invoked and delivers a successful response when
a valid URL is submitted through the form.

These forms have gone through extensive testing to ensure that they securely and
dependably take user data and reject incorrect inputs, protecting the application's security
and dependability. The main goals of this testing is to see how well the form handles
legitimate registrations and detects errors in user input, including incorrect passwords. We

55

can make sure that the form functions as intended in a variety of settings by simulating form
submissions within the test environment. Tests are carried out, for instance, to ensure that
the form is legitimate when all fields are filled in correctly and that it correctly identifies and
rejects registration attempts when the passwords provided do not match.

Considering my ‘UrlFormTest’, it includes situations in which both valid and incorrect URLs
are entered as part of its tests for the ‘UrlForm’. These tests are necessary to make sure that
the form correctly validates URLs and only allows processing of the right URLs. This is
essential for the application's later phases, which depend on getting valid URLs for scanning
responsibilities.
All of the tests passed as anticipated, indicating the successful conclusion of the unit testing
phase. The outcomes show that the application's key features are adaptable and reliable in
managing extreme situations and possible error in entering data. This is a sample from the
test execution outcome in my terminal shown.

Integrational Testing
The integration testing approach aimed to replicate how a regular user would interact with
the registration system, from creating an account to being able to access it following email
verification. I planned the tests to run in the order that the user would travel through .

56

The test for my user registration starts with the act of submitting the registration form with
accurate user information. This stage verifies that the application can process form input,
add a new user record to the database, and send a verification code via email.
The system sends a verification email for my email verification once I register. The tests I
performed access the verification code and look for the email in the created outbox to
confirm this functioning. This phase is essential for ensuring that the emails have the right
data and that the email system for distribution operates as expected.

For the testing environment and configuration, I set up a different test database and used
Django's ‘locmem’ for ensuring isolation from the production environment and make sure
that tests do not interfere with actual ‘data.EmailBackend’. Since it saves emails in a created
outbox that can be monitored programmatically analyse rather than sending actual emails,
this email backend is perfect for testing.
To start the integration tests, use the following command ‘python3 manage.py test
codepulse.tests.integration --settings=codereview.settings_test’, which navigates to the
test-specific configurations and makes sure that each test run is isolated and makes use of
the test email backend and database.

57

This result shows that my integration test was successful, confirming that my application's
integration of the user registration, email the process, and login features is reliable and
operates as expected.

End User Testing
Reaching the final stages of testing my website application development, I was focusing
more on making sure that my URL scanner and Code scanner operates as expected and
securely. This is very important for detecting for potential vulnerabilities within the web
pages, and making it an important component for the developers.

Users will use my web application to access the URL and Code scanner abilities once the test
starts. Since the scanner was created to be used in a secure environment by registered
users, it is crucial that all users administering the tests have the appropriate login
credentials. The scanning procedure will begin when users enter the URLs of the locally
hosted web sites into the scanner's interface. Because of its immediate analysis ability, the
tool will provide the results as soon as the scan is finished.

Setting up the environment for testing began with Local Server Setup. Users will need to set
up a local server where they can host web pages or apps for testing. They can use Python to
create a basic HTTP server. By doing this step, it is ensured that the scanners can function in
a controlled setting that mirrors common use cases. For example for my testing I used a
legal vulnerable website by OWSAP called Juice shop, this is a vulnerability testing websites
as it is used for testing purposes. I have downloaded this project from GitHub and ran it on
my local host.

When using the URL scanner, I have input the URL where the Juice shops running into the
URL scanner. The scanner has now analysed the URL and report the vulnerabilities it
detects. As a successful test, I have been able to get these vulnerabilities from this

58

vulnerable website (Juice shop) where it detected that there is in fact XSS detected and
what kind.

The scanner then provided me with a report message with the potential vulnerabilities
found, also getting the description of the type of vulnerability, its severity, and possible
solutions to help to prevent them. This is a successfully test as it is expected. But If the URL
was invalid and was not running for the user locally, then they will receive an error until
they are able to have it running on a local address.

After completing a complete testing phase, I found that although the URL scanner has
demonstrated the ability in identifying a range of security concerns, there is still room for
improvement in terms of its ability to reliably identify SQL Injection vulnerabilities. In some
test circumstances, the existing methods for detection were unable to identify SQL Injection
patterns in URLs. This gap points to an important area that needs further work.

Furthermore, I'm looking at ways to improve the detection methods for other serious
vulnerabilities like Cross-Site Request Forgery (CSRF). The aim is to provide a more complete
security solution by improving the scanner's capacity to deal with a wider range of
vulnerabilities.

59

As for using the Code scanner, users are able to paste these codes into the code scanner if
they believe that any specific JavaScript or other code on the client side used by Juice Shop
contains vulnerabilities, or if the users would want to see how your scanner responds to
these inputs. If I take an example code from the OSWAP cross site scripting page, I can add it
into the code scan, where it the

As you can see the test for detecting this javascript code within a HTML context has been
detected for the inline event handlers, and document cookie access which is valid since the
code does have those vulnerabilities.

I carried another testing that indicated that my code scanner was in fact identifying the
patterns that are vulnerable, with window location manipulation, where the javascript I had

60

scanned was manipulating the ‘window.lcoation’ using parameters that might be controlled
by an attacker leading to being directed to malicious site. This testing was successful as
expected.

When testing for the SQL Injection code scanner, The scan result shows that a SQL Injection
vulnerability was correctly and successfully detected. The report indicates that the direct
integration of user input (user_id) in the SQL query without appropriate validation or
sanitization resulted in the discovery of a high severity SQL Injection vulnerability.
Additionally, it correctly recommends using parameterized queries as a solution strategy
which is the best way to stop SQL injection attacks.

61

The project's code and URL scanners followed successful tests as it has been shown how
useful these tools are for improving web application security. Both of the scanners have
shown success in detecting and reporting possible security vulnerabilities, including XSS and
SQL Injection risks, thorough the phase of unit and end-user testing.

In conclusion, the testing phases have been important in confirming the stability and
efficacy of the CodePulse system. They have highlighted areas for improvement in addition
to demonstrating the application's ability to detect and notify any security concerns. The
program's security features will be improved as part of its continuous development,
ensuring that it will continue to be effective against changing cybersecurity threats and be a
dependable resource for web application security research.

Evaluation

The evaluation of the CodePulse application conducted an extensive series of tests to
evaluate its performance, scalability, and correctness in detecting web security
vulnerabilities. The purpose of these evaluations was to recreate practical usage scenarios
and assess the system's operational efficiency and functionality.

Performance and Correctness

62

The testing mostly focused on how well the URL and code scanners identified and reported
vulnerabilities. The OWASP Juice Shop, an intentionally vulnerable online application, was
used to create a realistic test environment for the scanners, and they were put through a
range of tests using known vulnerable scripts and URLs.

Tests performed with XSS Detection revealed that the program has a success rate of over
95% in identifying several kinds of XSS vulnerabilities, such as inline scripts and suspicious
URL parameters. With a false negative rate of less than 5%, the representation showed
impressive reliability in real-world scenarios.

Regarding SQL Injection Detection, code snippets including fake SQL injection attacks were
used to evaluate the scanner's capacity to identify SQL injection. Simple tautologies like OR
1=1 were effectively discovered, while more complex injection tactics were detected with a
lower success rate of around 85%, indicating areas that needed improvement.

Key Performance Description Target Achieved

Vulnerability
Detection

Accuracy of
Identifying the SQL
Injection and XSS
vulnerabilities

95%

80%

System Usability

Users usability and
interactions

95%

92%

Performance

Response time of
scan

Less than 5 seconds

3 seconds

Scalability

Support for users
(providing
information)

10 users

6 users

Security

Security breaches
during testing

0

0

63

Conclusions

The CodePulse project marked a significant step in the journey of improving web application
security, aimed at important vulnerabilities such as SQL Injection and Cross-Site Scripting
(XSS). During the development process, there were certain obstacles to overcome,
especially when integrating features like vulnerability scanning and email verification. These
were complicated functions requiring a high level of security detail, which made them
difficult. But my dedication in trying to understand and recognize these complicated
systems worked out, turning my initial challenges into positive experiences that ultimately
benefited me. Achieving CodePulse's goal of becoming an effective educational resource
designed to improve developers' application security skills was one of the project's most
important advantages. In addition to being enjoyable, creating the website from scratch
gave me a great sense of accomplishment because every element was carefully created to
enhance the application's security and functionality. The significant enjoyment experienced
during the creative process and after witnessing how it turned out in working helped to add
to the project's value and worth.

When it came to creating accessible user interfaces and including features like different
designs and navigation bars, that helped improve the way users interact with the
application. These components greatly improved the application's overall usefulness by
being essential in ensuring that it was accessible and simple to use in addition to being
aesthetically pleasing. Despite successes and great foundation developed, there are
restrictions that provide chances for further development. The need to keep improving
CodePulse comes from both the system's potential for scalability and the changing
environment of web security. Given the potential for modification and growth, especially in
terms of including new features and enhancing current ones, I am inspired to continue
working on it even after submission. In order to strengthen CodePulse's usefulness and
necessity in the current cyberspace, the objective is not only to improve it but also to
transform it into a complete application that could help many users.

In conclusion, the entire process of developing CodePulse was as beneficial as it was
challenging, providing an in-depth knowledge of both the technical and security aspects of
web application development. In addition to achieving its initial goals, the project offered an
easily adaptable framework for continuous improvement and change, presenting it as a
possible real time successful web app in the field of cybersecurity.

Further Development or Research

The CodePulse project would greatly increase its scope and capabilities with more time and
resources, developing into an extremely effective and adaptable cybersecurity tool. Firstly,
the project's structure would continue to include the most recent cybersecurity discoveries
while giving priority to research and development. This means tracking new risks, such as
critical vulnerabilities and advanced continuous attacks, and adjusting the scanner's settings
appropriately. Secondly, in order to make the tool more accurate in its security evaluations,
the Functionality Enhancement would concentrate on expanding the scope of detected

64

vulnerabilities beyond XSS and SQL Injection to cover threats like CSRF, remote code
execution, and more.

If I continue with CodePulse I would need to, enhance both the technological backend and
the frontend to accommodate greater demands and more complex functions that would
eventually take up a significant amount of resources when making Improvements. These
improvements would also focus on making the platform more accessible and evident for a
wider range of users. Additionally, integration capabilities would be created to enable
CodePulse to automate scans within CI/CD workflows and connect easily with current
development pipelines. This would make it easier to handle vulnerabilities in real-time
across the software development lifecycle, integrating security throughout the whole
process.

Finally, CodePulse's reliability and potential would be increased if it followed with
Compliance and Security Standards like OWASP Top 10, which would guarantee that the
company not only meets but exceeds industry security standards. When combined, these
improvements would establish CodePulse as a secure, adaptable, and significant
cybersecurity solution that can handle the complex and always evolving environment of
online security threats.

References

[1] “Django & Flask: Which One Should You Choose,” Sunscrapers, Aug. 13, 2019.
https://sunscrapers.com/blog/django-vs-flask/ (accessed May 11, 2024).

[2] CodeWithBushra, “‘Using SQLite as a Database Backend in Django Projects’ ||Code with
Bushra,” Medium, Nov. 28, 2023. https://medium.com/@codewithbushra/using-sqlite-as-a-
database-backend-in-django-projects-code-with-bushra-d23e3100686e

[3] CodingNomads, “Why Use Django for Python Web Dev?,” codingnomads.com.
https://codingnomads.com/blog/why-use-django (accessed May 11, 2024).

[4] M. Deery, “9 Pros and Cons of the Django Framework: A Coder’s
Guide,” careerfoundry.com, Aug. 30, 2023. https://careerfoundry.com/en/blog/web-
development/django-framework-guide/

[5] “What is Django Used For?,” www.netguru.com. https://www.netguru.com/blog/why-
use-django (accessed May 11, 2024).

[6] E. Kosourova, “What is Python Used For? 7 Real-Life Python Uses,” www.datacamp.com,
Nov. 2022. https://www.datacamp.com/blog/what-is-python-used-for

[7] Mindfire Solutions, “Python: 7 Important Reasons Why You Should Use
Python,” Medium, Oct. 03, 2017. https://medium.com/@mindfiresolutions.usa/python-7-
important-reasons-why-you-should-use-python-5801a98a0d0b

65

[8] A. Dizdar, “SQL Injection Attack: Real Life Attacks and Code Examples,” Bright Security,
2022. https://brightsec.com/blog/sql-injection-attack/

[9] Imperva, “What is SQL Injection | SQLI Attack Example & Prevention Methods |
Imperva,” Imperva. https://www.imperva.com/learn/application-security/sql-injection-sqli/

[10] Agathoklis Prodromou, “Exploiting SQL Injection: a Hands-on Example |
Acunetix,” Acunetix, Feb. 28, 2019. https://www.acunetix.com/blog/articles/exploiting-sql-
injection-example/

[11] “Node.js SQL Injection Guide: Examples and Prevention,” StackHawk.
https://www.stackhawk.com/blog/node-js-sql-injection-guide-examples-and-prevention/

[12] S. Yegulalp, “Why you should use SQLite,” InfoWorld, Feb. 13, 2019.
https://www.infoworld.com/article/3331923/why-you-should-use-sqlite.html

[13] “What is SQLite?,” Codecademy. https://www.codecademy.com/article/what-is-sqlite

[14] “How cross-site scripting attacks work: Examples and video walkthrough |
Infosec,” www.infosecinstitute.com.
https://www.infosecinstitute.com/resources/application-security/cross-site-scripting-
examples-walkthrough/

[15] synopsys, “What Is Cross Site Scripting (XSS) and How Does It Work? |
Synopsys,” www.synopsys.com. https://www.synopsys.com/glossary/what-is-cross-site-
scripting.html

[16] “Mitigating & Preventing Cross-Site Scripting (XSS) Vulnerabilities: An
Example,” www.securityjourney.com, Jan. 11, 2024.
https://www.securityjourney.com/post/mitigating-preventing-cross-site-scripting-xss-
vulnerabilities-an-example

[17] “3 Types of Cross-Site Scripting (XSS) Attacks,” Trend Micro, May 11, 2023.
https://www.trendmicro.com/en_ie/devops/23/e/cross-site-scripting-xss-attacks.html
(accessed May 11, 2024).

[18] PortSwigger, “What is CSRF (Cross-site request forgery)? Tutorial &
Examples,” Portswigger.net, 2019. https://portswigger.net/web-security/csrf

[19] “Cross Site Request Forgery (CSRF): Explanation With An Example & Fixes,” Feb. 27,
2019. https://www.getastra.com/blog/knowledge-base/cross-site-request-forgery-csrf-
example-fix/

[20] Rick-Anderson, “Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET
Core,” learn.microsoft.com, Nov. 16, 2023. https://learn.microsoft.com/en-
us/aspnet/core/security/anti-request-forgery?view=aspnetcore-8.0

https://www.securityjourney.com/post/mitigating-preventing-cross-site-scripting-xss-vulnerabilities-an-example
https://www.securityjourney.com/post/mitigating-preventing-cross-site-scripting-xss-vulnerabilities-an-example

66

Code References

[1] “pygoat/introduction/forms.py at master · adeyosemanputra/pygoat,” GitHub.
https://github.com/adeyosemanputra/pygoat/blob/master/introduction/forms.py
(accessed May 09, 2024).

[2] “Building a User Registration Form with Django’s... | Crunchy Data Blog,” Crunchy Data,
Jul. 17, 2020. https://www.crunchydata.com/blog/building-a-user-registration-form-with-
djangos-built-in-authentication (accessed May 09, 2024).

[3] “pygoat/introduction/models.py at master · adeyosemanputra/pygoat,” GitHub.
https://github.com/adeyosemanputra/pygoat/blob/master/introduction/models.py
(accessed May 11, 2024).

[4] “Django URLs,” www.w3schools.com.
https://www.w3schools.com/django/django_urls.php (accessed May 11, 2024).

[5] “xss-study/f.html at master · tomoyk/xss-study,” GitHub.
https://github.com/tomoyk/xss-study/blob/master/f.html (accessed May 11, 2024).

[6] “Code-Sentinel/vulnerabilities/xss/xss_vulnerabilities.py at main · boloto1979/Code-
Sentinel,” GitHub. https://github.com/boloto1979/Code-
Sentinel/blob/main/vulnerabilities/xss/xss_vulnerabilities.py (accessed May 11, 2024).

[7] “Code-Sentinel/vulnerabilities/injection/code_injection_vulnerabilities.py at main ·
boloto1979/Code-Sentinel,” GitHub. https://github.com/boloto1979/Code-
Sentinel/blob/main/vulnerabilities/injection/code_injection_vulnerabilities.py (accessed
May 11, 2024).

[8] OWASP, “SQL Injection Prevention · OWASP Cheat Sheet Series,” Owasp.org, 2021.

[9] OWASP, “SQL Injection Prevention · OWASP Cheat Sheet Series,” Owasp.org, 2021.
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.ht
ml

[10] “Best regex to catch XSS (Cross-site Scripting) attack (in Java)?,” Stack Overflow.
https://stackoverflow.com/questions/24723/best-regex-to-catch-xss-cross-site-scripting-
attack-in-java (accessed May 11, 2024).

[11] “Regular Expression HOWTO — Python 3.8.0 documentation,” Python.org, 2019.
https://docs.python.org/3/howto/regex.html

[12] OWASP, “SQL Injection,” OWASP, 2024. https://owasp.org/www-
community/attacks/SQL_Injection

[13] OWASP, “Cross Site Scripting (XSS) | OWASP,” Owasp.org, 2020.
https://owasp.org/www-community/attacks/xss/

https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/xss/

67

[14] Software Testing Help, “Cross Site Scripting (XSS) Attack Tutorial with Examples, Types
& Prevention,” Softwaretestinghelp.com, Jun. 18, 2018.
https://www.softwaretestinghelp.com/cross-site-scripting-xss-attack-test/

[15] W3Schools, “Python RegEx,” W3schools.com, 2019.
https://www.w3schools.com/python/python_regex.asp

[16] “How to Create Custom Password Validators in Django,” Six Feet Up.
https://sixfeetup.com/blog/custom-password-validators-in-django (accessed May 11, 2024).

[17] “Sending email | Django documentation,” Django Project.
https://docs.djangoproject.com/en/3.2/topics/email/ (accessed May 11, 2024).

[18] “pygoat/introduction/views.py at master · adeyosemanputra/pygoat,” GitHub.
https://github.com/adeyosemanputra/pygoat/blob/master/introduction/views.py
(accessed May 11, 2024).

[19] “Sending email | Django documentation,” Django Project.
https://docs.djangoproject.com/en/3.2/topics/email/ (accessed May 11, 2024).

[20] “Django web application security - Learn web development |
MDN,” developer.mozilla.org. https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Django/web_application_security

[21] “Settings | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/ref/settings/#auth-password-validators (accessed
May 11, 2024).

[22] “Deployment checklist | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/

[23] “Settings | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/ref/settings/#databases (accessed May 11, 2024).

[24] “Settings | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/ref/settings/#auth-password-validators (accessed
May 11, 2024).

[25] “Internationalization and localization | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/topics/i18n/ (accessed May 11, 2024).

[26] “Django,” Django Project. https://docs.djangoproject.com/en/5.0/howto/static-files/

[27] “Settings | Django documentation,” Django Project.
https://docs.djangoproject.com/en/5.0/ref/settings/#default-auto-field (accessed May 11,
2024).

https://www.w3schools.com/python/python_regex.asp

68

[28] Software Testing Help, “Cross Site Scripting (XSS) Attack Tutorial with Examples, Types
& Prevention,” Softwaretestinghelp.com, Jun. 18, 2018.
https://www.softwaretestinghelp.com/cross-site-scripting-xss-attack-test/

[29] W3SCHOOLS, “CSS Tutorial,” W3schools.com, 2019. https://www.w3schools.com/css/

[30] Gifer.com, 2024. https://gifer.com/en/GYEI (accessed May 11, 2024).

[31] Gifer.com, 2024. https://i.gifer.com/7Ntk.gif (accessed May 11, 2024).

[32] OWASP, “Cross Site Request Forgery (CSRF) | OWASP,” owasp.org, 2023.
https://owasp.org/www-community/attacks/csrf

[33] OWASP, “Cross-Site Request Forgery Prevention · OWASP Cheat Sheet
Series,” Owasp.org, 2012. https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

[34] “How To Create a Typing Effect,” www.w3schools.com.
https://www.w3schools.com/howto/howto_js_typewriter.asp

[35] R. Liuberskis, “Implement Django User Registration with Email Confirmation,” Geek
Culture, Mar. 15, 2023. https://medium.com/geekculture/implement-django-user-
registration-with-email-confirmation-31f0eefe976d (accessed May 11, 2024).

[36] W3Schools, “HTML Forms,” W3schools.com, 2019.
https://www.w3schools.com/html/html_forms.asp

[37] “Jquery display message,” SitePoint Forums | Web Development & Design Community,
Sep. 08, 2014. https://www.sitepoint.com/community/t/jquery-display-message/96431/3
(accessed May 11, 2024).

[38] “WebD2: Using JavaScript to Show an Alert,” www.washington.edu.
https://www.washington.edu/accesscomputing/webd2/student/unit5/module2/lesson1.ht
ml#:~:text=One%20useful%20function%20that

[39] “Get cookie by name,” Stack Overflow.
https://stackoverflow.com/questions/10730362/get-cookie-by-name/34748155 (accessed
May 11, 2024).

[40] OWASP, “Cross Site Scripting (XSS) | OWASP,” Owasp.org, 2020.
https://owasp.org/www-community/attacks/xss/

[41] “unittest.mock — getting started,” Python documentation.
https://docs.python.org/3/library/unittest.mock-examples.html (accessed May 11, 2024).

[42] “Good Integration Practices — pytest documentation,” pytest.org.
https://pytest.org/en/7.4.x/explanation/goodpractices.html (accessed May 11, 2024).

https://www.w3schools.com/css/

69

[43] “Unit Testing in Django - Javatpoint,” www.javatpoint.com.
https://www.javatpoint.com/unit-testing-in-django

[44] “Django tests - patch object in all tests,” Stack Overflow.
https://stackoverflow.com/questions/25857655/django-tests-patch-object-in-all-tests
(accessed May 11, 2024).

[45] W3Schools, “Python RegEx,” W3schools.com, 2019.
https://www.w3schools.com/python/python_regex.asp

Appendices
Project Proposal

Objectives
This project is to make it easier for software developers/engineers when coding a website
giving them notifications if a certain code is vulnerable or at risk of the application they’re

70

making. This is to give an overview on the basic principles and concept of cyber security and
how to protect your code from being vulnerable.
In today's digital world, the security of software is very important. Ensuring that the code
used to build applications is free from vulnerabilities is a critical task. The "Secure Code
Review Tool" is a project that seeks to make this process easier and more effective.

- Imagine a tool that can automatically scan your code, looking for common security
issues. It provides you with clear and actionable advice on how to fix those issues.
Whether you're a seasoned developer or just starting, this tool is designed to help
you write safer code.

- Key features include a smart scanning engine that keeps up-to-date with the latest

security threats, a customizable set of rules to fit your coding standards, and a
friendly interface that seamlessly fits into your development workflow. It's like
having a security expert right by your side, helping you build secure software.

- By using this tool, you not only make your applications more secure but also

contribute to a culture of security-aware coding practices. It's a step forward in
reducing the risks of cyberattacks and creating robust software in our technology-
driven world.

Background
I conducted my own research on issues in the current cyber security environment in order
to come up with ideas for my project that would match the subject matter. I came up with a
few intriguing concepts and brainstormed what would be the best idea. I had to consider a
couple of concepts more carefully because they didn't make sense for the cybersecurity
industry. When I asked one of my mentors from my former internship at Dell Technologies
for guidance on project ideas, he came up with some great ones that caught my attention.
After that, I conducted some research and made some notes that I believed would be
helpful in getting this project started, such as what languages to use, what specifications I
needed to fulfil to satisfy the project's complexity, and whether or not this was something I
could do.

State of the Art
During my research, I came across some websites like OWASAP ZAP, Code Dx, and
checkmarx that are comparable to the basic idea of my project. Because they offer software
composition analysis, dynamic application security testing, and static code analysis, these
applications are related. Additionally, they provide correlation and vulnerability
management solutions that may be integrated with other application security testing tools.
ZAP uses an open-source program that includes a security testing tool to assist in identifying
security flaws.

71

By making my project unique I would have to have a combination of innovative features like
advanced security analysis which can detect a wide range of vulnerabilities. Try to make the
code review tool process engaging and fun which can encourage developers to participate
actively. Ensure my codes performance and speed is fast and responsive, reducing wait
times during code analysis and review. As for the security and compliance I will ensure to
prioritize the security practices and compliance with standards.

Technical Approach
First thing I will do is define the requirements to meet the goal of my project and seeing
what features I can include it make it more unique than existing secure code tools online. I
will look into what security measures I need to be implemented and the programming
language I can code with.

I have chosen Django as my web framework to build the website after some research I’ve
found Django to be the more suitable for me since I have some experience using this
framework. As for the database setup I chose to work with MySQL – to store user data, code
repositories, and review comments.

Making sure that the measures is established for the application, such as access control,
output encoding, and input validation. Defend against typical web application vulnerabilities
including SQL injection, Cross-Site Request Forgery (CSRF), and Cross-Site Scripting (XSS).
verify my application thoroughly, making sure to verify the security, integration, and unit
functionality. Use security testing tools such as OWASP ZAP.

Technical Details
By coding a secure code review tool requires a combination of algorithms and approaches to
ensure that it can effectively identify security vulnerabilities in software.
Analyse the code's Abstract Syntax Tree (AST) using Static Analysis (SAST) in order to spot
any possible security flaws.

Analyse the flow of data via the code to find security holes like as injection attacks.
Fuzz testing, or dynamic analysis (DAST), is the process of creating a large number of inputs
automatically in order to test for unexpected behaviours. Penetration testing to find
weaknesses, model actual attacks.

Data mining, also known as vulnerability database mining, involves extracting code from
databases such as CVE (Common Vulnerabilities and Exposures) and CWE (Common
Weakness Enumeration) and comparing it to known vulnerabilities.

Pattern Recognition to look for common vulnerabilities like SQL injection, cross-site
scripting, or authentication problems, use regular expressions or custom patterns.
Search for out-of-date or vulnerable third-party libraries and components by scanning.
Analyse the code for security flaws pertaining to APIs, such as incorrect authentication,
exposed data, or vulnerable endpoints.

72

Integration with Issue Tracking for improved communication and monitoring of remediation
efforts, connect identified issues to widely used issue-tracking platforms, such as Jira.
User-Friendly Interface to give reviewers an easy-to-use interface so they can quickly
comprehend and rank the issues that have been found.

Automation and Continuous Integration by incorporating the tool into the software
development lifecycle, you can enable code analysis and review to happen automatically
while the build is being completed.

Special Resources Required
I will be doing more research to keep myself up to date with the latest security practices and
make sure to follow some guidelines when it comes common web application security
vulnerabilities. I will be coding with python and using Django framework so I will be able to
learn how to implement code with this programming language and teach myself some new
skills. I will be using MySQL a secure database management system that will allow me to
sore user data, code and security information. I will also familiarize myself with a strong user
authentication, authorization, and access control to protect the user’s data.

Project Plan
I will be coding my secure code review tool website with python and will be using the visual
studio code as my code editor. I will first make sure I have all the latest versions on my
laptop – python3 (latest version).

1- Research

Make sure I know what Programming language/framework/code editor I will use and
familiarize myself with it.
Watch videos and research online to make myself more knowledgeable for this project if
I come against a complex problem.
Ask supervisor on some advice before starting this project to get a more experienced
point of view.

2- Requirements

Making my projects requirement clear
- Make sure I implement all my security implementations and features.
- Keep up to date with security practices
- Implement security procedures like as input validation, output encoding, and access

control to make sure your application is secure.
- application vulnerabilities including SQL injection, Cross-Site Request Forgery, and

Cross-Site Scripting (XSS).

3- Database

I will be using MySQL database to store user data and will make sure I configure my web
framework to interact with it.
4- User Authentication

73

To restrict access to your code review tool, utilise user authentication. If necessary, I can
create a third-party authentication system, or use a library such as the built-in Django
authentication system.
5- Midpoint

6- Repository

Integrate my code using APIs to get code for review
7- Code analysis

Use security scanners to see if there will be any potential security risks or other issues in
my code.
8- Testing

Testing for security, integration, and units. Use security testing instruments such as
OWASP ZAP.

Testing
System testing

- Use security testing, such as penetration testing and vulnerability scanning, to find
and fix security flaws.

- Assess the application's response (myself) to unexpected issues with regards to data
integrity and user experience.

- Verify that the application conforms with all applicable laws, rules, and guidelines,

including the GDPR on data privacy.

Integration Testing
- Check for proper interaction between various components, such as data flow, API

endpoints, and web interface and code analysis engine connection.

- Verify that user permission and authentication processes are working properly when
users access different areas of the application.

- Verify the accuracy of vulnerability detection and reporting by testing the integration
of security components (such as vulnerability scanning tools) with the web interface
and code analysis engine.

Following system and integration testing, it's critical that I access the findings, address any
problems found, and carry out more testing as needed. Maintaining the security and
dependability of your safe code review tool website requires regular testing and ongoing
development.

74

Reflective Journals

October
I began researching this project concept throughout the first week of work in order to get
knowledgeable and experienced with the topic I would be working on. I began to consider
what kind of project concept would be appropriate for this kind of field (cyber security), and
I thoroughly investigated the issues In the world of cyber security today.
I made some notes about what I would make after watching some YouTube videos on
creative ideas, and I eventually came up with a concept that I thought would be appropriate.
I also asked my mentor from my previous internship for advice, and he gave me some
excellent advice as well as some additional ideas to help me figure out what I wanted to
work on. The objective was to create a secure code review tool, and the supervisor
eventually approved it and provided input. When I formally started looking into how I might
begin this project, I first looked into the most recent security concepts and made some
notes about what I could include in my code, such as:

- Adding advanced security analysis to detect lots of vulnerabilities
- SAST – to spot any possible security flaws
- Penetration testing – to detect any weaknesses
- Data mining – CVE & CWE (common vulnerabilities and exposures and common

weakness enumeration) comparing
- SQL injection, cross-site scripting, and authentication

Before starting this project, I made sure I had the most recent versions of Python and the
Django web framework, and I'll make sure to stay informed going forward. In order to keep
user data for users when they log in or create an account on the code review website, I
considered using a MySQL database, making sure that my web framework is configured to
communicate with it.
I will continue to work more into my project and make sure I get as much done as possible
before the midpoint.

November
This month I talked to my supervisor about where I could start looking and what I should
start doing first and this is what I’ve done so far:

- I researched about the different types of vulnerabilities I could find in a code and
watched a few videos on how I can possibly figure out how to find them starting with

I had an informative conversation with my supervisor to discuss the first few parts of my
project because I wasn't sure where to start. Understanding how important it is to prepare
well, I made the decision to do a lot of research before beginning the coding process. The
goal of this method was to gain a thorough understanding of the code so that I could plan
and strategize my project from start to finish. Through the assistance and perceptive
recommendations of my supervisor, I was able to obtain important insights and clarity
regarding important factors to think about before starting the project.

75

- How many pages should I include in the web application?
- How many vulnerabilities would I be able to detect?
- How will I able to detect these vulnerabilities in the code provided?
- Will I have a text like area for users to add in their code to detect it?
- Will the user be able to get a report based on their code on what they can improve?
-

Additionally, I've developed a graphical user interface (GUI) for my web application, for my
online application to illustrate its expected appearance. On the whole design, though, I'm
still in the thoughtful process. I intend to use CSS for styling, and I'm thinking about
including other features to improve the functionality. Even though I know enough to
construct the program, I'm most concerned about how the scanner page and report
generation page will be implemented. I acknowledge that I still don't fully understand how
to start these particular pages. However, I have hope that as I keep researching, my
understanding will expand and I will eventually be able to address these issues with greater
confidence.

December
After creating some of the functional requirements for my CodePulse online application, I've
determined a few important features. When a user first visits the website, they are directed
to the main page, where they can click on the option to register or log into an already-
existing account. Users must safely create accounts and log out before uploading code to
the main page since security is of utmost importance. It should be possible for registered
users to submit their code for vulnerability analysis, which means a comprehensive
vulnerability scan is required. Compliance with data protection standards on privacy and
security is essential. After the code scan is finished, the system is supposed to produce
comprehensive reports detailing vulnerabilities that were found.

User registration is the subject of the first functional requirement, which highlights the
importance of individual usernames, working email addresses, and the establishment of
secure passwords in my application. This requirement's top priority is to make sure users
can access key platform features. The second requirement relates to the code submission
procedure and prioritizes ease of use with features like file uploads, version control
integration, and an easy-to-use user interface. This is essential for effective collaboration
and project development.

I’ve created a use case diagram where the scope describes the process from code
submission to analysis report retrieving and focuses on users submitting code for
vulnerability analysis. The processes from system activation to the conclusion of the code
scanning are described in the flow description, which also takes into account alternate and
special flows for unsupported file formats and login problems. Presenting the analysis
report, which is kept on file in the user's account for future use, is part of the termination
process.

The CodePulse application is designed and built using a client-server architecture, with
MySQL serving as the data storage engine and Django handling backend functionality.
Configuring the environment, building Django apps, defining models, designing HTML and
CSS pages, and navigating through views and URLs are all part of the implementation

76

process. The main, about, registration, and home pages all include comprehensive graphical
user interfaces. Easy navigation and engagement are highlighted on the home page; safe
login and sign-up procedures are provided on the registration page; code submission and
report creation are the main page's focus points; and the platform's vision and goal are
explained on the About page.

I completed my midpoint report, incorporated all the material I had worked on, and
presented the contents of my application along with a demonstration of my completed
work. For the time being, I'll keep working on my application, and if I run into any problems,
I'll make sure to receive as much assistance as I can by consulting my supervisor.

January
Initiating my Django Project and Establishing some of the Functionalities
I started working with the Django web framework in January, concentrating on building a
solid structure for a web application that would run on Python. My original objective was to
use SQLite 3 to build an integrated database and user-centric system with safe
authentication. The mentioned initial preparation created the framework for the ensuing
stages of development and incorporated several crucial features.

The project setup and initial Configurations
I installed Django together with Python 3.12 and SQLite 3 as the database management
system at the beginning of the project. Essentially because SQLite3 is straightforward to use
and suitable for small to medium-sized applications it was a perfect fit for this project's
scope as that why it was chosen and because I haven’t worked with SQLite3 enough so I
thought this would be interesting. I installed and configured Django according to the setup
instructions from a tutorial I’ve watched on YouTube and this is how I was able to
understand how this project was going to work, making sure that all dependencies were
installed successfully and that the development environment was up and running.

Implementing User Registration and Login
The first tasks was to implement the user registration and login system, this was very
important for my website application as it allowed for the personalized user experience and
secure access control.

I configured my database on settings.py file in my project where the default is SQLite. After
this I created the Django app where I added in on my terminal – python3 manage.py
startapp codereview.

After this step I defined the models in models.py file where I added : from Django.db import
models. For the home, about, and registration page html I created a simple html file in my

77

template folder where I also added my CSS to style my application with some help and
inspiration my research.

I defined the view for the home page in the views.py - logic for handling HTTP request and
generating responses.

In order to navigate my pages I had to add them in the urls.py

78

My CSS to style and design my pages – navigation links, text fields for the user to register,
and styles text and added buttons to my pages for all pages.

Model configuration and database integration
Configuring the database models was important, as was user management. I developed a
few models in models.py to efficiently describe the application's data structures using
Django's ORM. This is an illustration of the CustomUser model, which builds upon the User
model that comes with Django:

79

This customization allowed me to add additional attributes to the user model in the future,
such as profile images or social media links, without modifying the core authentication
mechanisms of Django.

It was difficult and interesting to build up the project, integrate a database, and create user
authentication. I gained a lot of knowledge about Django's features, particularly its robust
user management and database schema conversion instruments. The effective
development of increasingly complicated features in the following months depended
heavily on the initial setup. This stage helped me better grasp Django's design and equipped
me for handling user sessions and user data security, two of the most challenging parts of
web programming.

February
This month I made sure I understood everything and took more detailed notes. I also made
sure I knew what I was doing, so when I came across the main page, I made sure to do as
much research as I could because I was having trouble figuring out what I could research to
help me detect vulnerabilities in my page. I started to wonder, "Do I really know how to do
this?" and "Can I do this?"

I had a meeting with my supervisor, and I asked how I can make sure I can detect the
vulnerabilities in my web application, and what was the right way to do it. My supervisor
provided me with a link that could help me see if I could use a cross injector to detect XSS
using python. I would need to include external libraries but you must also create solutions
from scratch. Th whole idea is to take a URL, check if its valid using regular expressions, then
analyse to check for vulnerabilities. As I have studied the resources provided by my
supervisor, I have come to an understanding on how I can approach this and what to
research.

I have chosen to use Bandit in this stage of constructing my secure code review application
using Python, Django, and MySQL because of its specificity to Python and its ability to detect
common security vulnerabilities. I just needed to use the pip command to install Bandit in
our development environment, which made it very easy to implement. to accomplish an
easy, automated security analysis as a component of the building process.

For the next month, I'll be focusing on developing my ability to spot user code patterns that
could point to vulnerabilities. To locate XSS detection, for instance, I would need to search
for Python libraries or programs capable of detecting XSS. Implementing a custom solution
within a Django application would be an alternative strategy. This requires creating patterns
that analyse user code for identified XSS patterns. I discovered that (CSP) Content Security
Policy is a browser feature that limits which resources can be loaded onto my pages, hence
assisting in the prevention of XSS attacks.

March
Implementing Vulnerability Scanners
I decided to take a more in-depth look at my Django application's security in March,
concentrating mostly on vulnerability scanning and the scanner's general interface design.
During the month, the focus was on developing features that would enable users to check

80

their inputs for vulnerabilities related to SQL injection and Cross-Site Scripting (XSS). This
was an essential feature considering the high dangers connected to these security threats.

With my research given the high rate of SQL injection attacks and their potential to
compromise sensitive data, the decision to include a SQL injection scanner resulted from a
comprehensive approach to security. Based with this understanding, I set out to create an
effective approach that would both identify and avoid SQL injection risks. While working on
my scripts I can to a conclusion from both research and the example of the script I found in
a resource my supervisor has provided. I found this to be very helpful since I was stuck on
how to get this completed, it’s still incomplete but I now know the understanding on how I
can connect all of it.

Technical Implementation
I implemented two custom utility functions, detect_xss_vulnerability and
detect_sql_injection, in the utils.py file. These functions used regular expressions to search
for patterns typical of XSS and SQL injections within user-submitted code. For instance, the
XSS detection function looked for suspicious patterns such as <script> tags or javascript:
protocol usage which are common vectors for XSS attacks:

The function looked for common SQL terms like SELECT, UNION, and INSERT that were
abused in the supplied data in order to detect SQL injections:

81

These methods apply particular patterns that are intended to match popular web-based
attack vectors.
XSS Attacks: Searching for the javascript: protocol, event handlers (on* attributes), and
<script> tags are common ways that cross-site scripting (XSS) attacks are carried out.
SQL Injection: To identify SQL query manipulation, which may change database operations
and perhaps damage or leak data, patterns are created.
Vulnerability Detection: Every function looks for these patterns in the input it receives,
which is usually obtained from user input forms or API queries. Potential vulnerabilities are
indicated by any matching.
Case Sensitivity: Although SQL and HTML/JavaScript are case-insensitive, using
re.IGNORECASE guarantees that the detection is not impeded by the case of the input text.

Design and the User Interface
Users may submit their code and obtain feedback on any security issues on the accessible
scanning page. Users may enter their code into the straightforward form supplied by the
HTML template scanner.html, and the backend processes would handle the rest:

82

The view function scanner processed the request once the form was submitted, used the
utility functions to find vulnerabilities, and sent the findings to the user. The frontend and
backend's connection was important in giving users real-time feedback and improving the
application's security and usability.

URL scanner integration
I included an AJAX-based URL scanner in my program to offer a smooth and engaging user
interface. To do this, I had to create a complex AJAX setup in my Django template so that
form submissions could be handled independently.

JavaScript and jQuery: To minimize page reloads, I utilized jQuery to handle the form
submission event and prevent the default submission. To ensure that all required security
tokens were included in the AJAX request, the form data, including Django's CSRF token,
was serialized using jQuery's.serialize() function.
AJAX Request: The AJAX call was set up to send information to the url_scanner Django view,
which handled the user-inputted URL. For the purpose of making sure the request was
routed appropriately inside the application's URL setup, I used Django's {% url %} template
tag to dynamically build the submission URL.
Backend Processing: The serialized data was received by the url_scanner view on the
backend, which then deserialized it and carried out the required scans to find vulnerabilities.
After that, the JSON-formatted results were returned to the frontend.

83

The application's primary interface included an easy-to-use design that integrated the
scanner. It included a straightforward input form with a submit button that started the AJAX
call, allowing users to specify the URL they wished to scan. A results display section was
dynamically updated below the input field with messages from the backend explaining the
scan findings and any faults that were found. Both aspects of design and functionality have
to be carefully considered while integrating this scanner into the program. My goal was to
create a scanner that was both user-friendly and effective, matching the application's
general style while offering strong functionality.

Working on the URL scanner was an interesting one that improved my knowledge of web
development's front-end and back-end interactions. As I gained more experience with
asynchronous web development, I also became more knowledgeable with Django's AJAX
request handling features. This addition strengthened the application's interactivity and
security, making it a more useful tool for users. Furthermore, the significance of user
feedback systems in web applications was recognized during this development period. I
increased the transparency and reliability of the application by ensuring that users were not
kept in the dark about what was going on behind the scenes by introducing rapid reaction
displays for the scanner findings.

April
Working on Two-Factor Authentication and Email Verification
Implementing two-factor authentication (2FA) via email verification, an important feature to
improve user security, showed difficult for me in April. The user's registered email address
was used to send a randomly generated code, which they had to input on the website to
finish registering. Making sure email communication was safe and did not compromise user
credentials was a key aspect of this approach. I choose to use an app-specific password
instead of my main email password in order to do this. By configuring the security settings
of my email provider, I was able to create a unique password that I needed to access the
email service from my Django application. By separating my application's codebase from my
personal credentials, this method significantly improved security.

For the technical implementation the “send_verification_email” function in views.py, which
created and sent an email with the verification code, served as a centre of functionality. This
function sent emails safely and effectively by making use of Django's email features:

84

The user receives an email with a verification code from this method. It sends the email over
SMTP and captures the process for troubleshooting.

Testing and Troubleshooting
At first, there were difficulties with integrating email capabilities, particularly with the aim
of addressing any mistakes and ensuring dependable delivery. I used Django's logging
system, which was configured to record comprehensive logs of the email transmission
process, to troubleshoot these problems. This was really helpful in finding and fixing
problems with the network and SMTP setup. For example, logs enabled me to identify
timeouts and authentication difficulties, which I subsequently fixed by modifying the SMTP
settings or enhancing the application's error handling.

Additionally, I used Django's shell to test the email sending capability before completely
integrating this system into the live environment. This was essential for improving the
configuration because it allowed me to send emails interactively and view results and
mistakes right away:

85

I made significant undertaking improvement to my Django application's security by using
2FA. It required not just technical implementation but also strategic choices about email
security, such creating passwords unique to each app. The difficulties I encountered,
especially with regard to SMTP settings and error management, helped me get a better
understanding of network connections and the significance of logging in order to simplify
troubleshooting. Through this method, I was able to enhance not just the security of the
program but also my ability to manage dependable, secure email interactions inside the
framework of a web application.

As for Testing my Django website application, I will work on that as I have put together an
in-depth testing plan that includes end-user acceptability testing, integration testing, and
unit testing. This is a complete explanation of how I approached each testing phase, along
with the tools and frameworks I used. I will go over all of this in my final documentation,
display it on my project poster, and go over it in my next presentation.
Furthermore, the significance of user feedback systems in web applications was shown
during this development stage and I have yet to keep working on my testing approaching
the final week of the project deadline.

	Table of Contents
	Executive Summary
	Introduction
	Background
	Aims
	Technology
	Structure

	System
	Requirements
	Functional Requirements
	Use Case Diagram
	Requirement 1 : User Registration and Email Verification
	Description & Priority
	Use Case
	Requirement 2 : Secure User Login
	Description & Priority
	Use Case
	Requirement 3 : Vulnerability scanning for URLs and Code
	Description & Priority
	Use Case
	Data Requirements
	User Requirements
	Environmental Requirements
	Usability Requirements
	Design & Architecture
	Implementation
	Graphical User Interface (GUI)
	Testing
	Evaluation

	Conclusions
	Further Development or Research
	References
	Code References
	Appendices
	Project Proposal

	Objectives
	Background
	State of the Art
	Technical Approach
	Technical Details
	Special Resources Required
	Project Plan
	Testing
	Reflective Journals

