

National College of Ireland

Technical Report

Task Management Web Application

12th- May 2024
Bachelor of Science (Honours) in Computing

Software Development

Academic Year i.e., 2023/2024

Satyam Sehgal

X19104464

X19104464@student.ncirl.ie

mailto:X19104464@student.ncirl.ie

1

Contents
Contents.. 1

Executive Summary ... 3

1.0 Introduction ... 3

1.1. Background .. 3

1.2. Aims ... 3

1.3. Technology .. 4

2.0 System ... 5

2.1. Requirements .. 5

2.1.1. Functional Requirements.. 5

2.1.1.1. Use Case Diagram ... 7

2.1.1.2. Requirement 1: Create Tasks .. 7

Description & Priority .. 7

Use Case .. 7

2.1.1.3. Requirement 2: Read Tasks... 8

Description & Priority .. 8

Use Case .. 8

2.1.1.4. Requirement 3: Edit Tasks .. 9

Description & Priority .. 9

Use Case .. 9

2.1.1.5. Requirement 4: Delete Tasks .. 10

Description & Priority .. 10

Use Case .. 10

2.1.1.6. Requirement 5: Filter Tasks through Categories .. 11

Description & Priority .. 11

Use Case .. 11

2.1.1.7. Requirement 6: Manage Tasks with Drag and Drop... 12

Description & Priority .. 12

Use Case .. 12

2.1.1.8. Requirement 7: View Future and Past Tasks ... 13

Description & Priority .. 13

Use Case .. 13

2.1.1.9. Requirement 8: View Specific Week Tasks .. 14

Description & Priority .. 14

2

Use Case .. 14

2.1.1.10. Requirement 9: View Specific Week Tasks .. 15

Description & Priority .. 15

Use Case .. 15

2.1.1.11. Requirement 10: Create Template/Archive Tasks ... 16

Description & Priority .. 16

Use Case .. 16

2.1.1.12. Requirement 2: Read Template/Archive Tasks .. 17

Description & Priority .. 17

Use Case .. 17

2.1.1.13. Requirement 3: Edit Template/Archive Tasks .. 18

Description & Priority .. 18

Use Case .. 18

2.1.1.14. Requirement 4: Delete Template/Archive Tasks ... 19

Description & Priority .. 19

Use Case .. 19

2.1.1.15. Requirement 14: Filter Template Tasks through Categories 20

Description & Priority .. 20

Use Case .. 20

2.1.1.16. Requirement 15: Manage Template Tasks with Drag and Drop 21

Description & Priority .. 21

Use Case .. 21

2.1.2. Data Requirements .. 22

2.1.3. User Requirements ... 23

2.1.4. Environmental Requirements ... 23

2.1.5. Usability Requirements .. 24

2.2. Design & Architecture .. 24

2.3. Implementation ... 25

2.4. Graphical User Interface (GUI) .. 55

2.5. Testing ... 61

2.6. Evaluation .. 65

3.0 Conclusions .. 66

4.0 Further Development or Research ... 67

5.0 References ... 68

6.0 Appendices .. 68

6.1. Project Proposal ... 68

3

1.1. Reflective Journals ... 74

Executive Summary
The project aims to develop a user-friendly Task Management Web Application modified for

individual use. It focuses on simplicity, ease of use, and real-time updates, distinguishing it

from existing tools designed for team collaboration with no automation. The technical

approach involves an Agile methodology, emphasizing regular progress and adaptation. The

development stack includes Next.js for the frontend, Nest.js for the backend, and Redis for

data management. Real-time updates are conducted through the WebSocket technology

and Bull Queues/Web workers.

1.0 Introduction

1.1. Background
I got motivated by the absence of straightforward tools for individual task management.

Most tools out there are made for teams and work life, which can be confusing for

individuals. So, I decided to make a simple and easy-to-use tool just for personal use with a

vast number of features. I will pay a lot of attention to making it user-friendly and adding

features like real-time updates and a lot of automation tasks i.e., notification sending will

relay if a task is still pending or not.

1.2. Aims

My Project aims to achieve the following:

1. User-Friendly Task Management

2. Simplicity and Ease of Use

3. Real-Time Updates

4. Personal Task Organization priority vise

5. Simple task automations

6. Task Prioritization

7. Archive Tasks

8. Task Categories Management

9. Automation of Recurring Tasks and more

10. Agile Development and Adaptability

11. Testing

12. Deployment and User Training

4

1.3. Technology

The Task Management Web Application is built using a variety of technologies to ensure

it works well, is easy to use, and can keep information updated in real time. The

technologies used for different parts of the project are as follows:

Frontend Development

Technology: JavaScript, Next, HTML, CSS

Backend Development

Technology: Nest.js, Redis

Real-Time Updates

Technology: WebSocket

Version, Special Integrations Control, AI Automation

Technology: Bull Queues, Web Sockets, Git, REST API, JWT, Swagger

This combination of these technologies will help me create a strong, flexible, and easy-

to-use app that meets the project's goals. By these technologies it’s possible to provide a

smooth and productive user experience while also handling specific requirements like

real-time updates and task prioritization. By version control, I can ensure that the code is

stable and manageable throughout the development process.

5

2.0 System

2.1. Requirements

2.1.1. Functional Requirements

Feature Requirement Description

Create Tasks Users can create new tasks by entering the task

name, category, and priority, starting time, repeat

days in a week (if any) and estimated task time. The

application will store the task information.

Read Tasks Users can view their existing tasks in a 2-column list

format. The tasks will be displayed based on their

category and priority.

Edit Tasks Users have the ability to modify task details, such as

the task name, category, or priority level. This

feature allows for easy updates to task information.

Delete Tasks Users can remove unwanted tasks from their task

list. This feature helps keep the task list clean and

organized.

Filter Tasks through Categories Users can select multiple category filters to view

relevant tasks. When no filters are set then all tasks

are viewed.

Manage Tasks with Drag and Drop The application provides a drag and drop

functionality that allows users to easily create a new

task by dropping into the create new task form

View Future and Past tasks Users can scroll through the dates and select

required month to view the tasks of specific days in

the future or the past

View specific week tasks Users can skip whole weeks to view tasks present in

the future or past week accordingly

Create task template for Archive Tasks Users can create template/archive Tasks so they can

create tasks from already created templates without

entering all the task information again.

View Template/Archive Tasks Users can view their existing template/archive tasks

in a 2-column list format. The template/archive

6

tasks will be displayed based on their category and

priority.

Edit Template/Archive Tasks Users have the ability to modify Template/Archive

task details, such as the task name, category, or

priority level. This feature allows for easy updates to

task information.

Delete Template/Archive Tasks Users can remove unwanted Template/Archive tasks

from their task list. This feature helps keep the

Template/Archive task list clean and organized.

Filter Template/Archive Tasks through Categories Users can select multiple category filters to view

relevant Template/Archive tasks. When no filters

are set then all Template/Archive tasks are viewed.

Manage Template/Archive Tasks with Drag and Drop The application provides a drag and drop

functionality that allows users to easily create a new

Template/Archive task by dropping into the create

new task form

Create Categories for Tasks Users can create new categories by selecting the

icon from the list provided and adding a name for

the category. Categories help in filtering tasks so

users can have a clean view.

Delete Categories for Tasks Users can delete unwanted categories. This will also

delete all the tasks created under that category with

the help of bull queue and websocket so if there are

thousands of tasks then the frontend does not get

stuck and a thread/process is started in backend to

delete all relevant tasks and just show alert message

on front end when the deletion is done.

Edit user profile password Users can update password if they want to change

the password in case of breach

Logout Users can log out from the system if they want to.

7

2.1.1.1. Use Case Diagram

2.1.1.2. Requirement 1: Create Tasks

 Description & Priority
High. Allows users to create new tasks with essential details such as name, category,

priority, start time, repetition, and estimated duration.

 Use Case

Scope

8

Task management within the application.

Description

Users can input task details into a form and submit it to create a new task.

Flow Description

Precondition

User must be logged in.

Activation

User navigates to the task creation form.

Main flow

1. User fills out the task creation form.

2. User submits the form.

3. System validates the input.

4. System stores the task information in the database.

5. System confirms task creation to the user.

Alternate flow

 A1. If input validation fails, the system prompts the user to correct the data.

 A2. If a user selects a past date, the system prompts the user to enter present or future

date

Exceptional flow

E1. System failure during save operation results in error notification to the user.

2.1.1.3. Requirement 2: Read Tasks

 Description & Priority
High. Enables users to view tasks in a categorized and prioritized list.

 Use Case

Scope

9

Viewing tasks within the application.

Description

Users can view a list of their tasks organized by categories and priorities.

Flow Description

Precondition

Tasks exist in the system.

Activation

User opens the task viewing/planning page.

Main flow

1. User accesses the task list page.

2. System retrieves tasks from the database.

3. System displays tasks in a 2-column list format.

Alternate flow

 A1. No tasks exist, and the system displays a "No Tasks" message.

Exceptional flow

E1. Failure to retrieve tasks results in an error message.

2.1.1.4. Requirement 3: Edit Tasks

 Description & Priority
Medium. Allows users to modify details of existing tasks.

 Use Case

Scope

Task modification within the application.

Description

10

Users can change task details like name, category, starting time, estimated time, repeat

days in the week and priority,

Flow Description

Precondition

Tasks exist in the system.

Activation

User selects a task to edit.

Main flow

1. User clicks on the edit option of a task.

2. System displays the task details in an editable form.

3. User modifies the required fields and submits the form.

4. System validates and updates the task details.

5. System confirms the successful update to the user.

Alternate flow

 A1. User aborts the edit operation.

 A2. If input validation fails, the system prompts the user to correct the data.

 A3. If a user selects a past date, the system prompts the user to enter present or future

date

Exceptional flow

E1. System error during update results in an error message.

2.1.1.5. Requirement 4: Delete Tasks

 Description & Priority
Medium. Provides functionality for users to delete tasks from their list.

 Use Case

Scope

Task deletion within the application.

11

Description

Users can remove tasks they no longer need.

Flow Description

Precondition

Tasks exist in the system.

Activation

User selects a task to delete.

Main flow

1. User clicks on the delete option for a task.

2. System asks for confirmation to delete the task.

3. User confirms deletion.

4. System removes the task from the database.

5. System confirms deletion to the user.

Alternate flow

A1. User cancels the deletion process.

Exceptional flow

E1. Failure during deletion leads to an error message.

2.1.1.6. Requirement 5: Filter Tasks through Categories

 Description & Priority
Medium. Allows users to filter tasks based on selected categories.

 Use Case

Scope

Filtering tasks in the application.

12

Description

Users can apply category filters to the task list to narrow down the visible tasks.

Flow Description

Precondition

Tasks exist in the system.

Activation

User selects filter options from the category chips interface.

Main flow

1. User selects one or more categories from the filter options.

2. System filters tasks based on the selected categories.

3. System displays only the tasks that match the selected categories.

Alternate flow

A1. No tasks match the selected filters, and the system displays a "No Tasks Found"

message.

Exceptional flow

E1. If there is a system error during filtering, an error message is shown.

2.1.1.7. Requirement 6: Manage Tasks with Drag and Drop

 Description & Priority
Medium. Enables users to create a copy of a task using a drag-and-drop interface to

create a new task form on the right pane.

 Use Case

Scope

Creating new tasks within the application with drag and drop.

Description

13

Users can create a copy of a task using a drag-and-drop interface to create a new task

form on the right pane. When the task gets dragged to the right pane then all the

created tasks fields are populated with the dropped task fields.

Flow Description

Precondition

Tasks exist in the system.

Activation

User starts dragging a task.

Main flow

1. User clicks and holds a task.

2. User drags the task to the create new task form on the right pane.

3. User releases the task.

4. System updates the task's position and fills out the task info to create a new task form

on the right pane.

5. System confirms the update.

Alternate flow

A1. User aborts the drag operation by releasing the task in the left tasks list pane.

Exceptional flow

E1. If the system fails to update the task position, an error message is displayed.

2.1.1.8. Requirement 7: View Future and Past Tasks

 Description & Priority
Medium. Users can view tasks scheduled for future or past dates.

 Use Case

Scope

Viewing tasks by date within the application.

Description

Users can navigate through the week swiper and month selector to view tasks for

selected dates.

Flow Description

14

Precondition

Tasks exist for the selected dates.

Activation

User navigates to the week swiper and month selector.

Main flow

1. User selects a date from the week selector and a month from month selector.

2. System retrieves tasks for the chosen date.

3. System displays tasks for that date.

Alternate flow

A1. No tasks exist for the selected date, and the system displays a "No Tasks" message.

Exceptional flow

E1. Failure to retrieve tasks results in an error message.

2.1.1.9. Requirement 8: View Specific Week Tasks

 Description & Priority
Medium. Allows users to view tasks for a specific week.

 Use Case

Scope

Viewing weekly tasks in the application.

Description

Users can select a week to view all tasks assigned to that week.

Flow Description

Precondition

15

Tasks are scheduled in the system by week.

Activation

User selects a week from the week navigator.

Main flow

1. User selects a specific week.

2. System retrieves all tasks for that week.

3. System displays the tasks.

Alternate flow

A1. No tasks are scheduled for the selected week, prompting a "No Tasks" message.

Exceptional flow

E1. Failure to retrieve tasks results in an error message.

2.1.1.10. Requirement 9: View Specific Week Tasks

 Description & Priority
Medium. Allows users to view tasks for a specific week.

 Use Case

Scope

Viewing weekly tasks in the application.

Description

Users can select a week to view all tasks assigned to that week.

Flow Description

Precondition

16

Tasks are scheduled in the system by week.

Activation

User selects a week from the week navigator.

Main flow

4. User selects a specific week.

5. System retrieves all tasks for that week.

6. System displays the tasks.

Alternate flow

A1. No tasks are scheduled for the selected week, prompting a "No Tasks" message.

Exceptional flow

E1. Failure to retrieve tasks results in an error message.

2.1.1.11. Requirement 10: Create Template/Archive Tasks

 Description & Priority
High. Allows users to create new template/archive for frequently used tasks with

essential details such as name, category, priority, start time, repetition, and estimated

duration. This saves time again in creating a task from scratch as a template is already

available.

 Use Case

Scope

Template/archive Task management within the application.

Description

17

Users can input template/archive task details into a form and submit it to create a new

template/archive task.

Flow Description

Precondition

User must be logged in.

Activation

User navigates to the template/archive task creation form.

Main flow

6. User fills out the template/archive task creation form.

7. User submits the form.

8. System validates the input.

9. System stores the task information in the database.

10. System confirms task creation to the user.

Alternate flow

 A1. If input validation fails, the system prompts the user to correct the data.

 A2. If a user selects a past date, the system prompts the user to enter present or future

date

Exceptional flow

E1. System failure during save operation results in error notification to the user.

2.1.1.12. Requirement 2: Read Template/Archive Tasks

 Description & Priority
High. Enables users to view template/archive tasks in a categorized and prioritized list.

 Use Case

Scope

Viewing template/archive tasks within the application.

Description

Users can view a list of their template/archive tasks organized by categories

Flow Description

18

Precondition

Template/archive Tasks exist in the system.

Activation

User opens the template/archive task page.

Main flow

4. User accesses the template/archive task list page.

5. System retrieves tasks from the database.

6. System displays tasks in a 2-column list format.

Alternate flow

 A1. No tasks exist, and the system displays a "No Template/archive Tasks" message.

Exceptional flow

E1. Failure to retrieve tasks results in an error message.

2.1.1.13. Requirement 3: Edit Template/Archive Tasks

 Description & Priority
Medium. Allows users to modify details of existing template/archive tasks.

 Use Case

Scope

Template/archive Task modification within the application.

Description

Users can change template/archive task details like name, category, starting time,

estimated time, repeat days in the week and priority,

19

Flow Description

Precondition

Template/archive Tasks exist in the system.

Activation

User selects a template/archive task to edit.

Main flow

6. User clicks on the edit option of a template/archive task.

7. System displays the template/archive task details in an editable form.

8. User modifies the required fields and submits the form.

9. System validates and updates the task details.

10. System confirms the successful update to the user.

Alternate flow

 A1. User aborts the edit operation.

 A2. If input validation fails, the system prompts the user to correct the data.

 A3. If a user selects a past date, the system prompts the user to enter present or future

date

Exceptional flow

E1. System error during update results in an error message.

2.1.1.14. Requirement 4: Delete Template/Archive Tasks

 Description & Priority
Medium. Provides functionality for users to delete template/archive tasks from their list.

 Use Case

Scope

Template/archive Task deletion within the application.

Description

Users can remove template/archive tasks they no longer need.

Flow Description

Precondition

20

Template/archive Tasks exist in the system.

Activation

User selects a template/archive task to delete.

Main flow

6. User clicks on the delete option for a template/archive task.

7. System asks for confirmation to delete the template/archive task.

8. User confirms deletion.

9. System removes the template/archive task from the database.

10. System confirms deletion to the user.

Alternate flow

A1. User cancels the deletion process.

Exceptional flow

E1. Failure during deletion leads to an error message.

2.1.1.15. Requirement 14: Filter Template Tasks through Categories

 Description & Priority
Medium. Allows users to filter template/archive tasks based on selected categories.

 Use Case

Scope

Filtering template/archive tasks in the application.

Description

Users can apply category filters to the template/archive task list to narrow down the

visible tasks.

Flow Description

21

Precondition

Template/archive Tasks exist in the system.

Activation

User selects filter options from the category chips interface.

Main flow

4. User selects one or more categories from the filter options.

5. System filters tasks based on the selected categories.

6. System displays only the template/archive tasks that match the selected categories.

Alternate flow

A1. No tasks match the selected filters, and the system displays a "No template/archive

Tasks Found" message.

Exceptional flow

E1. If there is a system error during filtering, an error message is shown.

2.1.1.16. Requirement 15: Manage Template Tasks with Drag and Drop

 Description & Priority
Medium. Enables users to create a copy of a template/archive task using a drag-and-

drop interface to create a new task form on the right pane.

 Use Case

Scope

Creating new template/archive tasks within the application with drag and drop.

Description

Users can create a copy of a template/archive task using a drag-and-drop interface to

create a new template/archive task form on the right pane. When the template/archive

task gets dragged to the right pane then all the created template/archive tasks fields are

populated with the dropped task fields.

Flow Description

Precondition

22

 Template/archive Tasks exist in the system.

Activation

User starts dragging a template/archive task.

Main flow

6. User clicks and holds a template/archive task.

7. User drags the template/archive task to the create new template/archive task form

on the right pane.

8. User releases the template/archive task.

9. System updates the template task's position and fills out the template/archive task

info to create a new template/archive task form on the right pane.

10. System confirms the update.

Alternate flow

A1. User aborts the drag operation by releasing the template task in the left tasks list pane.

Exceptional flow

E1. If the system fails to update the task position, an error message is displayed.

2.1.2. Data Requirements
Task Data:

Task name, category, priority, starting time, repeat days, and estimated task time.

Data integrity and validity must be ensured, particularly in preventing tasks from

being scheduled in the past unintentionally.

● User Data:

User credentials (e.g., username, password), preferences, and task customization

settings. Data protection measures such as encryption for passwords and sensitive

data are essential.

● Template/Archive Data:

Information on templates or archived tasks that can be reused or referred to, which

include all task properties.

● Database Transactions:

ACID properties (Atomicity, Consistency, Isolation, Durability) must be maintained to

ensure that task data is correctly processed, especially in operations that modify

multiple entries like deleting categories.

23

● Scalability and Performance:

The system should be able to handle a large volume of data efficiently, using

technologies like Redis for caching and Bull Queue for managing intensive tasks

without overloading the frontend.

2.1.3. User Requirements
● Ease of Use:

An intuitive user interface that allows effortless navigation and interaction,

especially for creating, editing, and deleting tasks.

● Accessibility

The application should be accessible to users with disabilities, featuring keyboard

navigability and screen reader compatibility.

● Personalization

Users should be able to customize the interface and functionality, such as setting

preferred categories or task filters.

● Security

Secure authentication and authorization mechanisms must be in place to protect

user data and prevent unauthorized access.

● Real-time Interaction

Users expect real-time updates for task changes, which necessitates robust backend

WebSocket implementations for immediate feedback.

2.1.4. Environmental Requirements
● Cross-Platform Compatibility

The application should run seamlessly on various devices and browsers, adapting to

different screen sizes and operating systems.

● Server Requirements

The backend should be capable of handling multiple user requests simultaneously

without degradation in performance, which might require scalable cloud hosting

solutions.

● Development Environment

Consistency across development, testing, and production environments to prevent

issues during deployment. Use of containers or virtual environments is

recommended to maintain consistency.

● Compliance and Standards

24

Adherence to data protection regulations (like GDPR) and web standards for

accessibility and security.

2.1.5. Usability Requirements
● User Feedback:

Incorporating user feedback mechanisms to continuously improve the interface

based on actual usage patterns.

● Error Handling:

 Clear and helpful error messages should be provided. Users should be guided to

resolve issues themselves, if possible.

● Performance Metrics:

Load times and responsiveness must meet industry standards, with optimizations for

slower networks.

● Guidance and Help:

Embedded help sections or tooltips that explain how to perform various tasks within

the application, improving the learning curve.

2.2. Design & Architecture

The design and architecture of the task management system are planned to meet both

functional and non-functional requirements, ensuring robustness, scalability, and a

seamless user experience. Here is an elaboration on the system's architecture and design:

1. RESTful API

The communication between the frontend and backend services is managed through

RESTful APIs, which support a clear and well-defined set of operations. These APIs are

stateless, meaning each call from the frontend to the backend must contain all the

information the backend needs to understand the request, and the responses are self-

descriptive. This statelessness simplifies the interaction between client and server, making

the system more scalable and easier to manage. RESTful APIs also facilitate integration with

other services and systems, providing flexibility to extend functionality or swap out

components with minimal disruption.

2. Use of Frameworks

For the frontend development, the system utilizes Next.js, a React framework that supports

features like server-side rendering and static site generation, making it ideal for building

fast, SEO-friendly single-page applications (SPAs). This choice enhances the user experience

25

by speeding up load times and providing an interactive, dynamic user interface. The

backend employs Nest.js, a progressive Node.js framework that uses TypeScript by default

and supports a wide range of out-of-the-box application architecture patterns. Nest.js's use

of modern JavaScript features and its alignment with Angular's structure make it a robust

choice for building scalable server-side applications.

3. Security Measures

Security is a top priority in the system's design. JSON Web Tokens (JWT) are used for secure

user authentication. A JWT is a compact, URL-safe means of representing claims to be

transferred between two parties, allowing the server to verify tokens and establish the

user’s identity without needing to repeatedly query the database. All data transmissions are

secured using HTTPS, ensuring that all data sent between the client and server is encrypted.

Regular security audits are planned to identify and mitigate vulnerabilities, ensuring the

application adheres to the latest security standards and practices.

4. Real-time Processing

To enhance the user experience with real-time interaction, the system incorporates

WebSocket technology. This allows for two-way interactive communication sessions

between the user's browser and the server. As a result, users receive immediate updates on

their tasks, such as new messages or status changes, without needing to refresh the

browser. Additionally, the system uses Bull Queues for managing background tasks such as

sending notifications or processing recurring tasks. Bull Queues handle these operations

asynchronously, preventing them from blocking or slowing down the main application

processes.

2.3. Implementation

2.3.1. Sign In

2.3.1.1. Next.js - Front end code

26

27

Imports and Setup:

● useTranslations from next-intl is imported for internationalization, allowing the component

to fetch translation strings based on a given key.

● LoginForm is imported which is a custom component for the login form.

Translation Setup:

● const t = useTranslations('Login'); initializes translation hook to use translation keys under

the 'Login' namespace.

● const translations is an object that stores various translations needed for the LoginForm,

such as titles and messages.

Render Method:

● The SignInPage function component returns JSX that defines the layout of the login page:

● A full-screen div with centered content that ensures the form is responsive and centered.

● A nested div that contains a title and the LoginForm component. The LoginForm receives the

translation object as props.

28

LoginForm Component

Props and State Initialization:

● The component accepts props with a type of Props which includes translations of type

Translations.

● useState is used to manage credentials (username and password) and loading state

(indicating if the login is processing).

Handling URL Parameters:

useSearchParams from next/navigation is used to fetch query parameters, specifically to handle

redirect scenarios after login.

Login Functionality:

● verifyLogin is an asynchronous function triggered on form submission:

● Prevents default form submission behavior.

● Sets loading to true indicating the start of the login process.

● Uses signIn from next-auth/react to perform authentication with credentials. If a callbackUrl

is provided via URL parameters, it will redirect there after a successful login.

● Error handling using toast from react-toastify to show error messages.

● Redirects the user if the signIn process returns a URL.

Form Validation:

isLoginFormValid checks if both username and password fields are not empty, enabling the

submit button only if both fields are filled.

Form Rendering:

Renders a form that includes:

● Input fields for username and password. These inputs update the credentials state on

change.

● A custom button CustomButton that triggers verifyLogin on click. It is disabled based on

isLoginFormValid.

● Conditional rendering inside the button to show a loading indicator or a vector image

(VectorSvg) based on the loading state.

Styling and Accessibility:

The form uses Tailwind CSS classes for styling. The inputs and button are styled to be visually

consistent and accessible, including responsive design considerations.

Security Features:

The password input uses a custom PasswordInputSignIn component, likely enhancing security

features like masking the input and potentially adding additional security measures like strength

validation.

29

2.3.1.2. Nest.js - Backend end code

30

AuthController (NestJS Controller)

This is a typical NestJS controller handling authentication, specifically for managers

logging into an application.

Imports and Decorators:

● @ApiTags, @Body, @Controller, and @Post are decorators from NestJS that

are used to define the controller's API routes and documentation.

● @ApiManagerAppLogin and @Anonymous might be custom decorators to

handle API logging and permit anonymous access respectively.

Controller Setup:

● The controller is tagged with 'auth' for API documentation and routing

purposes.

● A route /auth/login-manager-app is established for handling login requests

specifically for managers.

Dependency Injection:

AuthService is injected into the controller through the constructor, allowing the

controller to delegate authentication logic to this service.

Login Method:

31

● loginManagerApp is an asynchronous method that handles POST requests to

login managers.

● It takes LoginDto (Data Transfer Object) as input, which likely includes

username and password.

● The method calls authService.login, passing the LoginDto and a role

(Role.Manager).

● It returns a Promise of LoginResponse, which likely includes JWT tokens and

other login-related information.

AuthService (NestJS Service)

This service handles the business logic for user authentication.

Imports and Dependency Injection:

Various classes and services are injected, including JwtService for handling JWT

tokens, UsersValidationService, and repositories for user and store data

management.

Login Function:

● The login function authenticates a user based on their role.

● It calls validateUser to ensure the user exists and their role and password

match the credentials provided.

● For managers, it also logs the last login time.

● Returns LoginResponse with the JWT token and user information.

ValidateUser Function:

● Validates the existence of a user and their role based on the provided

LoginDto.

● SuperAdmins are fetched directly; other users are validated based on

associated stores.

● Passwords are validated, and user role checks are performed to ensure the

user can perform the role-specific actions.

UsersRepository (Repository Pattern)

This section outlines the repository used for interacting with user data stored in a

database.

Repository and CLS Service:

● Handles database operations abstractly, using a generic Repository service.

● Uses CellClsService to manage context and store identifiers during requests.

● User Data Retrieval and Management:

32

● Functions are provided to retrieve users based on various criteria (e.g.,

username, role, store).

● Includes complex operations like fetching all usernames from multiple stores

and filtering users by role.

● Also includes CRUD operations to create and update user entries in the

database.

Database Keys:

● Uses predefined keys for database operations, ensuring consistent and error-

free data access.

● DB_KEYS is used to define structured keys based on store IDs and other

parameters for organized data retrieval.

2.3.2. Update User Password

2.3.2.1. Next.js - Front end code

33

34

Imports and Setup

● React and useState Hook: Used for managing component state.

● zod: A validation library to ensure data integrity by defining a schema for the

password fields.

● PasswordInput and CustomButton: Reusable React components for input fields and

buttons, respectively.

● changePassword: A function likely making an API call to update the user's password

on the server.

● Translations and ErrorResponse Types: Used for internationalization and handling

API response errors.

Component Structure and Logic

State Definitions:

● formValues holds the current values of the form inputs: old password, new

password, and password confirmation.

● buttonDisable controls the disabled state of the submit button based on form

validation.

● formErrors stores potential error messages for each input, which helps in displaying

validation feedback to the user.

Password Validation Schema:

passwordSchema is defined using zod and sets a minimum length of 8 characters for

each password field.

Event Handlers:

● handleChange updates the formValues state whenever an input field changes. It also

checks if the new passwords match each time either the new password or password

confirmation changes.

● validatePasswordMatch checks if the new password and its confirmation match. If

not, it disables the submit button and sets an appropriate error message. If they do

match and are not empty, it enables the submit button and clears the error.

Form Submission:

● handleSubmit is triggered when the form is submitted.

● Prevents the default form submission action.

● Clears previous errors and validates the form data against the defined schema.

● If validation passes, it calls the changePassword function with the form values.

● Handles the response: if successful (returns a boolean), it shows a success toast and

resets the form values. If an error occurs (returns ErrorResponse), it parses the error

message and displays it via toast notifications.

● Catches and handles any errors from the zod validation or other exceptions, setting

form errors appropriately or showing a toast for unexpected errors.

35

2.3.2.2. Nest.js - Back end code

36

Imports and Setup:

● @Body, @Controller, @Patch, and @Query are NestJS decorators to define the

controller and its methods.

● @ApiBearerAuth, @ApiTags from @nestjs/swagger for API documentation

purposes.

● HasRoles is likely a custom decorator used to enforce role-based access control.

Controller Decorators:

● @ApiBearerAuth() indicates that the methods within the controller require HTTP

Bearer Authentication.

● @ApiTags('users') categorizes the controller's endpoints under the 'users' tag in the

Swagger documentation.

● @Controller('users') defines the base route for all endpoints defined within this

controller.

Dependency Injection:

● UsersService is injected into the controller via the constructor. This service is

responsible for the business logic associated with user operations.

● Endpoint - changePassword:

● @Patch('change-password') specifies a PATCH method for the endpoint, which is

typically used for updating resources.

● @HasRoles(Role.Manager) restricts access to this endpoint to users who have a

'Manager' role.

● changePassword(@Body() changePasswordDto: ChangePasswordDto) takes the new

password data from the request body.

● Returns a boolean promise that resolves to true if the password change was

successful.

UsersService (NestJS Service)

Service Setup:

The service class is annotated with @Injectable(), making it a candidate for dependency

injection.

Dependency Injection in Service:

Dependencies such as UsersValidationService, UsersRepository, EventEmitter2, and

CellClsService are injected. These handle various aspects of user validation, database

interaction, event management, and context-specific data respectively.

changePassword Method:

● User Retrieval: Retrieves the user based on userId and storeId from the

CellClsService context, which likely manages data specific to the current request or

session.

● Validation: Validates that the user exists and that the provided old password

matches the stored password.

● Password Update: Hashes the new password using bcrypt and updates the user's

password.

37

● Date Handling: Sets the lastPasswordChangedDate to the current date formatted

according to a predefined format, ensuring the date is recorded for auditing or

security purposes.

● Persistence: Saves the updated user information back to the database.

● Event Emission: Emits a password changed event using EventEmitter2. This could be

used for logging, notifications, or other side effects triggered by a password change.

Event-Driven Behaviour:

After changing the password, the service emits an event

(EVENTS.USERS.PASSWORD_CHANGED). This is a key feature of an event-driven

architecture, where components react to events rather than directly invoking further

actions. This allows for better separation of concerns and easier integration of side

effects like notifications or logging.

2.3.3. Categories create, delete and view

2.3.3.1. Next.js - Front end code

38

39

40

Component Structure

● SectionsInterface: A TypeScript interface that specifies the props expected by the

Sections component, including a list of sections and translations for localization.

● State Management:

● isRename, selectedRenameSection, inputValue, renameError: States used to

manage the renaming of sections.

● allSections, selectedSections: States to hold sections data and track selected

sections.

● showModal, showConfirmationModal, reload: Boolean states to control modal

visibility and trigger re-render or refreshes.

Context Usage:

● The component uses the useContext hook to access sectionsData context, which

likely shares sections data and methods across components.

● Functional Logic

● Filtering Sections: A filterSections function (memoized with useCallback) filters out

sections already included in the context, ensuring the UI reflects the current state.

Event Handlers:

● toggleSectionSelection: Toggles selection of sections, used for actions like delete or

edit.

● handleConfirmationModal: Opens a confirmation modal if sections are selected;

otherwise, displays a warning toast.

● deleteSections: Deletes selected sections after confirmation, using an API call

(deleteSection), and updates the UI accordingly.

41

● handleModalOpen: Opens a modal to possibly add a new section.

● handleRename: Handles changes to the input field for renaming a section.

● renameSection: Submits the new name for the section, updates the backend via

editSection, and handles the UI response based on success or error.

useEffect for Filtering and Setting Sections:

● One useEffect is used to filter sections whenever there's a reload.

● Another useEffect ensures that allSections is synchronized with props.sections.

● UI Components and Interaction

Modals for Adding and Confirming Actions:

Modal and ConfirmationModal components are used for adding new sections and

confirming deletions, respectively.

Dynamic List Rendering:

Sections are listed dynamically with options to select, rename, or delete. Conditionally

rendered elements include input fields for renaming and SVG icons for actions.

Custom Buttons:

Buttons are used to trigger actions like opening modals and confirming deletions or

additions.

Detailed Rendering Logic

Sections are rendered in a list with conditional elements for renaming:

● If isRename is true and the section matches selectedRenameSection, an input field

and control icons (TickSVG and CrossSvg) are shown.

● Error messages are displayed if there’s an issue with the renaming process.

● Each section can be toggled for selection, and upon selection, it can be either

renamed or marked with a TickSVG to denote selection.

● Actions like adding new sections or deleting selected ones are managed through

buttons which trigger modals for further interactions.

42

2.3.3.2. Nest.js - Back-end code

43

44

Categories Controller (NestJS Controller)

Annotations and Role Management:

● @ApiBearerAuth and @ApiTags are used for Swagger documentation to

authenticate and categorize the endpoints.

● @Controller('sections') designates the base route for all endpoints within this

controller.

Endpoint Definitions:

● Utilizes RESTful design principles (GET, POST, PUT, DELETE) to manage sections.

● Endpoints are protected with role-based access controls using the @HasRoles

decorator, restricting certain operations to specific user roles like Role.Manager.

● Each method interacts with the SectionsService to perform operations like creating,

editing, deleting, and updating the planning status of sections.

Categories Service (NestJS Service)

Business Logic:

● Handles all the logic required to manage sections, including CRUD operations and

unique validations.

● Uses SectionsRepository for database interactions and TasksService for related tasks

management.

● Utilizes EventEmitter2 for emitting events related to sections operations, which

helps in maintaining the system reactive and extensible.

Complex Operations:

create, editSection, updatePlanningStatus, and delete are methods that perform

respective operations and emit relevant events for actions like creation, update, or

deletion.

Categories Repository (NestJS Repository)

Database Interaction:

● Provides methods for interacting with the database, such as findAll, findById, create,

update, and delete.

● Uses a generic Repository service, which abstracts the database interaction, making

the repository easier to manage and test.

Responsibilities:

● Manages CRUD operations on the sections stored in the database.

● Ensures the unique constraints and other validations at the data level.

● SectionQueueConsumer (NestJS Processor for Bull Queue)

Job Processing:

● Defined as a processor for a job queue named SECTIONS_QUEUE.

● @Process('DELETE_SECTION_TASKS') handles the deletion of sections and

associated tasks asynchronously, ensuring that heavy tasks do not block the main

application thread.

45

Event Handling:

● @OnQueueCompleted and @OnQueueFailed are event handlers that execute upon

completion or failure of a job, respectively.

● These handlers emit events and log results or errors, which is crucial for monitoring

and debugging.

2.3.4. Tasks create, delete, edit, view, prioritize, drag and drop

2.3.4.1. Next.js - Front end code

46

47

48

49

Props and State Management

● Props: The component receives various props such as sections, tasks, templateTasks,

translations, and others related to date and loading state.

● State Variables:

● Task and UI State: Manages states related to task interaction, such as creating new

tasks, tracking a deleted task, whether a task is being dragged, and whether the task

viewer is expanded.

● Data Arrays: Maintains arrays for tasks and template tasks which can be

manipulated locally.

● Modal States: Controls visibility of confirmation modals and other UI elements.

● Filter and Sorting States: Manages states related to filtering tasks by sections or

other criteria and whether data has been sorted or filtered.

Hooks and Lifecycle

useEffect:

● Sets the context date to ensure synchronization with the selected date.

● Initializes or updates data based on changes in tasks, templates, or filters, and

controls loading animations.

● useLayoutEffect: Ensures data is filtered and sorted based on user interactions like

changing the active state or selecting filters, prior to browser paint.

● User Interaction Handlers

● Drag and Drop: Implements drag-and-drop functionalities for tasks using react-

beautiful-dnd, handling end of drag events to potentially update tasks or create new

ones based on the drop result.

50

Task Interaction:

● Editing and Deleting: Functions to toggle task editing mode, open modals for

confirmation, and handle the actual deletion of tasks or templates via API calls.

● Filtering and Active State: Controls which tasks are displayed based on active state

toggles and section filters, enhancing user experience by allowing them to focus on

relevant tasks.

Components Usage

Task and Section Components:

● TaskItem and TaskCreator are used for displaying individual tasks and

creating/editing tasks respectively.

● DateSwiper, Tab, MonthDropDown, and TaskViewerWeekChange provide interfaces

for navigating and filtering tasks based on time frames and other criteria.

Modals and Icons:

● ConfirmationModal for confirming deletions and other critical actions.

● SVG components like BackIconSvg for navigation within the UI.

Rendering Logic

The component renders a complex UI that divides the screen into multiple sections:

● Left Column: Displays tasks based on current filters, with options to change views

between archived tasks and active tasks. Includes UI elements to switch between

different views and manage tasks.

● Right Column: Dedicated to task creation and editing, updated based on whether

the task is being dragged or edited.

● Event Handling and Side Effects

● Modals and Toast Notifications: Uses react-toastify to provide feedback on

operations like task deletions.

● Dynamic Task Loading: Handles conditional rendering and loading states to provide a

responsive user experience.

51

2.3.4.2. Nest.js - Back-end code

52

53

TasksController

● Annotations: The controller is decorated with Swagger annotations

(@ApiBearerAuth and @ApiTags) for API documentation and security.

● Role-Based Access Control: The @HasRoles decorator is used to restrict access to

different endpoints based on user roles.

Endpoints:

● GET /tasks: Retrieves daily tasks by date. It accepts a date query and returns a list of

tasks for that date.

● GET /tasks/repeatable: Fetches repeatable tasks by date, similar to the daily tasks

endpoint but specifically for tasks that repeat on a schedule.

● POST /tasks: Allows the creation of a new task. It requires task details in the request

body and returns a boolean indicating success.

● PUT /tasks: Updates an existing task based on the details provided in the request

body.

● PATCH /tasks/status: Specifically updates the status of a task, indicating operations

like starting, pausing, or completing a task.

● DELETE /tasks: Deletes a task based on identifiers provided through query

parameters.

54

TasksService

Functionality: This service handles the business logic associated with task operations,

interfacing with a repository for data persistence.

Key Methods:

● findDailyByDate and findRepeatableByDate: These methods retrieve tasks based on

their type and the specified date. They involve complex logic to filter tasks

appropriately, considering attributes like repeat schedules and exclusions.

● create, update, updateStatus, delete: These methods manage the lifecycle of tasks,

performing validations and ensuring data integrity. They interact with the repository

to perform CRUD operations and handle special conditions like repeatable tasks.

Implementation Details

● Repository Interaction: The service uses a repository pattern to abstract database

operations. This pattern helps in maintaining clean code and makes the system

easier to test and maintain.

● Event Emitter: Utilizes EventEmitter2 for broadcasting events related to task

changes, which can be used for logging, notifications, or triggering other

asynchronous processes.

● Task Validation: Before performing operations like update or delete, tasks are

validated using a dedicated validation service. This ensures that only valid and

permissible operations are executed.

● Error Handling: Proper error handling is implemented to provide meaningful

feedback for operations, which is crucial for maintaining a robust system.

Additional Features

● Role-Based Access: Demonstrates how NestJS can be used to enforce security

policies at the controller level, ensuring that endpoints are only accessible to users

with appropriate roles.

● Queue Management: For operations that might require asynchronous execution or

need to be performed in bulk without blocking the main thread, a queuing system

(Bull) can be integrated, as hinted in the service with placeholders for such

implementations.

55

2.4. Graphical User Interface (GUI)

1. Sign In Page

2. Home/Tasks Page

56

3. Tasks page when category filters are applied

4. Home/Tasks page when a task is selected

57

5. Home/Tasks page when a task drags and dropped to the right create task pane

6. Archived/Template Tasks Page

58

7. Archived Tasks page when category filters are applied

8. User profile page where user can update password

59

9. Categories page

10. Add a new Category page

60

11. Delete selected Categories

12. Logout popup

61

2.5. Testing
Testing is an integral component of the software development lifecycle, crucial for

validating the functionality, usability, and reliability of the Task Management Web

Application. This section delves into the comprehensive testing approach adopted, which

encompasses several testing methodologies to ensure a robust application.

Unit Testing

Unit tests were developed to test individual components and functions independently.

Using Jest, components like TaskItem, LoginForm, and services such as AuthService were

tested to ensure that they perform expected operations accurately under various

conditions. Mocks and spies were utilized to simulate interactions with dependencies like

APIs and context providers.

1. Task Service test cases:

62

63

Task Service Test Cases:

A simple test checks if the service is defined, which ensures that the NestJS framework correctly

initializes the service with all its dependencies.

Find Operations:

● findDailyByDate: Tests the service’s ability to retrieve tasks based on a specific date. It

checks two scenarios:

● Retrieving tasks for a date that is not today, expecting a straightforward retrieval.

● Retrieving tasks for today's date, expecting a combination of tasks including repeatable tasks

marked accordingly.

● findRepeatableByDate: Tests retrieval of repeatable tasks by a specific date, ensuring the

service can filter tasks that are meant to repeat on given days.

Create Operation:

● Tests creating new tasks both for a specific date and for repeatable schedules. It checks that:

● Daily tasks are saved when provided with a date.

● Repeatable tasks are created when applicable.

● No repeatable tasks are created if not specified.

Update Operations:

● update: Tests updating tasks for both daily and repeatable tasks, ensuring the correct service

methods are called based on the task’s date context.

● updateStatus: Focuses on updating the status of a task, handling different task statuses and

ensuring the operation fails gracefully with proper exceptions when a task cannot be

updated due to logical constraints (e.g., updating a completed task).

64

Delete Operations:

Tests the deletion of tasks, both daily and repeatable. It verifies that the appropriate service

functions are called and handle task deletions correctly.

Testing Techniques

Mocking and Spying:

● External interactions, like database access, are mocked using Jest functions (jest.fn()),

allowing tests to verify interactions without actually performing I/O operations.

● jest.spyOn() is used to spy on the calls to these mocked functions, which helps in asserting

that the service methods interact correctly with their dependencies.

Behaviour Verification:

The tests check not only the return values of the service methods but also the side effects, such as

the correct handling of database operations and the proper emission of events.

Error Handling:

The service's resilience is tested by simulating conditions where operations fail, such as not finding a

task or trying to perform invalid updates. This ensures that the service can gracefully handle errors

and respond with appropriate exceptions.

65

2.6. Evaluation
The evaluation of the Task Management Web Application focuses on assessing the system

against its initial objectives and user requirements outlined in the design phase. This section

presents the findings from various evaluation methods including user feedback,

performance metrics, and functional adequacy.

User Satisfaction and Feedback

Surveys and interviews with beta testers provided invaluable insights into user satisfaction.

The majority of users appreciated the simplicity and responsiveness of the interface but

some reported a desire for more customizable features such as theme changes. Feedback on

real-time updates and notification systems was overwhelmingly positive, emphasizing the

application’s effectiveness in enhancing task management.

Performance Metrics

Performance evaluation involved measuring the response times for task operations and the

load times of various pages. Metrics collected indicated that task retrieval and display were

efficient, even under load. However, the task creation process showed a slight delay when

simultaneous requests were made, which was subsequently optimized.

Functional Adequacy

Functionality tests verified that all specified requirements were met, including task creation,

editing, deletion, and filtering. The drag-and-drop functionality for task management was

particularly well-received, enhancing user engagement and productivity. Every use case

defined in the project scope was tested to ensure complete coverage and functionality.

Accessibility Compliance

The application was tested against WCAG (Web Content Accessibility Guidelines) to ensure

accessibility for users with disabilities. Tools like Axe and manual testing sessions identified

some areas for improvement, such as colour contrast ratios and keyboard navigability, which

were promptly addressed.

66

3.0 Conclusions

The development of the Task Management Web Application has been a journey of addressing

the nuanced needs of personal task management through a robust, intuitive, and efficient

platform. The application stands as a testament to the effectiveness of integrating cutting-edge

technologies and user-cantered design principles in software development. The final product not

only meets the initial specifications laid out at the project's inception but also provides a solid

foundation for personal productivity enhancement.

Through rigorous testing and evaluation, the application demonstrated high performance,

reliability, and user satisfaction. The integration of technologies such as Next.js for the frontend

and Nest.js for the backend, complemented by real-time functionalities using WebSocket and

data management using Redis, has ensured that the application is fast, responsive, and capable

of handling real-time data efficiently. The application supports essential features such as task

creation, editing, deletion, and filtering with both ease and speed, which are critical in a task

management tool.

User feedback has been positive, highlighting the application’s user-friendly interface and the

simplicity of navigating its features. This feedback is a crucial indicator of the application's

success in achieving its aim of simplicity and ease of use. However, during the lifecycle of the

project, several opportunities for further enhancements were identified, which could address

some of the users' advanced needs and preferences that have evolved during the testing phase.

Moreover, the project’s approach to agile development allowed for continuous integration and

deployment, which facilitated the timely delivery of features and quick adaptation to user

feedback and testing outcomes. This methodology proved invaluable in maintaining high

standards of quality and adaptability in the fast-paced environment of software development.

67

4.0 Further Development or Research

Looking ahead, the Task Management Web Application holds substantial potential for further

development and exploration. The landscape of personal productivity tools is rapidly evolving,

driven by advances in technology and changing user expectations. To stay ahead and make the

application even more versatile and useful, several enhancements are proposed:

● Artificial Intelligence and Machine Learning Integration:

Predictive Task Management: Implement AI algorithms to analyze users’ task completion

patterns and predict future tasks. This could help in automatically suggesting the best times

and methods for tackling certain types of tasks.

● Smart Suggestions:

AI could be used to offer smart suggestions for task prioritization and categorization based

on the user’s past activity and preferences.

● Mobile Application Development:

Given the increasing reliance on mobile devices, developing a mobile version of the

application could significantly boost its accessibility and usability. A mobile app would allow

users to manage their tasks on the go, with features optimized for mobile use, including

offline access and mobile notifications.

● Enhanced Customization and Personalization:

User-Defined Themes and Layouts: Allowing users to customize the interface according to

their personal preferences can significantly enhance user satisfaction and productivity.

● Adaptive Interfaces:

The application could adapt its interface based on the user's behavior and preferred

workflow, learning from their interactions to streamline task management processes.

● Integration with Other Tools and Platforms:

Developing integrations with calendars, email clients, and other productivity tools could

provide a unified platform for managing all aspects of personal organization. This would

make the application a central hub for all personal productivity needs.

● Advanced Analytics Dashboard:

Incorporating an analytics dashboard that provides insights into task performance,

productivity trends, and potential bottlenecks could empower users to optimize their

workflows more effectively.

● Research on User Interaction and Task Management:

Conducting detailed user experience research to explore how different demographics

manage tasks and incorporate feedback mechanisms to tailor the application more closely to

varying needs and preferences.

68

5.0 References
● https://nextjs.org/docs

● https://docs.nestjs.com/

● https://redis.io/docs/latest/develop/

● https://jwt.io/introduction

● https://docs.nestjs.com/techniques/events

● https://docs.nestjs.com/techniques/queues

● https://dev.to/alfism1/build-complete-rest-api-feature-with-nest-js-using-prisma-

and-postgresql-from-scratch-beginner-friendly-part-7-6me

● https://socket.io/docs/v4/

6.0 Appendices

6.1. Project Proposal

https://nextjs.org/docs
https://docs.nestjs.com/
https://redis.io/docs/latest/develop/
https://jwt.io/introduction
https://docs.nestjs.com/techniques/events
https://docs.nestjs.com/techniques/queues
https://dev.to/alfism1/build-complete-rest-api-feature-with-nest-js-using-prisma-and-postgresql-from-scratch-beginner-friendly-part-7-6me
https://dev.to/alfism1/build-complete-rest-api-feature-with-nest-js-using-prisma-and-postgresql-from-scratch-beginner-friendly-part-7-6me
https://socket.io/docs/v4/

69

National College of Ireland

Project Proposal

Task Management Web Application

29th- October 2023
Bachelor of Science (Honours) in Computing

Software Development

Academic Year i.e., 2023/2024

Satyam Sehgal

X19104464

X19104464@student.ncirl.ie

mailto:X19104464@student.ncirl.ie

70

Contents
1.0 Objectives .. 70

2.0 Background .. 70

3.0 State of the Art .. 70

4.0 Technical Approach.. 71

5.0 Technical Details .. 71

6.0 Special Resources Required.. 71

7.0 Project Plan ... 72

8.0 Testing ... 73

Objectives

The main goal of this project is to make a user-friendly Task Management Web Application

that helps people keep track of their day-to-day tasks. It will be easy to use and meant

mainly for personal use. The website will let users make, sort, and organize their tasks

easily. It will also show updates in real time, which will help users get things done faster.

Additionally, for automation calendar sync which will be an Integration for Calendar Apps,

Task prioritization Algorithms, and Automation of Recurring Tasks.

Background

I wanted to create a tool to help people manage their tasks. Most tools out there are made

for teams and work life, which can be confusing for individuals. So, I decided to make a

simple and easy-to-use tool just for personal use with a vast number of features. I will pay a

lot of attention to making it user-friendly and adding features like real-time updates to

make sure it meets the goals mentioned in Section 1.0.

State of the Art

file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590869
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590870
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590871
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590872
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590873
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590874
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590875
file:///D:/BSHC/My/Year%204/Computing%20project/Proposal/x19104464_Project_Proposal_%20%20Software%20Dev%202023.docx%23_Toc83590876

71

Similar task management applications which are popular ones such as Trello, Asana, and

Todoist currently dominate the market. However, these platforms are mainly made for

teams and might have more features than one person needs. My app is just for individuals,

and it's really easy to use. Plus, it lets you see updates in real time, which makes it special

and gives you a more interactive experience.

Technical Approach

I'll use an Agile approach for development, which means I'll stress talking often and making progress

bit by bit. At first, I'll dig deep into existing task apps to understand them better. I'll learn from the

best practices and what users like. This will guide me in setting specific requirements and then

splitting these requirements into smaller tasks, activities, and goals. I'll plan regularly to make sure

the project steadily moves forward. This approach lets me adjust easily if new info or changes pop

up. I'll use version control to make sure the code stays reliable, to work together with others on

development, and to keep track of any changes easily.

Technical Details

I will use JavaScript to build the web app's front part. To make it interactive and user-

friendly, I'll use a tool called React. For the back part, we'll use Node.js with Express to

handle things efficiently on the server side. To manage data effectively, we'll use a powerful

system called PostgreSQL/ MongoDB for the database. Additionally, we'll use WebSocket

technology to provide updates in real-time.

Special Resources Required

The project won't need any special tools, just the usual ones for development purposes.

Already have access to the necessary software, hardware, and development environment.

72

Project Plan

The project plan includes the following milestones:

1. Requirements Definition, Analysis, and Task Decomposition

 Define project requirements based on outlined objectives.

 Analyze gathered data to define detailed requirements.

 Break down features into development tasks.

2. Design and Wireframing

 Create wireframes and mock-ups based on gathered requirements.

 Review and finalize UI/UX designs.

3. Backend Development

 Set up backend infrastructure using Node.js and Express.

 Implement database functionality using PostgreSQL/MongoDB.

4. Frontend Development

 Develop interactive UI components using React/ HTML/ CSS/ JavaScript

 Integrate frontend with backend using APIs.

5. Real-time Updates Implementation / Automation

 Incorporate WebSocket technology for real-time task updates.

6. Testing and Quality Assurance

 Conduct unit, integration, and user acceptance testing.

 Address and resolve any identified issues.

7. Deployment and User Training

 Deploy the web app on a hosting platform (e.g., AWS, Heroku, or any other

hosting platform).

 Provide user documentation and training resources.

8. Improving the Project Plan with feedback from the Project Supervisor

 Gathering, and incorporating feedback in the project plan.

 Refining and Updating the Project Plan

 Communicating the Revised Plan.

This project plan will be further clarified with detailed tasks in the mid-point documentation.

73

Testing

I will set up a thorough testing plan to make sure the Task Management Web App works well and is

dependable.

System Tests:

 Functional Testing: I'll check if all the features work properly, like making, changing,
sorting tasks, setting priority, automation, and getting updates in real time.

 Performance Testing: I'll see how fast and stable the system is when different numbers
of people are using it to make sure it works well even when many people use it at once.

 Security Testing: I'll test the app to find and fix any security problems just to make sure

that it's safe to use.

Integration Tests:

 Backend-frontend Integration: I'll make sure that the front part of the app and the back
part work together smoothly and that the information stays correct and the app works

well.

User Acceptance Testing (UAT):

 I'll ask the testers who will use the app to try it out and tell me what they think about
how easy it is to use and what their experience is like.

 I'll listen to their suggestions on how to make it better or fix any issues.

Doing all these tests will help me understand how well the app works, how fast it is, and if people

like using it. If I find any problems, I'll fix them before finishing up the final deployment.

74

1.1. Reflective Journals

November

2.0 Supervision & Reflection Template

Student Name Satyam Sehgal

Student Number X19104464

Course Bachelor of Science (Honours) in Computing

Supervisor Adriana Chis

3.0

4.0 Month:

What?

Reflect on what has happened in your project this month?

This month I spent a lot of time on my project. My main goal was to design the user interface, for the task

app management. I made plans for how the app will look and work, to make it easy for users to use and

show which pages will lead to another. I also started building the front part of the app. I turned my

starting plans into code and added basic functionality for my app. Furthermore, I met with my supervisor

to discuss the next steps for my project and also had discussion about my core functionality of my project.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

So, reflecting on the progress of my task management web app, I've achieved some success and faced

several challenges. As follows:

UI Design: I focused on creating an appealing and user-friendly interface. This involved designing the

look and user experience (UX) while generating creative ideas for the UI. A visually attractive interface

sets a strong foundation for the overall user experience.

Frontend Development: I worked on converting the UX design into code, implementing it in the

frontend of the application.

However, challenges still remain. I am currently figuring out what gonna be complex and unique features

of my application that will set it apart from other available products.

75

Now What?

What can you do to address outstanding challenges?

Doing intensive research about other products and come up something complex functionality for my

web application.

Student Signature

December

5.0 Supervision & Reflection Template

Student Name Satyam Sehgal

Student Number X19104464

Course Bachelor of Science (Honours) in Computing

Supervisor Adriana Chis

6.0

7.0 Month:

What?

Reflect on what has happened in your project this month?

This month I was more focused on finding other ways to look upon basically on other ways to implement

backend developments rather than using node js.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

Upgrading UI Structure and using a different kind css structure (tailwind css) which is more robust and

easier to manage

76

However, challenges still remain. I am currently figuring out how to add and use the bull queues and rest

api’s

Now What?

Researching for other ways

Student Signature

March

8.0 Supervision & Reflection Template

Student Name Satyam Sehgal

Student Number X19104464

Course Bachelor of Science (Honours) in Computing

Supervisor Adriana Chis

9.0

10.0 Month:

What?

Reflect on what has happened in your project this month?

Finalizing the project database using nest.js and redis, used a technology called websocket to keep

frontend stuff happening in real time. Implementation was done for rest api, jwt and swagger but still

more thing was done to make the development process manageable.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

Finish up the project itself and testing before moving on to project documentation

Now What?

Learning & practicing ways to deploy this pending stuff.

77

Student Signature

April

11.0 Supervision & Reflection Template

Student Name Satyam Sehgal

Student Number X19104464

Course Bachelor of Science (Honours) in Computing

Supervisor Adriana Chis

12.0

13.0 Month:

What?

Reflect on what has happened in your project this month?

Updated my project technical report up to the date and filled/tested out the testing part conducted with

the unit testing

 Task service test cases

 Mocking and spying

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

Managed to implement working database using next.js and swagger

Now What?

Finishing touches to the new ui and updating documentation as it is

Student Signature

78

Signature

	Contents
	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: Create Tasks
	Description & Priority
	Use Case
	2.1.1.3. Requirement 2: Read Tasks
	Description & Priority (1)
	Use Case (1)
	2.1.1.4. Requirement 3: Edit Tasks
	Description & Priority (2)
	Use Case (2)
	2.1.1.5. Requirement 4: Delete Tasks
	Description & Priority (3)
	Use Case (3)
	2.1.1.6. Requirement 5: Filter Tasks through Categories
	Description & Priority (4)
	Use Case (4)
	2.1.1.7. Requirement 6: Manage Tasks with Drag and Drop
	Description & Priority (5)
	Use Case (5)
	2.1.1.8. Requirement 7: View Future and Past Tasks
	Description & Priority (6)
	Use Case (6)
	2.1.1.9. Requirement 8: View Specific Week Tasks
	Description & Priority (7)
	Use Case (7)
	2.1.1.10. Requirement 9: View Specific Week Tasks
	Description & Priority (8)
	Use Case (8)
	2.1.1.11. Requirement 10: Create Template/Archive Tasks
	Description & Priority (9)
	Use Case (9)
	2.1.1.12. Requirement 2: Read Template/Archive Tasks
	Description & Priority (10)
	Use Case (10)
	2.1.1.13. Requirement 3: Edit Template/Archive Tasks
	Description & Priority (11)
	Use Case (11)
	2.1.1.14. Requirement 4: Delete Template/Archive Tasks
	Description & Priority (12)
	Use Case (12)
	2.1.1.15. Requirement 14: Filter Template Tasks through Categories
	Description & Priority (13)
	Use Case (13)
	2.1.1.16. Requirement 15: Manage Template Tasks with Drag and Drop
	Description & Priority (14)
	Use Case (14)
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	1.1. Reflective Journals

