

National College of Ireland
BSHCYB4

Cybersecurity

2023/2024

Nedah Jan Safi

x20347946

x20347946@student.ncirl.ie

Safe Scanner

Technical Report

mailto:x20347946@student.ncirl.ie

1

Contents
Executive Summary ... 3

1.0 Introduction .. 3

1.1. Background ... 3

1.2. Aims ... 4

1.3. Technology .. 5

1.4. Structure ... 5

2.0 System ... 6

2.1. Requirements .. 6

2.1.1. Functional Requirements .. 6

2.1.1.1. Use Case Diagram ... 6

2.1.1.2. Requirement 1 QR Code Scanning ... 7

Description & Priority.. 7

Use Case .. 7

2.1.1.3. Requirement 2 Enter URL for Scanning .. 9

Description & Priority.. 9

Use Case .. 9

2.1.1.4. Requirement 3 Image selection for scanning ... 11

Description & Priority.. 11

Use Case .. 11

2.1.2. Data Requirements ... 13

2.1.3. User Requirements ... 14

2.1.4. Environmental Requirements ... 14

2.1.5. Usability Requirements ... 14

2.2. Design & Architecture ... 14

2.3. Implementation .. 18

2.4. Graphical User Interface (GUI) .. 26

2.5. Flow Diagram .. 33

2.6. Testing ... 34

2.7. Evaluation ... 43

3.0 Conclusions ... 45

4.0 Further Development or Research ... 46

5.0 References .. 47

6.0 Appendices .. 47

6.1. Project Proposal .. 47

7.0 Objectives .. 49

2

7.1. Reflective Journals .. 55

12.1. Other materials used .. 61

3

Executive Summary

The purpose of creating Safe Scanner a web application is the is to enhance user security by ensuring
that scanned QR codes lead to legitimate and safe URLs. Detecting malicious URLs is crucial for
network and cybersecurity. Malicious URLs pose a significant threat, sharing unsolicited content like
spam, phishing, and drive-by downloads. They lure unsuspecting users into scams, leading to
monetary loss, theft of private information, and malware installation. (arxiv, 2019). For detecting
malicious URLs blacklists have been the standard method for detecting harmful URLs, but they are
not always accurate and fail to identify newly created malicious URLs. In recent years, machine
learning approaches have attracted attention as an approach of improving the reliability of malicious
URL detectors. Detecting malicious URLs using machine learning techniques. Machine learning
techniques have been increasingly applied to solve the problems relating to information security and
cybersecurity. Malicious URL (Uniform Resource Locator) detection is one of these (Vanhoenshoven
et al. 2016). In this project, I've applied the random forest method to develop a machine learning
model incorporating lexical features, host-based features, and content-based features. The model
has an accuracy of 94.7%. The Safe Scanner web application operates in real-time, capturing video
feed for QR code detection and processing. The code employs a systematic approach, checking for
URL validity, legitimacy, and potential threats. The application is develop using python, JavaScript,
HTML, CSS, Flask framework and VS Code. The report highlights the code implementation,
emphasizing the integration steps. Users are provided with informative outputs regarding the safety
and legitimacy of the detected QR code's URL. The system is flexible, allowing for future
enhancements such as additional threat checks and improved user interfaces for a more intuitive
experience.

1.0 Introduction
1.1. Background

In the 21st century, technology permeates every aspect of our lives, providing solutions that make
tasks easier and more efficient. QR codes have emerged as a popular means of sharing information
rapidly, easily detectable by scanners. While QR codes are created in way that they are not
inherently readable by end-users, their information can only be retrieved by a scanning device. The
simplicity of scanning QR codes to access URLs has made it a prevalent practice, eliminating the need
for users to manually input lengthy web addresses. However, this convenience introduces a
significant challenge – the ease with which threat actors can manipulate QR codes to disseminate
false or malicious URLs. Malicious actors exploit this vulnerability by automating URL creation and
implementing redirects, trapping unsuspecting users without their knowledge. In response to this
growing security concern, I am developing Safe Scanner a web application to scan QR codes, assess
their content, and determine whether they contain URLs. If a URL is present, the application will
further analyse its legitimacy, helping users distinguish between safe, clean URLs and potentially
harmful or malicious ones.

The initiative project aims to empower users with a tool that enhances their awareness and security
when interacting with QR codes. By scrutinising the URLs embedded in QR codes, the application
serves as a preventive measure against falling victim to malicious schemes. This project aligns with
the evolving landscape of technology, where ensuring the security of everyday tools like Safe
Scanner QR code becomes imperative to foster a safe and trustworthy digital environment. To get

4

the above using machine learning algorithms such as Random Forest. Random forest is an ensemble
learning method for combining the outputs from several decision trees to come up with a final
prediction. Each of the decision trees is built on a random subset of the features and on a random
subset of the training data to reduce overfitting and improve model robustness. In random forest,
the classification model will be built using a dataset of URLs marked as malicious or benign. This
model will learn many features of URLs, including lexical, host-based, and content-based features.
The model will then be used to classify unknown URLs as malicious or benign. Once the random
forest model is given a new URL for which the malicious status is required, each of the individual
decision trees is used to predict the malicious status for that URL, based on the features that the URL
presents. The predictions made by the individual trees are combined to come up with the final
prediction. The random forest algorithm combines the predictions of many decision trees, which
decreases variance. To give more reliable predictions for known and unknown malicious URLs. The
use of random forest model, which detects malicious URLs, has the advantage of reducing false
outcomes. False positives occur when benign URLs are misclassified as malicious, Resulting in
unnecessary blocks or warnings. The Random Forest can significantly reduce false Positives enhance
overall accuracy by providing a strong and accurate classification of the outcomes.

The URLs are obtained in a dataset from Kaggle, the dataset contains about 100,000 URLs where
70% of those are benign and 30% are malicious. The next step after fetching the dataset is data
cleaning. Change the texted data to numeric. Extract the necessary features of URL, these features
are extracted from a URL to classify it as either malicious or not. The features we have used are
further divided into lexical, host-based, and content-based features. The approach applies lexical
features extracted from the URL string to detect attacks based on distinguishable visual
characteristics of malicious and benign URLs through statistical analysis.

We then deployed the Random Forest algorithm, a popular ML algorithm commonly used for
classification tasks. The Random Forest algorithm trains a classification model on a dataset
comprising URLs labelled as either malicious or benign. A total of 22 features were considered for
training our model, including lexical, host, and content-based features. These features were then
extracted from the URLs using a variety of techniques like regular expressions, domain analysis, and
webpage content analysis. One of the issues we encountered during the training of our model was
the class imbalance issue, where the number of malicious URLs was much fewer than the benign
ones.

1.2. Aims
The primary aim of this project is to create a QR code scanner application that not only detects
QR codes but also validates the associated URLs. Specifically, the application aims to achieve the
following:

• Accurate detection and decoding of QR codes from video feeds or images.
• Develop a system capable of scanning QR codes and extracting the content.
• Verification of the extracted content to determine if it constitutes a valid URL.
• Assessment of the legitimacy of the URL.
• Enable flexibility, by letting the user to detect QR code and URLs.
• Developed a machine learning-based system to classify URLs into different categories.
• train model that accurately predicts whether a URL is malicious or benign.

5

• Developed a real-time URL detection server using Flask, allowing clients to test URLs for
potential threats.

1.3. Technology
The project utilizes the Python programming language, Python is well-suited for machine
learning tasks due to its extensive ecosystem of libraries and ease of use. JavaScript: JavaScript
was employed to implement the QR code scanning logic, content type analysis, enhance user
interaction and enable real-time URL detection, HTML and CSS to structure and style the user
interface. Flask framework: Flask allows for quick setup of web servers and provides the
flexibility needed for integrating machine learning models. VS Code: Chosen for its support of
multiple languages, rich extensions, and built-in debugging capabilities. It offers a robust
development environment for both frontend and backend code. Machine learning algorithms
implemented using scikit-learn and TensorFlow to enhance QR code analysis and threat
detection based on learned patterns.

1.4. Structure
This document is structured to provide a comprehensive overview of the Safe Scanner
application. It includes sections detailing the system architecture, code implementation, and
optional enhancements such as additional threat checks. The executive summary encapsulates
the key points of the report, offering a succinct overview of the project's purpose, major
components, and potential future developments. The subsequent sections delve into each
aspect of the project, providing technical insights and guidance for developers interested in
similar endeavours. The following are the brief overview and document structure and content in
each section.

1.0 introduction: this section is the foundation section of the document. It provides an overview
of the project, its scope, and objectives of the application.

2.0 System: this section of the document describes the architecture of system and provide
details about the requirements.

3.0 Fundamental Requirements: this section of the document describes the key functionalities
that the project supports such as QR code scanning, URL detection, content type, and error
handling.

4.0 Non-Functional requirements: this section of the document describes the non-functional
requirements of the Safe Scanner application, e.g. user interface, performance, reliability,
and security.

5.0 Use Cases: the section provides the use case diagram of the application, and the textual
description of the interaction between the application actors, to achieve project goal.

6.0 Design and Architecture: this section of the document explores the design and architecture
of the project. It explains how the system is structured and the detail about its component
interaction.

7.0 Implementation: this section of the document describes the code and key algorithms used in
the project, it explains how the system is build and highlight interesting code snippet.

8.0 Testing and Evaluation: this section of the document focuses on the testing and evaluating
the project, it explains how the system was testing and it result.

6

9.0 Conclusion: this section of the document provides a summary of the document, summaries
the funding and outcomes of the project.

2.0 System
2.1. Requirements
The system requirements for the QR code Safe Scanner application with integrated URL
validation and threat checking are outlined to ensure verifiability, user-friendliness, and effective
functionality. These requirements cover aspects such as user training, error tolerance, user roles,
and ease of use.

2.1.1. Functional Requirements
The functional requirements outline the key capabilities the system must possess to provide
a secure, efficient, and user-friendly QR code scanner application with integrated URL
validation and threat checking.

1. QR Code Scanning: the system must be able to scan QR code and extract its content.
2. Real-Time Scanning: The QR code scanner should operate in real-time, which must

provide immediate result to users upon successful scanning.
3. Error Handling: The scanner must detect and handle errors gracefully, providing

informative error messages to users and allowing for recovery from issues.
4. Content Detection: The system must be able to identify the type of content

extracted from the QR code. This includes distinguishing between URLs, phone
numbers, email addresses, and plain text.

5. Regular Expression Matching: The content analysis must use regular expressions or
similar pattern-matching techniques to accurately classify different content types.

6. Content Type Handling: Based on the detected content type, the system should take
appropriate action (e.g., classify URLs, create clickable links for phone numbers,
etc.).

7. URL Feature Extraction: The system must analyse URLs to extract various lexical
features, including length, number of special characters, redirect count, digit count,
entropy, and others.

8. Suspicious Pattern Detection: The system must check for specific patterns or
characteristics that could indicate a suspicious or malicious URL, such as suspicious
keywords, unusual TLDs, or IP addresses in the hostname.

9. Benign Pattern Detection: The system should also identify benign patterns, such as
common TLDs, benign keywords, and limited redirects.

10. Output: The system must present results in a clear and user-friendly manner,
allowing users to understand the outcome of the scan.

2.1.1.1. Use Case Diagram
A use case diagram is a visual representation that illustrates the interactions between
users and a system, showcasing various use cases and their relationships. In the context

7

of the Safe Scanner application with integrated URL validation and threat checking, the
following use case diagram outlines the primary interactions:

Figure 1 Use Case Diagram

2.1.1.2. Requirement 1 QR Code Scanning

Description & Priority

This requirement involves the functionality of opening the Safe Scanner web app, selecting the "Scan
QR code" button, then scanning the QR code. This is a critical requirement as it forms the core
functionality of the application.

Use Case

Scope

The scope of this use case is to initiate and perform the QR code scanning process, either by selecting
the "Scan QR code" button or manually entering a URL.

Description

This use case describes the steps involved in opening the QR code scan app, selecting the appropriate
option for scanning, and performing the actual QR code scan.

8

Use Case Diagram

Figure 2 Use Case Diagram of Scan QR Code

Flow Description

Precondition

The system is in initialization mode.

Activation

This use case starts when a user initiates the QR code scanning process by opening the app.

Main flow

1. The system identifies the user's choice to either "Scan QR code" or "Enter
URL for Scanning."

2. If the user selects "Scan QR code," the system activates the QR code
scanner.

3. The user scans the QR code using the device's camera.
4. The system processes the scanned information.

Alternate flow

A1: Scan QR Code Button Not Selected

1. The system prompts the user to select a scanning method.

2. The user selects "Enter URL for Scanning."

3. The use case continues at position 4 of the main flow.

9

Exceptional flow

E1: QR Code Scan Failure

1. If the system encounters difficulties in scanning the QR code:

2. The system notifies the user.

3. The use case continues at position 4 of the main flow.

Termination

The system presents the next relevant action based on the scanned information.

Post condition.

The system goes into a wait state.

2.1.1.3. Requirement 2 Enter URL for Scanning

Description & Priority
This requirement involves allowing the user to enter a URL for scanning in the Safe Scanner web app. It
is essential for users who prefer entering the URL manually. This functionality is considered critical for
the overall system.

Use Case

Scope

The scope of this use case is to facilitate the manual entry of a URL for scanning within the QR code
scanning app.

Description

This use case outlines the steps involved when a user chooses to manually enter a URL for scanning
instead of scanning a QR code.

10

Use Case Diagram

Figure 3 Use Case Diagram of URL

Flow Description

Precondition

The system is in initialization mode.

Activation

This use case starts when a user initiates the QR code scanning process by opening the app and
selecting the option to enter a URL.

Main flow

1. The system identifies the user's choice to enter a URL for scanning.
2. The user manually enters the URL into the designated input field.
3. The system processes the entered URL.

11

Alternate flow

A1: Scan QR Code Button Selected

1. The system prompts the user to select a scanning method.

2. The user selects "Scan QR code."

3. The use case continues at position 2 of the main flow.

Exceptional flow

E1: Invalid URL Entry

1. If the user enters an invalid or malformed URL:

2. The system notifies the user about the error.

3. The use case continues at position 2 of the main flow.

Termination

The system presents the next relevant action based on the entered URL.

Post condition.

The system goes into a wait state.

2.1.1.4. Requirement 3 Image selection for scanning

Description & Priority

This requirement involves the functionality of open the Safe Scanner web app, select the "Scan QR
code" button, then select “Scan Image File”. This functionality of the application usability.

Use Case

Scope

The scope here is that the user will have an option to select an image from their device's storage to
feed it for the scanning.

Description

Description The next use case will show the steps of selecting an image from the device's storage
within the "Safe Scanner" app and starting the scanning.

12

Use Case Diagram

Figure 4 Use Case Diagram of Scan QR Code

Flow Description

Precondition

The system is in initialization mode.

Activation

This use case starts when the user choose image for scanning.

Main flow

1. The system gives the user a choice of an image to be scanned.
2. The user chooses the picture they want from the device's storage.
3. The analysis system completes the analysis process for the chosen picture

and processes it for the scanning.

Alternate flow

The alternative flow is not applicable for this case.

13

Exceptional flow

E1: The selected image is not a QR Code image.

4. If the system encounters difficulties in accessing the device's storage or
retrieving the selected image:

5. The system alerts the user on the problem.
6. The use case continues at position 2 of the main flow.

Termination

The system responds by displaying the appropriate next action or goes back to the previous condition

Post condition.

The system is still in a state that allows the user to continue interacting with it or it switches back to
the initialization mode if the user does nothing.

2.1.2. Data Requirements
The Data Requirements for the Safe Scanner Application with Integrated URL Validation and
Threat Checking demonstrate what the system needs to carry out the functions it was
designed to perform. This need includes several data sets and inputs, which are imperative
to correctly coping with QR codes and link checking.

1. QR Code Data: The text that is extracted from the QR code, which is supposed to be a URL.
2. QR Code Content: The information contained in a QR code. Can be a URL, or other text.
3. QR Code Format: QR codes can encode different types of data, the project must be able to

read all kind of formats.
4. URL Components: The URL format, which comprises the protocol (http/https), hostname,

path, query parameters, and port.
5. Lexical Patterns: Some of the patterns for identifying these special characters, digits, and

other lexical features within the URL.
6. Suspicious Indicators: It is suggested to intervene into various URLs keywords and patterns

which contain words that would warn users about possible phishing or malicious URLs, like
confusing TLDs.

7. Benign Indicators: Also Benign URL is denoted by the substantive keywords and other signs,
for example .com or .i.e. can help to track down relevant articles by restricting search
queries, as well as keywords that denote safe content (e. g. , "home", "about").

8. Scanner Configuration: Information about the QR code scanner's settings, like the number
of frames per second (fps), scanning box size, and error handling.

9. HTTP Response Status Code: Whether a URL is legit or not is the application's criterion, and
it checks it with the 200-status code of HTTP response meaning OK.

10. Machine Learning Model Parameters: Machine learning algorithm setting up parameters
and weights.

14

2.1.3. User Requirements
The user requirements for Safe Scanner application including integrated URL validation and
threat checking are identified to provide an easy, fast, and secure experience for users.
These necessities are established from understanding of expectations and requirements of
the end-users of the app.

• Real-time QR Code Detection: Users want the application to detect QR codes in
real-time from a video feed.

• URL Information: The audience wants to know in relation to the URL whether it's
legitimate and secure or not.

• Intuitive Output: The application should be designed in such a way that it will render
clear and precise output, expressing whether the URL is malicious, or it is safe to
browse upon.

• Optional Features: The users may like additional features, such as, for example,
fetching additional data for more detailed URL analysis.

2.1.4. Environmental Requirements
• Camera Access: Application using a camera for QR scanning need to have a camera

enabled to facilitate the actual image capturing.
• Internet Connectivity: It is necessary to perform URL legitimacy and threat checks

through the system as this is a web application. Therefore, the system needs an
internet connection to be able to operate.

• Hardware Compatibility: The software must be able to run on camera devices based
on ordinary hardware configurations, of the kind that are ubiquitous.

2.1.5. Usability Requirements
• User-Friendly Interface: The application has a simple and easy-to-use interface.
• Prompt Response: fast detection and analysis of the QR code, and the immediate

response to it.
• Error Handling: The application is capable of handling errors, and in case there is a

request failure or camera access problems, the application will provide informative
messages.

• Configurability: The program can let the users to set up some parameters, for
example, changing the camera settings.

2.2. Design & Architecture
Design and architecture of this project aim at integrating machine learning into a system, which
ensures the reliability, scalability, and maintainability during the identification of malicious URLs.
The system is built up on the principle of 'end-to-end workflow' that contains all the data
preprocessing and the training, deployment, and evaluation of the machine learning algorithm.
The technology allows for real-time URL identification online using a web-based interface that
connects the frontend and backend technologies.

• Frontend Interface: This is a web-based interface, which makes it possible to scan the QR
codes.

15

• QR Code Scanner: This Html5QrcodeScanner reads QR Codes and, if reader has
successfully scanned the barcode, it invokes the callback function.

• Content Type Analysis: The technique used to identify which kind of content is retrieved
from the QR code.

• URL Feature Extraction: A feature that uses the lexical features to analyses the URL.
• Result Display: The frontend displays to the user the feedback of the scanned content

and the results of URL analysis.
• Data Layer: Manages data collection, preparation, and storage. The second layer of the

process will then deal with the data collected from the external sources to map it for the
machine learning model.

• Model Layer: Containing a learning logic for training and evaluation of machine learning
algorithms. This layer uses pre-processed data to train the model and evaluates its
performance.

• The application layer involves business logic for real-time URL detection and
communication with the model of machine learning. The server-side communication
points are provided using Flask frameworks.

• The Presentation Layer is the layer that allows the user to interact with the system
through a user-friendly interface. This layer is responsible for creating a responsive
frontend by combining HTML, CSS, and JavaScript.

To detect malicious QR code, the process was divided into three stages. The first stage is the stage
when the QR code is scanned using the “Html5QrcodeScanner” library to scan QR Code. The
Html5QrcodeScanner is responsible for creating a QR code scanner. Tone which permits to read QR
codes. After the QR code is scanned, the “urlPattern. test” function is invoked to detect the QR code
types. The machine learning model is used for scanning the URL in the second stage. Feature
classification is the 3rd stage in frame work which is composed of several classes, the first Item is the
Lexical feature extraction from URL to find the suspicious URLs, the 3rd stage of frame work is to
evaluate the value that giving by the features and evaluate the results to find out if the URL is
malicious or not then if the features have provided the value it will move to final computation and
sending the result to user.

16

Figure 5 Architecture diagram.

This architecture diagram highlights information flow through different modules from QR-code
detection to URL validation, legitimacy check and advanced machine learning algorithms. Each
module of the software plays its part to form an overall application that is functional and secure.

17

Figure 6 lexical features of URL.

Figure 7 machine learning model main steps.

18

2.3. Implementation
The Safe Scanner application, in the implementation section, gives the details of the main
algorithm, classes, and functions that are used in the project. The manual is concise and provides
a clear understanding of the critical components.

The makeup of my code from mid-point submission have been changed slightly, after research
and looking truth of a project, I chose to make app-based web instead of a mobile application.
To facilitate the user to get access. The denial of API use is another aspect of this assignment
that it could learn as API cannot be responsible of newly developed malicious URLs, even I want
to detect all URLs by machine learning.

data_preprocessing.py:

Figure 8 data_preprocessing.py

The picture above portrays the data_preprocessing. process.py which is the file that
consists of functions for data preprocessing dedicated to machine learning. This is a
multistage process with such information such as data sorting, data feature extraction
and data labelling converting. Figure 9

Label Mapping:

19

Figure 9 label mapping.

The picture above demonstrates that the feature “label_mapping” was applied to the text labels
to transform them to numeric values for the machine learning. Figure 10

Figure 10 extract URL feature.

The “extract_features” works on creating numerical representations of the URLs so that they can
be used in machine learning. “StandardScaler” is used to scale down the data and ensure the
features of all the things are in a similar scale. It’s the scaling of the features to standard
deviation to enhance the performance of machine learning algorithms. Figure 11

20

Model Training:

Figure 11 model taking.

The model training which is the process of designing the machine learning algorithms to
categorize the URLs to different groups. The system takes real-time data provided by the
Wearable Sensor Network and makes use of the popular Random Forest classifier machine
learning algorithm for predictive classifications. Hierarchical Random Forest classifier is selected
as it can robustly handle with multi-feature integration as well. Figure 12

Figure 12 Train Random Forest model.

“RandomForestClassifier” function inserts a training process for the Random Forest Classifier
model. The parameter “n_estimators=100” is the tree number that the model will use in the
forest “random_state=42” that is used to make the model reproducible. Figure 13

21

Flask Server

url_detection.py

A flask-based server is created to help
detect the URLs in real time. Here we
will be using the “joblib.load” function
to load the trained model and the scaler.
The “route” function is employed for
html rendering and endpoint files. The
server is the one that will make the
POST requests to get the URL data and
then it will use the machine learning
trained model to detect if the URL is
benign or malicious. Figure 14

Figure 13 Flask server.

Figure 14 Flask server connection with frontend.

The flask server has been configured properly to accept the data from the end point and send
the prediction. Figure 15

22

qrsScanner.js

Figure 15 QR Code Scanner.

The above shown is the main page for scanning QR codes and for the analysis of the content and
the type of QR codes. Figure 16

domReady(fn)

Figure 16 QR Code Scanning.

The above function can be applied while DOM is loading, and a specified callback function is
performed. Another thing the dough that itself checks if DOM has already loaded or waits for
the event to load. The calculateEntropy(string) function which is the first step to calculating the
entropy of a given string is the first step to building a frequency map of characters and finally to
calculating the entropy based on the character frequency. Figure 17

23

extractUrlFeatures(url)

Figure 17 Check URL features.

The above is the main function of the application, the containsIpAddress(hostname) checks for
the host name if it’s an IP address. It uses the regular expression to check if the hostname
matches the IPV4 address format. extractUrlFeatures(url) this function uses machine learning
numerous lexical features from a URL to check whether the URL is malicious or benign. It
analyses the URLs length, digit count, number of special characters, entropy, redirect count, and
many other attributes, it also checks for the specific patterns that indicate whether a URL is
malicious or benign.

24

determineContentType(decodeText)

Figure 18 QR code successful scanned.

The above is the main function of the application, the containsIpAddress(hostname) checks for
the host name if it’s an IP address. The tool uses the regular expression to ensure that the
hostname is right in terms of the IPV4 address’s format. def extractUrlFeatures(url): this function
uses machine learning to extract a multitude of lexical features (urchins, anchors, or tags) from
an URL to tell if the couldn’t link is malicious or not. It studies the URL's length, digit count,
number of special characters, entropy, and redirect count, and many other attributes, it also
looks for the specific patterns that show whether a URL is malicious or benign. Figure 19

URL Scanner:

The “checkIfMalicious(url)” function that detect
malicious URL using machine learning logistic
regression model. The “feature” extracting the
feature of URL for logistic regression, the logistic
regression model uses the hardcoded coefficients
and threshold. The “score” feature compute the
weighted of the features sum. The “probability”
logistic function use to map the score to a
probability. The “threshold” function check for
malicious threshold e.g. 0.5 indicates 50% chance
of being malicious.

25

Figure 19 URL Detecting.

Connect server:

The above image shows a POST
request to the flask server, to
send URL data in Json and parse
the Json response from the
server.

Figure 20 connect server.

Index.html: styles.css

Figure 21 Home page. Figure 22 style file.

Index.html is the HOME page of the web application, it also contains the navigation bar, bootstraps
are used to create navigation bar, and CSS is used for styling of the web page.

26

2.4. Graphical User Interface (GUI)

Logo:

Figure 23 project Logo.

The above image is the Logo of the Safe Scanner web application.

Home page and navigation bar:

Figure 24 Home page and navigation bar.

The above image is the Home page and navigation bar of Safe Scanner web application, the
navigation bar present user with various links, to access the home page click in Logo or the

27

“HOME”, to access to contact information click in “CONTACT”, to navigate to QR code scanner
page click in “QR CODE SCANNER”, to navigate to URL scanner page click in “URL SCANNER”.

The make it easy for user to scan QR code home page also contains two buttons, “QR CODE
SCANNER” and “URL SCANNER”.

QR code scanner page:

Figure 25 QR code scanner page.

The above image is the QR code scanner page, user are able to scan QR code by scanning QR
code by real time camera or by uploading QR code image to scan and the result will be
displayed. Figure 23.

Camera access.

Figure 26 Camera access.

28

The above image shows to access device camera the application request for camera access.
Where user can allow and block the access to camera. Figure 24

Scan code:

Figure 27 Scan Code.

The above image shows the application ready to scan, user open camera and direct the QR code
to scan, Figure 25

Malicious QR Scan:

Figure 28 Malicious QR Scan.

29

The above image shows that a Malicious QR code have been scanned and the result have been
displayed “Malicious URL: url”. As this is malicious URL the user cannot access the URL. Figure 26

Benign QR code:

Figure 29 Benign QR code.

The above image shows that a benign QR code have been scanned for information and the result
has been displayed “Safe URL: url”. As this is a safe URL the user is able to access URL by click on
URL. Figure 27

Image Scan:

Figure 30 Image Scan.

30

The above image shows the application are able to scan an image as well, the user can choose
QR code image to scan for detection. The application can access user file to upload image or user
can drag and drop the image to scan QR code for information. Figure 28

Benign QR code image scanned:

Figure 31 Benign QR code image.

The above image shows that a benign image has been darg for scanning and the result have
been displayed to user at result section. displayed result “Safe URL: url”. As this is a safe URL the
user can access URL by click on URL. Figure 29

Malicious QR code image:

31

Figure 32 Malicious QR code image.

The above image shows that a Malicious QR code image has been drag for scanning and the
result have been displayed “Malicious URL: url”. As this is malicious URL the user cannot access
the URL. Figure 30

URL Scanner page:

Figure 33 URL Scanner page.

The above image is the URL scanner page, user are able to enter a URL in “Enter URL” section
and press detect for detecting the URL if its benign or malicious and extract features of URL such
as scheme, authority, path, and query. After clicking the Detect the result will be displayed.
Figure 31

Benign URL detection:

32

Figure 34 Benign URL detection.

The above image shows that a benign URL has been enter and the result have been displayed,
the URL feature and “The URL appear to be Safe”. Figure 32

Malicious URL detection:

Figure 35 Malicious URL Detection.

The above image shows that a malicious URL has been entered the result has been displayed
“Warning the URL might be malicious” and the URL features have been displayed. Figure 33

Contact page:

33

Figure 36 Contact page.

The above image shows the contact page of the application for user feedback and interaction.
Figure 34

2.5. Flow Diagram

Figure 37 actively Flow Diagram.

34

2.6. Testing

System Testing:

System testing validated the end-to-end functionality of the project. Key focus areas included QR
code scanning, content handling, user interface behaviour, and error handling. Security and
performance tests were also part of system testing.

Integration Testing:

Integration testing ensured proper interaction between system components. This included
testing the QR code scanner, content type handler, and output display to ensure seamless
integration.

Class Testing:

Class testing focused on individual classes to ensure their methods and attributes worked
correctly. This helped identify defects at a more granular level before they could affect the
entire system.

Unit Testing:

Unit testing validated individual functions and methods. Automated unit tests were used to
ensure code correctness and robustness, with a focus on boundary cases and edge cases.

• Scanning QR Codes: Test with valid QR codes to ensure proper recognition and processing.

• Content Type Determination: Check the handling of different content types (URLs, plain
text).

• URL Feature Extraction: Validate the extraction and classification of URL features.

• Display Outputs: Ensure correct rendering of messages, links, and styles.

• Error Handling: Test various error scenarios, such as invalid QR codes, scanning failures, and
network issues.

Testing tools:

Selenium IDE:

 Selenium is a powerful framework for automated testing of web applications. It supports a
variety of browsers and provides a robust set of tools for simulating user interactions and
verifying application behaviour. Selenium Integrated Development Environment (IDE) is an
integrated development environment specifically designed for creating Selenium test scripts in a
simplified, user-friendly manner. (selenium-framework, 2023)

unittest: Python testing framework, the unittest module provides a rich set of tools for
constructing and running tests. (unittest_framework, 2024)

Pytest: is a simple testing framework written in Python and for Python. it provides a cleaner and
shorter way of writing tests in Python. For instance, validating a code output is as
straightforward as calling an assert keyword. (Unit Testing in Python, 2022)

35

System test:

Table 1 Testing.

Manual testing result: the grid detailing the result of manual testing in the browser. Table 1

Unit Testing:

Unit testing validated individual functions and methods. Automated unit tests were used to
ensure code correctness and robustness, with a focus on boundary cases and edge cases. I’ve

Test
ID

Function Description Expected Results Actual Results Test
Outcome

T1 Navbar
Links test

1. Access Home page.
2. Click on links in navbar.
3. Verify Navigates to
different pages.

User able to
navigate through
the navbar links

The User was
able to

navigate
through the
navbar links

Pass

T2 Scan QR
code

1. Click on QR Code
Scanner.
2. Click Start Scanning.
3. Give permission to
open camera.
4. Place QR code to
camera.
5. Scan QR code.

Result of QR
Code is

displayed.
Benign/Malicious
URL: link of URL

The user was
able to scan

QR code
successfully,

the result
displayed:

Benign URL:
link

Pass

T3 Detect URL 1 access Home page.
2. click on URL Scanner.
3. Enter URL.
4. Click Detect URL.

URL detected.
Result displayed.

URL was
detected the

Result
displayed.

Pass

T4 URL
Feature

Extraction

1.Enter URL.
2. Click Detect URL

The URL
extracted

feature are
displayed.

The URL
extracted

feature are
displayed.

Pass

T5 Scanning
QR code

from image

1. Click on QR Code
Scanner.
2. Click Scan an Image
File.
3. Choose Image or drop
an image to scan.

Result displayed
in Result section

Result was

displayed in
Result section

Pass

T6 Error
Handling

Entered URL in wrong
format e.g. not including
http:// or https://

Invalid URL
format. Please

include 'http://'
or 'https://'.

Invalid URL
format. Please

include
'http://' or
'https://'.

Pass

36

used unit test in my project to cover the critical part of the project, also to ensure that the
project work as expected. By implementing these tests want to maintain a high level of
confidence in the system functionality and quickly identify issues when changes are made.

Data preprocessing test:

Figure 38 Data Preprocessing test.

The “test_data_preprocessing.py” file have been crated to test for the data preprocessing, such
as to test the feature extracting and label mapping. Figure 35

The unittest result:

Figure 39 Data Preprocessing Test Result.

The test label mapping verifies that the label mapping converts textual label to numeric values.
Figure 36

The pytest result:

Figure 40 Data Preprocessing Test Result.

37

Feature Extraction Testing:

Figure 41 Train The model.

Figure 42 Feature Extraction Testing.

The “RandomForestClassifier” function used to train the model for detecting malicious URL. The
TestTrainModel testing function used to test for the model training. Figure 38

The “test_train_model.py” test virefies that the the expexted features are created froma a given URL
using the feature extraction function. Figure 39

The unittest result:

Figure 43 Test train model testing result.

Result of “test_train_model.py” test, Successful. Figure 40

The pytest result:

38

Figure 44 test train model testing result.

Flask endpoint testing:

Figure 45 flask endpoint testing.

Figure 46 flask endpoint testing.

The “test_flask._api.py” test verifies that the flask-based server correctly accept requests, access
the input and return a valid result. Figure 42, Figure 43

The unittest result:

Figure 47 flask end point testing result.

The result of “test_flask._api.py” test using unittest tools testing has been Successful. The
testing is done in 0.018s. Figure 44

39

The pytest result:

Figure 48 flask end point testing results.

The test_flask_api.py have been tested using pytest python testing tool, the test was successfully
done in 0.12s result 100%. Figure 45

The pytest result:

Figure 49 test results.

the testing for all three classes has been done 100% successfully in 4.09s.

Result of the pytest testing. Figure 46

Automated testing:

Figure 50 automated testing result.

Figure 51 automated testing.

40

The testing is done in selenium IED, the test fails for the image uploading for scanning, which
have been resolved later. Figure 47, Figure 48

Figure 52 automated testing result.

Automated testing of the Safe Scanner application done using selenium IED. The selenium IED
automated testing provide a user friendly to validate the behaver of the Safe Scanner
application. The selenium testing creating automated test scenario to cover key use cases, to
ensure that the application function works correctly and deliver seamless user experience. It has
the ability to test repetitive to catch errors early in the development process. Figure 49

41

Security Testing:

Figure 53 cross-site scripting (XSS) in the web application.

Figure 54 cross-site scripting (XSS) in the web application.

42

Figure 55 performance testing result.

Figure 56 performance testing result.

The performance test has been done to measure the speed and responsiveness of the Safe
scanner to ensure real time operation and minimal lag. To test the performance of Safe Scanner
applications system, I’ve used Lighthouse an open-source chrome dev tool. To test for
performance, accessibility, best practice, and SEO of the application. Figure 51

43

2.7. Evaluation

Evaluating the Safe Scanner system, it involves assessing its performance, functionality,
correctness, and its scalability. The Safe Scanner web application was evaluated by running
multiple tests. The application was tested with different variables successful information and
tested with incorrect information.

 URL Result

1 https://www.ncirl.ie Benign

2 https://stackoverflow.com Benign

3 http://signin.eby.de.zukruygxctzmmqi.civpro.co.za Malicious

4 https://www.tutorialspoint.com/unittest_framework/index.htm Benign

5 http://www.marketingbyinternet.com/mo/e56508df639f6ce7d55c81ee3fcd5ba8/ Malicious

6 http://friars.com/sports/m-baskbl/archive/prov-m-baskbl-2003.html Benign

7 http://www.pn-wuppertal.de/links/2-linkseite/5-httpwwwkrebshilfede Malicious

8 http://linkedin.com/pub/dir/elizabeth/scarborough Benign

9 http://fb.com.accounts.login.userid.343441.fbsbk.com/ Malicious

10 http://www.vilagnomad.com/tables/payday-loans-direct-lenders-only.php Malicious

Table 2 URL testing result.

The above URLs are taken from a benign and malicious data and have been tested in Safe Scanner
application, the result have been stated above. Table 2

44

Testing Result:

Table 3 over all testing results.

The application was evaluated by running various tested, unit test, integration test, system
testing and automated tested. The test is resolved with different variables e.g. successful
information and incorrect information to get best results. The overall results are successful, and I
am happy with the results, only Test 3 the automated test in selenium has fail, which was solved
later. Other than that, the testing result is successful. Table 3

Performance check:

Figure 57 performance check result.

Test Test 1 Test 2 Test 3 Test 4 Overall
Navbar Links
test

success success success success All tests were
successful

Scan QR code success success success success All tests were
successful

Detect URL success success success success All tests were
successful

URL Feature
Extraction

success success success success All tests were
successful

Scanning QR
code from image

success success success success All tests were
successful

Error Handling success success Fail success Mix results, need
to assess

Displayed
Outcomes

success success success success All tests were
successful

45

performance check score:

Figure 58 performance check score.

Lighthouse performance scoring.

To evaluate the performance of Safe Scanner applications system, I’ve used Lighthouse an open-
source chrome dev tool. The performance evaluation of Safe Scanner shows that the application
was responsive with scanning time of 0.6s. the performance level of Safe Scanner seemed
sufficient for users. The Lighthouse performance scoring result assisted me the insight
understanding into performance, accessibility, semantics, practices, and search engine
optimisation. The result helped me improve and understand the area of improvement for
further development of the Safe Scanner application. Figure 52, Figure 53

3.0 Conclusions
The QR code Safe Scanner project provides a utility tool to enhance the usability and security of the
Safe Scanner application. There are several advantages to the Safe Scanner application, including
better security and scalability. Some of the challenges facing the application include dependency on
libraries that are not internal to the application. In general, the project promises to be in a good
position to meet all user requirements for safe scanning of QR codes; however, to achieve this goal,
continuous maintenance and development are required to realize the full potential that is inherent
in the project.

Advantages:

• Enhanced Security: The system analyses malicious QRs, which might have dangerous threats
to users. Increasing the security level is created.

• URL Detection: It tends to show high accuracy in distinguishing between malicious and
benign URLs, and machine learning-based URL detection provides an effective defence
against cybercriminal activities.

46

• Real time Detection: It allows users to use real-time QR code scanning, which helps to
distinguish between innocuous and dangerous URLs and take the necessary measures.

• Scalability: Scalability is designed to satisfy user demand with minimum performance
degradation for the system during modest workloads.

• Modular design: The project is broken into flexible components that are easy to maintain,
update, or extend if required. Also, it may be tested and upgraded independently.

• User-Friendly Interface: to enhance usability The technology provides feedback to the user
whether the scanned information is safe or hazardous.

Disadvantage:

• Dependency on External Libraries: A portion of the project relies on other frameworks and
libraries, like the Flask framework and scikit-learn for machine learning. It adds
dependencies that probably do require management and periodic updating.

• Maintenance Overhead: As the project grows in complexity and sophistication, the source
code can become too hard to maintain and update, which demands constant effort to
preserve efficiency and security.

• User Dependence: Through the real-time scanning of QR codes, it will have the ability to
distinguish between both benign and dangerous URLs and take necessary action.

Strengths:

• Comprehensive Functionality: The application integrates the QR code scanning, and
seamlessly displayed results. It provides for the user comprehensive solution.

• Effective Detection: The system effectively provides the needs for robust of QR code
detection, a reliable tool for user to identify malicious threats.

• User-Friendly Interface: The frontend interface of the project makes the application
accessible for all users, including those with no technical background in machine learning
and cybersecurity.

• Continuous Improvement: The project facilitates ongoing improvement by structured
process of development and the implementation of integration test and unit testing, it
ensures that the project will remain effective and up to date.

4.0 Further Development or Research
Given additional time and resources the Safe Scanner project has few potential further development
areas. These directions focus on improving the enhance system robustness, its functionality and
security. Expanding its use cases and integration with other technologies.

The additional time and resources could be used to add new use case for the Safe Scanner project.
Automatic scanning environment, the automatic environment will do analyses for Malicious QR code
and URL, e.g. it will check if an email contain attachment. The Safe Scanner will analyse the QR code
image if it contains URL, it will further navigate and detect if its malicious. Then it will block the
email.

47

5.0 References

arxiv. (2019). Malicious URL Detection using Machine Learning: A, 37. Retrieved from arxiv.org:
https://arxiv.org/pdf/1701.07179

selenium-framework. (2023, 02 06). Retrieved from browserstack.com:
https://www.browserstack.com/guide/selenium-framework

Unit Testing in Python. (2022, 09 27). Retrieved from www.makeuseof.com:
https://www.makeuseof.com/python-testing-integration-unit-frameworks/

unittest_framework. (2024). Retrieved from www.tutorialspoint.com:
https://www.tutorialspoint.com/unittest_framework/unittest_framework_overview.htm

arxiv. (2019). Malicious URL Detection using Machine Learning: A, 37. Retrieved from arxiv.org:
https://arxiv.org/pdf/1701.07179

6.0 Appendices

Code Repository URL: https://github.com/nedahjan25/SafeScanner

6.1. Project Proposal

https://github.com/nedahjan25/SafeScanner

48

National College of Ireland
Project Proposal

QR Code Security App

28/10/2023
BSCH

Cyber Security

2023/2024

Nedah Jan Safi

X20347946

X20347946@student.ncirl.ie

49

7.0 Objectives

The objective of the project is too upscale the security of QR code by simply scanning with the help
of user-friendly app that can easily detect malicious QR codes. The primary goal is to raise the
concern about the QR code risks, how to protect from phishing attacks, and to understand the
differences between the harmful website and legit ones. In addition to this it will provide
multifunction to detect QR code with a direct camera as well as to scan with help of an image and
you can directly scan an URL. With following with this it ensure data privacy and help you to detect
the potentially malicious QR Code as well as a dedication to always improving in light of new
dangers.

8. Background
Why Choose to Undertake this Project?
The decision to undertake this project is driven by several compelling reasons:

• Primary thought to adopt this project as QR Code become very common to
share and store information and can be easily used for phishing.
• This project is influenced by the need to enhance user security and ultimately
guard people from being victims of cyber threats instigated by QR codes..

How to Meet the Objectives?
To ensure that this project meet the objective, we will employ various strategies:

• Cybersecurity-Centric Development: Develop an improved QR code scanner
app with enhanced detection against harmful QR codes.
• Real-Time Assessment of threats: Conduct dynamic, real-time threat analysis
to provide indications and warnings of emerging risks.
• User Education on Cyber Risks: Educate users about QR code and wider
cybersecurity best practices.
• Phishing URLs Detection: Advanced techniques can be used to identify
phishing sites and empower users to make secure choices.
• Feedback and reporting from user: implement user feedback on accuracy and
threat reporting.
• Cross-Platform: Implement the application for different platforms to extend
cybersecurity.
• Data Security and Privacy: Ensure data security and privacy in the light of
cyber threats.
• Continuous Cybersecurity Improvement: Keeping system up to date against
evolving threats.

9. State of the Art

There are similar applications and projects that already exist in this domain of QR code security.
Most QR code scanner applications introduce some level of security in the features, such as link
validation or data integrity checks. However, what differs this project and how work is different from
others working on similar projects. It can be summarized as follows:

• Advanced Threat Detection: It performs advanced algorithms for real-time threat
analysis beyond the base checks.
• User Education: In addition to security, it educates users on broader cybersecurity
practices.
• Improvement from time to time: The project commits to continuous updates for
leading-edge protection against emerging threats.

50

• Data Privacy: It focuses on the safety of the users' information and satisfies the
requirements of legal and ethical norms.
• Cross-Platform Accessibility: It is a cross-platform application to help a larger
audience enjoy all the advanced security features of the application.

10. Technical Approach

1. Development approach:
The QR code security project will be approached in a methodical and organized way to
ensure that our objectives are met. The approach to development in the attainment of
this QR code security project, identification of requirements, and how the project tasks
are broken down is summarized below:

2. Requirements Identification:

• The intended functionality, database administration, and security will
determine the technological requirements. And strives for ongoing development to
address changing threats.
• Cybersecurity is a very important topic. As such, research is necessary in
regard to the potential security concerns and dangers posed by QR codes and
phishing. This will help in ascertaining how to keep the app safe.
• Our goal is not only to scan a QR code, but we also teach people. Need a
strategic plan of the necessary information to include in the application by having
users be more careful about online safety.
• The application should be supported on many devices; hence, there will be a
conclusion on the platforms that it should be offered.

3. The breakdown of Requirements into Tasks and Development:

1. Project Beginning:

• Gathering Requirements
• Initial project planning

2. Design and Architecture:
• System architecture design
• User interface design
• Database structure design

3. Development:
• Core application development.
• User education content creation
• Phishing site detection mechanism
• User feedback mechanism

4. Cross-Platform Adaptation:
• Platform-specific adaptation and testing

5. Security Implementation:
• Data security and privacy measures

6. Testing and Quality Assurance:
• Testing, bug fixing, and quality assurance.

7. Feedback Integration:
• Incorporating user feedback

8. Deployment and Distribution:

51

• Launch on app stores.

Throughout the project, Regular targets shall be set up throughout the project to monitor
progress and check if it is in line with the project duration and objectives.

11. Technical Details

1. Implementation of programming Language:

Programming Language: The choice of a programming language is critical. Popular
programming languages that are widely used for developing mobile applications
include:

• Python: Known for rich in readability and huge range of libraries.
• JavaScript: JavaScript is an object-based, dynamic language used by
developers for creating dynamic web pages on almost all platforms.

Cross-Platform Frameworks: Alternatively, one might consider using cross-platform
development frameworks like React Native or Flutter to create the app for both Android
and iOS platforms. This approach can help in minimizing the time and expenses involved
in development.

2. Principal Libraries:

The choice of libraries can significantly impact the speed of development,
performance, and the overall reliability of the application. Required libraries for
various components of the project may include.

• QR Code Scanning: The common libraries used for QR code scanning
are ZBar and ZXing.
• Security Implementation: This can be custom code for specific
algorithms implemented for security features and detection of advanced
threats.
• User Interface: There are specific libraries and frameworks made for
each platform, such as UIKit for iOS, Android UI for Android, and Tkinter
or Kivy for cross-platform development.
• Data Handling and Encryption: OpenSSL along with other libraries
implements such functionality for data encryption and secure data
management.

3. Important Algorithms/Approaches Under Consideration:

• Pattern Recognition: For identification of QR code and determination
of the integrity of the QR code.
• Checksum Verification: To guarantee that the data included in QR
codes are accurate.
• Machine Learning and AI: For advanced threat detection, analyzing
patterns, and identifying suspicious QR codes.
• Dynamic Analysis: Real-time analysis of QR codes to detect potential
threats, including link validation and reputation checks.

52

• Phishing Site Detection: Employing techniques like URL parsing and
cross-referencing with known phishing databases.
• Data Privacy and Encryption: Implementing encryption algorithms to
secure user data and information.
• Continuous Improvement Pipeline: Designing a system for updating
threat detection algorithms and educational content.
• User Reporting Mechanism: Implementing features for users to report
suspicious QR codes.

12. Special Resources Required

Successful implementation of this project may necessitate the use of specialized resources,
notably in the domains of development and security. These resources can include:

• Hardware and software for development.
• Tools and services that enhance security, such as threat intelligence.
• Tools for ensuring compliance with data privacy rules.
• Resources for creating educational content.
• Infrastructure for managing databases.
• Resources for receiving user input and implementing continual
improvement.
• Evaluation setups.
• Proficiency in legal and compliance affairs.
• Proficiency in technical cybersecurity.

13. Project Plan

Project Plan for QR Code Security App:
Phase 1: The plan and structuring.
1. Project Beginning.
 - Outline the requirements and goals of the project.
 - Evaluate the resources available
2. Gathering requirements and analysis
 - Conduct a investigation into the available security solutions for QR codes.
 - Determine tech needs.
3. Design and Architecture.
 - Create systems architecture and design the database.
 - Make a strategic plan in designing the user interface (UI).
 - Conclude the technical specs.
4. Technology and Resources.
 - Put in place development tools and integrated development environments (IDEs).
 - Obtain the correct hardware and equipment for testing.

Phase 2: Development.
5. App Development at the Core.
 - The major coding of the QR code scanning and warning mechanism should be done as
soon as possible.
6. Implementation of Databases and Security Measures.

53

 - Create a database with all the known harmful QR codes.
 - Implement procedures to protect the privacy and security of data.
7. Feature Development.
 - Live identification capabilities for phishing sites.
 - Design and implement tools for user input (feedback) and reporting.

Phase 3: Cross-Platform Adaptability and User Interface Design Development.
8. User Interface (UI) development and design.
 - Develop and design graphical elements for GUIs.
 - Begin working on the user interface.
9. Cross-Platform Adaptation.
 - Porting the application to the Android and iOS platform.
 - Carry out a test to identify and eliminate problems peculiar to a specific platform.

Phase 4: Quality Assurance and Testing.
10. Initial Testing.
 - Make the app work on both Android and iOS.
 - Check for bugs that are special to the app.
11. Addition of Feedback
 - Incorporate user comments or feedback in the program.
 - Perform extra testing on bugs if needed.

Phase 5: Implementation and record-keeping.

13. The final testing phase and removal of the remaining software defects..
14. Implementation Preparation.
 - Get the app ready for release in app stores.
15. Documentation and education for users.
 - Develop user manuals and instructional materials.
 - Create detailed documentation of the application.

16. Submission and launch of the application.
 - Upload the application to appropriate app stores.
 - Launch the application for general availability to the wider audience.

Phase 6: Post-Deployment.
17. Activities of monitoring and updating performed after the launch of a product or
service.
 - Constantly track user comments and performance of the app.
 - Plan and perform the routine upgrades to ensure the safety and utility of the
application.

14. Testing

To ensure the functionality, safety, and usability of the QR code security software, it is
necessary to evaluate the system with real technical data and to involve end users. Some
methods of approaching such assessments are outlined below:

54

System Tests:
• The test on QR Code Scanning and Detection will test the basic capabilities of
the app by scanning a wide range of QR codes; this would include both benign
codes and codes that are known to be malicious. Precise detection of malicious
QR codes and warning should be made available to the system.
• Phishing Site Detection Test: The technique for detecting phishing sites can
be validated in real time by scanning QR codes going to both authentic and
phishing websites. Ensure that the system correctly recognizes phishing sites and
issues due warnings.
• User Feedback System Test: The effectiveness of real-time phishing site
detection can be tested by scanning the QR codes pointing to both genuine and
fraudulent websites. It should be ensured that the system detects the phishing
websites and alerts appropriately.

Integration Tests:

• Security Integration Test: Test the integration of security measures, including
data encryption and privacy features. Confirm that user data is adequately
protected.
• Cross-Platform Integration Test: If the app is developed for multiple
platforms, ensure that it functions consistently across Android and iOS devices.
• User Feedback Integration Test: Test the integration of the user feedback
system, making sure that user reports are correctly processed and contribute to
database updates.

Evaluation with End Users:

• Usability Testing: Conduct usability testing sessions with end users to
understand the overall usability of the application.
• User Feedback Analysis: Analyze the feedback collected from end users
during the usability testing.
• User Education Evaluation: Ensure that users understand the content
provided and can derive value from the educational component.
• Post-Launch Monitoring: Consistently monitor user comments and reviews
on app stores once the app has been published.

Evaluation with End Users:

• Usability Testing: Conduct usability testing sessions with end users to
understand the overall usability of the application.
• User Feedback Analysis: Analyze the feedback collected from end users
during the usability testing.
• User Education Evaluation: Ensure that users understand the content
provided and can derive value from the educational component.
• Post-Launch Monitoring: Consistently monitor user comments and reviews
on app stores once the app has been published.

55

7.1. Reflective Journals

8.0 Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Vanessa Ayala-Rivera

9.0 Month: October

What?

In this month I have spent time on refining the project idea, thorough I have reviewed existing projects and
Learned from the experiences of others has proven invaluable in shaping my approach. Produced a
compelling Project Pitch Video and completed the project proposal.

So What?

The dedicated research and ideation efforts significantly refined the project. now have a clearer
understanding of the objectives and potential impact.

The exploration of existing projects provided valuable insights, helping with identify best practices and
potential differentiators for the project.

The challenge that remains is to ensure to create a comprehensive roadmap for development.

Now What?

What can you do to address outstanding challenges?

Break down the implementation into manageable milestones for better control.

Develop contingency plans for identified risks to minimize their impact on project timelines.

Set realistic deadlines for each phase of the project, considering potential challenges.

Seek feedback from supervisor.

Student Signature

56

10.0 Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Vanessa Ayala-Rivera

11.0 Month: November

What?

In this month I have dedicated substantial time to in-depth research on the techniques relevant to the project.

Successfully crafted a detailed roadmap for the project's development.

Outlined key milestones, deliverables, and timelines, providing a structured plan for the project.

Conducted a comprehensive meeting with the project supervisor to discuss project objectives, expectations,
and receive valuable guidance.

Clarified project scope, milestones, and sought feedback on the proposed approach.

So What?

Achieved alignment with the project supervisor, ensuring our objectives are in sync with academic
expectations.

Gained valuable insights from research, identifying the most effective techniques to be employed in project.

The development of roadmap provides a clear and organized plan.

Now What?

What can you do to address outstanding challenges?

Identified potential challenges in integrating certain techniques, requiring careful consideration during the
development phase.

With the roadmap in place, now must kick off the implementation phase in the coming month.

Implement contingency plans to ensure project continuity.

57

Student Signature

12.0 Month: December

What?

In the past few weeks, I have delved into the technique for detecting QR code URLs as part of my project. This
involved understanding various algorithms and methods for efficiently and accurately identifying URLs
embedded within QR codes. I've explored the intricacies of image processing, pattern recognition, and the
underlying principles that make QR code detection possible. The process involved a combination of literature
review, experimentation, and engagement with relevant technologies.

So What?

Understanding the QR code URL detection technique has been crucial for the foundation of my project. This
knowledge has provided me with insights into the complexities and nuances of image processing and
recognition. The so what aspect lies in recognizing the significance of this technique within the broader
context of my project. I've been able to connect theoretical concepts to practical applications and foresee
potential challenges that may arise during the implementation phase.

Now What?

Begin planning the implementation phase, considering the intricacies of QR code URL detection.
Considerations will include the selection of appropriate libraries, tools, and potential challenges that may
arise during coding.

Student Signature

Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Vanessa Ayala-Rivera

58

Month: January

What?

I have dedicated substantial time to designing the application's wireframe. The wireframe serves as the
blueprint for the user interface, providing a visual representation of the application's structure and layout. It
includes key elements such as navigation, buttons, and overall design aesthetics. The wireframe is crucial for
ensuring a user-friendly and intuitive interface.

So What?

No significant challenges have been encountered during the wireframing and initial coding phases. However,
I am continuously monitoring potential challenges and am prepared to address any issues that may arise
during the development process.

Now What?

In the upcoming weeks, the focus will remain on code development, user interface refinement.

Student Signature

Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Keith Maycock

Month: February

What?

In this month I have worked on creating the QR Code scanner using HTML5 library. Created code in VS Code
using HTML, JavaScript, CSS for web page. Have used the HTML5 library to scan the QR Code.

So What?

59

Understanding how QR Code scanning works and how to do it with HTML5 was tough. I struggled with figuring
out how HTML, JavaScript, and the camera on devices all fit together. Making sure everything worked on
different web browsers was also tricky.

Now What?

What can you do to address outstanding challenges?

Using HTML5 and discovered more about what it can do. Learning about how JavaScript interacts with web
pages and how to handle events was important for making the scanner work. Also learn about using
JavaScript libraries to make web projects better.

Seek feedback from supervisor.

Student Signature

Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Keith Maycock

Month: March

What?

In this month have been working on adding features to QR Code scanner. have used qrcode-parser library to
decode the contents of the QR code and retrieve information about its type. Also used Regular expression for
URL validation, this ensured that only valid URLs were processed, minimizing the risk of erroneous data
interpretation and enhancing the overall robustness of the scanner.

So What?

Adding these features to QR Code scanner project it advanced its capabilities and usability. Using the qrcode-
parser library to decodes QR codes and retrieve information about its type. Using regular expressions for URL
validation to ensure that only valid URLs can process and minimize the risk of erroneous data interpretation
and enhancing the overall robustness of the scanner. The challenges still remain is to add the machine
learning algorithms to the code. And to make sure it works properly.

60

Now What?

What can you do to address outstanding challenges?

To address the challenges. Have to choose the correct format and libraries of the algorithms, which will help
in improvement of the QR Code scanner.

Student Signature

Supervision & Reflection Journal

Student Name Nedah Jan Safi

Student Number X20347946

Course BSHCYB4

Supervisor Keith Maycock

Month: April

What?

In this month have been working on adding ML algorithms to detect malicious URL, and have completed the
web app. For detecting malicious URL have used lexical feature, logistic regression, and decision tree models.
And deployed in JavaScript language for backend and used html and CSS for frontend.

So What?

Adding these features and models to QR Code scanner project it advanced its capabilities and usability. Using
lexical feature logistic regression, and decision tree to analyses the format of the URL and detect malicious
URL.

The next step is to testing, to test if the features are working and obtain all the expedition.

Now What?

What can you do to address outstanding challenges?

To address the challenges. Have to choose the correct testing format and using of framework for obtaining
good testing result.

Student Signature

61

12.1. Other materials used
Any other reference material used in the project for example evaluation surveys etc.

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Flow Diagram
	2.6. Testing
	2.7. Evaluation

	2.1.1.2. Requirement 1 QR Code Scanning
	Description & Priority
	Use Case
	2.1.1.3. Requirement 2 Enter URL for Scanning
	Description & Priority
	Use Case
	2.1.1.4. Requirement 3 Image selection for scanning
	Description & Priority
	Use Case
	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal

	7.0 Objectives
	7.1. Reflective Journals
	12.1. Other materials used

