

National College of Ireland

BSHCSD4
Academic Year 2023/2024

Mark Cummins

x20400634

x20400645@student.ncirl.ie

Epoch Explorer

Technical Report

1

Contents
Table of Figures ... 3

Executive Summary ... 5

1.0 Introduction ... 5

1.1. Background .. 5

1.2. Aims ... 5

1.3. Technology .. 6

1.4. Structure .. 6

2.0 System .. 7

2.1. Requirements .. 7

2.1.1. Functional Requirements .. 7

2.1.1.1. Use Case Diagram .. 7

2.1.1.2. Requirement 1: Start Application.. 8

2.1.1.3. Requirement 2: Change Settings ... 9

2.1.1.4. Requirement 3: Exit Application ... 10

2.1.1.5. Requirement 4: Move player character .. 11

2.1.1.6. Requirement 5: Display object prompt ... 12

2.1.1.7. Requirement 6: Interact with objects information menu ... 13

2.1.1.8. Requirement 7: Display map ... 14

2.1.1.9. Requirement 8: Display Pause menu. ... 15

2.1.1.10. Requirement 9: Prevent user from traversing out of bounds 16

2.1.2. Data Requirements ... 17

2.1.3. Environmental Requirements ... 17

2.1.4. Usability Requirements ... 18

2.2. Design & Architecture ... 19

2.3. Implementation ... 20

2.3.1. Main Menu .. 20

2.3.2. Display Controls... 22

2.3.3. Pause Menu ... 22

2.3.3.1. Resume Application ... 24

2.3.3.2. Save/Load Application ... 24

2.3.3.3. Return to Main Menu/Quit Application... 28

2.3.4. Display Object Prompt .. 29

2.3.5. Object Information System ... 30

2.3.6. Out of Bounds System ... 33

2.3.7. Minimap and Main Map system ... 36

2

2.3.7.1. Minimap system ... 36

2.3.7.2. Main Map System .. 41

2.3.8. Creating the level .. 44

2.3.9. Photogrammetry ... 50

2.4. Graphical User Interface (GUI) .. 55

2.4.1. Main Menu .. 55

2.4.2. Controls Menu displayed upon Start .. 55

2.4.3. Pause Menu ... 56

2.4.4. Minimap .. 56

2.4.5. Main Map .. 57

2.5 Testing and Evaluation .. 58

2.5.1 Functional/Unit Tests ... 58

2.5.2 Manual Tests .. 60

3.0 Conclusions .. 62

4.0 Further Development and Research ... 63

5.0 References .. 64

6.0 Poster .. 65

7.0 Appendices .. 66

7.1 Project Proposal .. 66

7.1.1 Objectives... 66

7.1.2 Background .. 66

7.1.3 State of the Art ... 67

7.1.4 Technical Approach .. 67

7.1.5 Technical Details .. 68

7.1.6 Special Resources Required ... 68

7.1.7 Project Plan .. 68

7.1.8 Testing .. 69

7.1.9 Proposal References .. 69

7.2 Reflective Journals .. 70

October ... 70

November ... 71

December .. 72

January .. 73

February .. 74

March .. 74

April ... 75

3

Table of Figures
Figure 1 Epoch Explorer Use Case Diagram .. 7
Figure 2 Main Menu Widget Blueprint ... 20
Figure 3 Main Menu Widget Assets .. 20
Figure 4 MainMenuMap Blueprint ... 21
Figure 5 mainMenu Widget Blueprint .. 21
Figure 6 Controls Widget Blueprint .. 22
Figure 7 Pause Input Action .. 22
Figure 8 IA_Pause Key Assignment ... 23
Figure 9 pauseMenu Blueprint ... 23
Figure 10 Resume Button code in pauseMenu widget Blueprint ... 24
Figure 11 EEGameInstance and EESave Blueprint Classes. ... 24
Figure 12 PlayerTransform Variable in EESave Blueprint ... 24
Figure 13 Setting EEGameInstanceReference Variable .. 25
Figure 14 Variables in EEGameInstance Blueprint .. 25
Figure 15 Functions in EEGameInstance ... 25
Figure 16 SaveGame Function Blueprint .. 26
Figure 17 LoadSaveGame Function Blueprint ... 26
Figure 18 LoadApplication Function Blueprint ... 26
Figure 19 EEGameInstance Blueprint ... 27
Figure 20 Loading System in BP_FirstPersonCharacter Blueprint .. 27
Figure 21 Save Button System in pauseMenu Widget Blueprint .. 27
Figure 22 Load Button System in pauseMenu Widget Blueprint.. 28
Figure 23 Return to Main Menu and Quit Application button systems in pauseMenu widget blueprint

 .. 28
Figure 24 Display Interaction Prompt blueprint ... 29
Figure 25 Collision Sphere Placed around object to trigger Events .. 29
Figure 26 Interaction Interface ... 30
Figure 27 Input Action IA_Interact .. 30
Figure 28 Detection of Interaction with Objects Blueprint... 30
Figure 29 Interaction Event in interactable object’s Blueprint ... 31
Figure 30 Object information Widgets ... 31
Figure 31 Audio transcription file for the Parochial House Object ... 31
Figure 32 Narakeet in use for the audio transcription of objects ... 32
Figure 33 Play audio transcription Blueprint .. 32
Figure 34 Close Information widget and Stop Audio Playback Bluprint ... 33
Figure 35 Boundary Actor and BoundaryMessage Widget ... 33
Figure 36 Boundary Objects Surrounding Playable Area .. 33
Figure 37 Colliding with Boundary Blueprint .. 34
Figure 38 Not Colliding with Boundary Blueprint ... 34
Figure 39 Setting of SpawnTransform Variable .. 34
Figure 40 Respawn Event Blueprint .. 35
Figure 41 Destroy Event Override Blueprint ... 35
Figure 42 Dunboyne Map Asset .. 36
Figure 43 Mini_Map_Material Blueprint .. 37

4

Figure 44 Mini Map Logic in PlayerHUD Blueprint ... 38
Figure 45 MiniMapIconLocation Actor and MiniMapIcon Widget ... 38
Figure 46 MiniMapIconLocation Actor Blueprint ... 39
Figure 47 UpdateIconActorWorldLocationUsingAB2V Function Blueprint .. 39
Figure 48 UpdateMiniMapIconWidgetPosition Event Blueprint .. 40
Figure 49 MiniMapLocation Actor Inside Parochial House Object ... 40
Figure 50 Values of widget location on the Mini_Map_Widget and the Values of the Centre of the

Minimap .. 41
Figure 51 MapToggle event in PlayerHUD Blueprint .. 41
Figure 52 Update Main Map Icons Collapsed Graph Blueprint .. 42
Figure 53 Get MainMapIconData functions in MiniMapIconLocation and BP_FirstPersonCharacter

Blueprints .. 42
Figure 54 CreateMainMapIcon Event in MainMapIcon Blueprint .. 42
Figure 55 MousePositionWorld Function in MainMap Blueprint ... 43
Figure 56 OnMouseClick Function in MainMap Widget Blueprint ... 43
Figure 57 Files that Unreal Mapbox Bridge created ... 44
Figure 58 Importing the Unreal MapBox Bridge heightmap to create an Unreal Engine landscape ... 44
Figure 59 Directional light, Sky Atmosphere and Exponential Height Fog added to project 45
Figure 60 Geohive 1909 ordnance survey of Dunboyne .. 45
Figure 61 Unreal Mapbox Bridge and Geohive maps combined .. 46
Figure 62 Material created to texture landscape code snippet ... 46
Figure 63 Texture overlaid onto the landscape .. 47
Figure 64 Placeholder buildings placed on the landscape .. 47
Figure 65 Enabling Nanite on Foliage Assets .. 48
Figure 66 Placement of trees with Map and Historical photograph being referenced 48
Figure 67 Combining the various Megascan assets into a paintable texture 49
Figure 68 ”Painting” of the landscape with Megascan textures in progress .. 49
Figure 69 Screenshot of Dunboyne environment as of the project’s completion................................ 49
Figure 70 Images of the Parochial House captured using drone .. 50
Figure 71 Inputting images of the Parochial House into Polycam .. 51
Figure 72 3-D model of the Parochial House generated in Polycam .. 52
Figure 73 Polycam model imported into Blender ... 53
Figure 74 Removing unwanted vertices from the model in Blender .. 53
Figure 75 Final 3-D model in Blender after editing ... 54
Figure 76 Parochial House model placed in the applications environment ... 54
Figure 77 The main menu and settings submenu of the application ... 55
Figure 78 Control scheme that appears on user’s screen upon startup ... 55
Figure 79 Pause menu as it appears in the application .. 56
Figure 80 Minimap with locations of interest ... 56
Figure 81 Main map with custom waypoint and locations of interest ... 57
Figure 82 Boundary System Unit Test Blueprint ... 58
Figure 83 Interaction Unit Test Blueprint ... 59
Figure 84 Unit tests Passing .. 59
Figure 85 Suite of Unreal Engine tests Passing ... 60
Figure 86 StatStreaming showing memory statistics .. 60
Figure 87 FPS counter when far away and close to a tree (enlarged for readability) 61
Figure 88 Changing texture size to improve performance ... 61
Figure 89 Improved FPS while close to tree after changing texture size .. 61

5

Executive Summary
This technical report aims to describe the steps taken to develop the application ‘Epoch Explorer,’ which is an

interactive learning tool that seeks to immerse users in environments that are recreations of towns from the

past and allow them to learn about the history of different era’s. This report provides an insight into the

technology used to develop the application; Unreal Engine 5, Blender, Polycam and a variety of other

technologies. It provides the reader with an insight into the architecture of the application and the various

mechanics of it. An in-depth description of both the functional and non-functional requirements of the

application is also provided.

The report will explain in detail the steps taken to create the functionality of the Epoch Explorer application

such as the creation of the environment, the ability for a user to learn about objects in the world, to view

objects in an in-depth manner, navigate the environment with a map and save and load their progress in their

exploratory journey. Each of these facets of the application will be explained with accompanying screenshots

of the blueprint code used to develop them and the design process involved.

1.0 Introduction

1.1. Background
I undertook this project as I have an avid interest in both history and video games. While my project is not

necessarily a video game and is more-so aimed at being an interactive learning tool, it is still an interactive

media experience which I feel falls under the wider umbrella of video games. I have always had passion for

history and would like to share that passion with others and hopefully get them interested in history through a

more interactive and engaging medium than traditional learning methods. A video game is a unique way to

harness the innate human desire to explore while coupling it with learning about different time periods.

Through this project, I hope to give users a deeper understanding of just how much the towns they inhabit

grow and change over time and what our towns may have looked like to our ancestors. I feel that traditional

teaching methods for history can be unengaging and tend to cause a disconnect between us in the present day

and the people of the past. I hope that with this project and enabling a user to see the town of Dunboyne as

our ancestors did, it may change a user's perspective on history and give them a deeper appreciation for it.

1.2. Aims
This application aims to achieve an immersive and educational interactive environment for a user to explore

and learn about the town of Dunboyne circa 1909. The project aims to have an intuitive user interface that

allows users to experience the historical recreation without much prior knowledge of video games. The control

scheme and menus aim to be simple, yet aesthetically pleasing and easy to interact with.

The in-engine environment aims to be as historically authentic as possible, with great attention to detail taken

in terms of recreating the town as closely as is possible with the current academic and archival resources

available.

It aims to allow a user to learn about the various sights of the town and gain a deeper understanding into the

lives of our ancestors who lived around the turn of the 20th century by allowing them to see the town in a

similar state that our ancestors would have experienced it.

The project aims to be as widely accessible as possible, therefore it will be optimized to run on the widest

variety of hardware possible through the ability to tweak settings, optimisation, and testing.

6

1.3. Technology
A variety of technologies were utilised in the creation of this project, the main ones being Unreal Engine 5,

Blender 4.0, Polycam, Unreal Mapbox Bridge and Geohive.

Unreal Engine 5 is a game engine that allows a user to create games, simulations, and other interactive

experiences [1]. It serves as the game engine for the application and was used to develop the environment and

functionality of the application. It allowed me to populate the project by importing assets from Blender and

Polycam, gave me the tools required to develop the applications logic through its C++ ‘blueprints’ system.

Blender is a 3-D modelling tool that was invaluable in creation the of assets required for the project [2]. It

allowed me to tweak the assets created using photogrammetry with Polycam. It will also allow me to create

entire assets myself, creating their models them and texturing them so they can be imported into Unreal

Engine.

Polycam is a 3-D modelling tool that allows a user to convert photographs of real-world objects into 3-D

models [3]. It proved invaluable in converting the buildings captured using drone photogrammetry into usable

3-D models.

Unreal Mapbox Bridge is a plugin developed by Daniel Elebash that allows a user to create an Unreal Engine

landscape from satellite height-map data [4]. This plugin was crucial when it came to being able to create a

historically authentic and to-scale recreation of the town of Dunboyne.

Finally, Geohive is a tool that allows users to access historical ordnance survey maps online [5]. This tool was a

great resource when it came to referencing exactly how the town was laid out in 1909.

1.4. Structure
This document contains four major headings; the Introduction, the System, the Conclusion, and Further

Development and Research. The System section contains information pertaining to the functional, data,

usability, and environmental requirements of the application. It contains an overview of the design and

architecture of the application and goes into detail regarding the implementation of the various features of the

application. Finally, it contains sections dedicated to highlighting the graphical user interfaces of the

application and the testing conducted on the application.

7

2.0 System

2.1. Requirements

2.1.1. Functional Requirements

2.1.1.1. Use Case Diagram

Figure 1 Epoch Explorer Use Case Diagram

8

2.1.1.2. Requirement 1: Start Application
Use Case Name Start Application. Use Case

ID

U1 Priority High

Scope Allows a user to enter the applications environment.

Description A user can spawn into the environment by clicking on the ‘start’ button in the main menu.

Pre-condition The application is running.

Activation The ‘Start’ button is clicked.

Post-condition The user is spawned into the application’s environment.

Main flow 1. Application is running on the user's system.

2. System displays the main menu to the user.

3. User clicks the ‘Start’ button.

4. System loads the ‘Dunboyne’ level.

5. User is spawned into the level.

6. Application pauses and displays the systems control scheme to the user.

7. User presses ‘x’ to close control scheme menu.

8. Application begins.

Alternate flow

Exceptional

flow

E1: The system crashes upon start.

1. User clicks ‘Start’ button.

2. Due to an error, the application fails to start.

3. Application closes to desktop and Unreal Engine 5 displays a prompt explaining the error

that occurred.

9

2.1.1.3. Requirement 2: Change Settings
Use Case Name Change Settings. Use Case

ID

U2 Priority High

Scope Allows a user to change a variety of the applications settings.

Description A user can change the settings of the application through the ‘settings’ button on the main

menu.

Pre-condition The application is running.

Activation The Settings button is clicked.

Post-condition The application applies the users desired settings and returns to the main menu.

Main flow 1. Application is running.

2. System displays main menu.

3. User clicks the ‘Settings’ button in the main menu.

4. System displays the Settings menu.

5. User selects their desired resolution size.

6. User selects their desired shadow quality.

7. User selects their desired shader quality.

8. User selects their desired texture quality.

9. User selects their desired window mode.

10. User clicks ‘apply.’

11. The System applies the settings the user has selected.

12. The System returns the user to main menu.

Alternate flow A1: User changes no settings.

1. The user does not wish to change any settings.

2. The user clicks ‘back.’

3. The system returns the user to the main menu.

Exceptional

flow

10

2.1.1.4. Requirement 3: Exit Application
Use Case Name Quit Application. Use Case

ID

U3 Priority High

Scope Allows a user to exit the application.

Description A user can quit the application and return to their desktop.

Pre-condition The application is running.

Activation The ‘Quit’ button on the main menu is clicked.

Post-condition The application is closed, and the user is sent back to their desktop.

Main flow 1. The application is running.

2. The system displays the main menu.

3. The user clicks the ‘Quit’ button in the main menu.

4. The application ends all running processes.

5. The user is returned to their desktop.

Alternate flow 1. The user ends the task through other means such as hitting Alt+F4 or through the

Windows Task Manager.

2. The program stops.

3. The user is returned to their desktop.

Exceptional

flow

11

2.1.1.5. Requirement 4: Move player character
Use Case Name Move player character. Use Case

ID

U4 Priority High

Scope Allows a user to move their character in the environment.

Description A user can navigate the virtual environment by controlling a character using their control

device.

Pre-condition A user has been spawned into the environment.

Activation The user enters an input on their control device.

Post-condition The avatar reacts to the users input in the virtual environment.

Main flow 1. The user has pressed ‘start’ and is spawned into the level.

2. The user enters an input via their keyboard or mouse.

3. The game engine recognises the input and translates said input into movement by

changing the avatars position in the level.

4. The player avatar has been moved.

Alternate flow

Exceptional

flow

E1: Input device not recognised.

1. No input device is connected or detected.

2. The system displays an error message informing the user that an input device cannot be

detected.

12

2.1.1.6. Requirement 5: Display object prompt
Use Case Name Display object prompt. Use Case

ID

U5 Priority High

Scope Allows a user to see an interaction prompt when near an interactable object.

Description When a user approaches an interactable object, the user can see a prompt tied to that

object informing them that they can interact with it.

Pre-condition The user has been spawned into the environment.

Activation The user enters within a close proximity of an object of interest.

Post-condition A prompt is displayed informing a user that they can interact with the object.

Main flow 1. A user walks toward an object of interest.

2. When a user enters within a close proximity to an object, a prompt is displayed on the

object informing a user they can interact with it.

3. When the user hits the interaction button, the objects information menu will be

displayed to the user.

Alternate flow A1: User enters object’s radius but does not interact with it.

1. A user walks toward an object of interest.

2. When a user enters within a close proximity to the object, a prompt is displayed on it.

3. The user walks away from the object.

4. The prompt disappears.

Exceptional

flow

13

2.1.1.7. Requirement 6: Interact with objects information menu
Use Case Name Interact with objects information menu. Use Case

ID

U6 Priority High

Scope Allows a user to interact with an object's information menu.

Description A user can interact with an objects information menu to learn about the object and its

history. The user can play an audio file that is a transcription of the objects information

and view a historical photograph of the object.

Pre-condition A user has pressed the interact button on the objects prompt.

Activation The objects information menu is displayed on the user's screen.

Post-condition The user can interact with the various elements in the object's information menu.

Main flow 1. A user has pressed the interact button on an objects prompt.

2. The objects information menu is displayed on the user's screen.

3. A historical photograph of the object is displayed in the menu.

4. The user can read a text field containing information about the object.

5. The user can click on a button that plays an audio transcription that details the history

of the object.

6. The user can click close, and the menu is removed from their screen.

Alternate flow A1: User stops audio transcription early.

1. The user clicks on the button the plays an audio transcription of the object’s history.

2. The user clicks close during the audio playback.

3. Audio playback is stopped, and the menu is removed from their screen.

Exceptional

flow

14

2.1.1.8. Requirement 7: Display map
Use Case Name Display map. Use Case

ID

U7 Priority Medium

Scope Allows a user to open a map of the environment.

Description A user can press the ‘M’ button on their keyboard to open a map of the environment to

better aid them in navigation. The user can place custom waypoints to aid their traversal

of the environment.

Pre-condition A user has spawned into the environment.

Activation The user presses the button assigned to open the map.

Post-condition The map is displayed on a user's screen.

Main flow 1. A user has spawned into the environment.

2. A minimap is displayed on their screen.

3. They press the ‘M’ button on their keyboard to open their main map.

4. The main map is displayed on the user's screen.

5. The user can place a custom waypoint on the main map.

6. The waypoint will be displayed on their main map and minimap to aid in their navigation

of the environment.

Alternate flow

Exceptional

flow

15

2.1.1.9. Requirement 8: Display Pause menu.
Use Case Name Display Pause Menu. Use Case

ID

U8 Priority Medium

Scope Allows a user to pause the application.

Description A user can press a button on their keyboard that will pause the application and display a

pause menu on their screen.

Pre-condition A user has spawned into the environment.

Activation The user presses the ‘P’ button to pause the application.

Post-condition The application is paused, and the pause menu is displayed on the user's screen.

Main flow 1. A user has spawned into the environment.

2. The user presses the ‘P’ button to pause the application.

3. The application stops and displays the pause menu on the user's screen.

4. The user can save their progress by clicking the ‘Save’ button.

5. The user can click ‘Return to main menu’ to go back to the application's main menu.

6. The user can exit the application by clicking ‘Quit Application’.

7. The user can resume the application by clicking ‘Resume’.

Alternate flow A1: User loads a save file.

1. User presses the ‘P’ button to pause the application.

2. Application stops and displays the pause menu on the user's screen.

3. The system loads the save file and starts the application from their save point.

Exceptional

flow

16

2.1.1.10. Requirement 9: Prevent user from traversing out of bounds
Use Case Name Prevent user from traversing out of

bounds.

Use Case

ID

U9 Priority Low

Scope Stops a user from navigating outside of the intended play area.

Description A user will receive a warning when they navigate outside of the playable area of the

environment. When this occurs, they will receive a warning on their screen. If the warning

is not heeded, they will be placed back at their original spawn point.

Pre-condition A user has spawned into the environment.

Activation The user navigates outside of the playable area of the map.

Post-condition The user is respawned at their original spawn point.

Main flow 1. A user has spawned into the environment.

2. The user navigates into an unfinished or out-of-bounds area of the map.

3. The system displays a warning message on the user's screen and a countdown begins.

4. The user does not heed the warning message.

5. At the end of the countdown, the user is respawned at their initial spawn point.

Alternate flow A1: User returns to playable area before countdown finishes.

1. The user has navigated into an unfinished area.

2. The system displays a warning message on the user's screen.

3. The user heeds the warning message and returns to the playable area of the map.

4. The warning message disappears from the user's screen.

Exceptional

flow

17

2.1.2. Data Requirements
The data requirements of the Epoch Explorer application are as follows:

Mesh Data: Unreal Engine stores data pertaining to the mesh’s of the environment. This includes the

landscape data and object data.

Texture data: Unreal Engine stores all the texture data used within the application. These textures are mapped

to their corresponding meshes to ensure a visually pleasing environment.

Save data: Unreal Engine stores the save files of user. These save files log the game state at the time of saving

and upon being loaded into memory, the engine recreates the game state present in the save file.

Image data: The images of objects that appear in their information menus are stored in Unreal Engine and are

retrieved upon runtime in the information menu.

Audio data: The audio transcription present in the object information menus are stored in Unreal Engine as

.wav files and are retrieved upon runtime when the user clicks the ‘play audio' button.

Text data: The text data associated with objects is stored in Unreal Engine and is retrieved upon runtime.

Settings data: The application settings that a user sets are stored in a ‘GameUserSettings.ini’ file and are

applied on runtime.

UI assets: The various UI assets are stored in Unreal Engine as texture files. These assets are applied to widgets

and these widgets are retrieved on runtime.

2.1.3. Environmental Requirements
Operating system: Epoch Explorer is compatible with Windows operating systems.

System requirements: Due to the fidelity of the assets and the size of the environment, the user should ideally

have a system that meets the minimum requirements of the application. These requirements will be better

determined when the application is developed further and more assets are added - but the application was

developed using a GTX 1070Ti, 16GB of RAM, and an Intel Core i5-8600K. Ideally, a user's PC should be of a

similar specification to my own system to ensure a comparable experience, but the ability to change resolution

and graphics settings means that a user with less powerful hardware will still be able to experience the

application, albeit at a decreased level of fidelity.

Screen resolution: A user should ideally have a screen resolution of between 1920x1080 or 2560x1440 to get

intended level of fidelity for the application. However, all user interface elements are responsive and will

adapt to any screen size. The application was developed on a system with a 2560x1440 monitor, but a user can

still experience the application with resolutions higher or lower than this by changing their resolution in the

settings menu.

Inputs: A user should have a mouse and keyboard to interact with the application.

Storage: Due to the nature of the application being a video game, the file size is quite large because of the

number of textures and other assets contained within it. The user will need at least 66GB of storage to

download and run the application.

18

2.1.4. Usability Requirements
The Epoch Explorer application was developed with the user experience at the core of its design ethos. To

achieve this, it aims to adhere to Jakob Nielsen’s ‘10 Usability Heuristics for User Design’ [6]. When the

application is started, the user is presented with a minimalistic and easy to read main menu that conveys key

functions of the application. The user can start the application, change the applications settings, or exit the

application. These options are all conveyed through high-contrast, minimalist and easy to read user interface

widgets, embodying principle #8, ‘Aesthetic and Minimalist Design’. The design of the menus in the application

are consistent throughout, even echoing the colour scheme and design of the Epoch Explorer logo. This

showcases principle #4, ‘Consistency and Standards’. The ability of a user to customise the applications

settings is in keeping with principle #7, ‘Flexibility and Efficiency of Use’.

The widget elements are responsive and react to a user's inputs. For example, when a user hovers their mouse

over an element and clicks it, the elements change colour to give the user feedback that their input is being

recognised. This embodies principle #1, ‘Visibility of System Status’.

Once the user has started the application, a screen is displayed that lists the controls for the character. This is

to ensure that even users unfamiliar with interactive experiences or common control schemes can understand

what input is needed to control the character. This highlights principle #10, ‘Help and Documentation’.

When navigating the environment and approaching an object, any object that is interactable will display a

prompt with the corresponding interaction button displayed. This is to ensure that the user knows exactly

what objects are interactable and which ones are not. The fact the widget appears on screen means the user

does not need to break up their experience by consulting documentation to confirm the control scheme

needed to interact with an object. This embodies principle #6, ‘Recognition rather than Recall’.

When an objects information menu is displayed, a user will be able to interact with the menu by playing an

audio transcription of this text. This is to ensure accessibility for those that might need or prefer an audio

transcription of the information about the object. The text-to-speech voice chosen has an Irish accent, since

the applications setting is rural Ireland.

Should a user leave the playable area of the application, they will be informed of this fact by easy to

understand, red text. This follows principle #9, ‘Help Users Recognize, Diagnose and Recover from Errors’.

Finally, in terms of performance, the application should run at a continuous 60 frames per second with little

stuttering or performance drops.

19

2.2. Design & Architecture
Application design: The application was designed using Unreal Engine for all the components. The logic

behind each component is handled by ‘blueprint’ code which is a GUI interface for implementing C++

code. There are various classes of objects in the project such as widgets, levels, assets etc. Each of these

can have underlying logic applied to them with blueprints. The blueprints system follows the concept of

Object-Oriented Programming [7].

The key features of the application are the menu systems - including saving and loading data, the map

systems, the ‘out of bounds’ system, and the object information menu system.

For the save system, a file will be generated by unreal engine that keeps a log of the game state at the

time of saving. This file will be retrieved upon loading - resuming the game from that point.

The map system will provide a top-down view of the environments terrain and will be ever-present on the

user’s screen in the form of a minimap. A larger version of the map that is only shown when an input is

pressed is also available. When the map button is pressed, the map widget will be displayed by Unreal

Engine and a user will be able to place custom waypoints on this map. When a user clicks on their map,

Unreal Engine will take the co-ordinates of the user’s mouse click and translate it to the corresponding

environment co-ordinates. A waypoint actor will be spawned at these environment co-ordinates. This

waypoint actor’s location will then be displayed on the main map and minimap in the form of a widget

component to act as a navigation aid for the user to travel towards.

Finally, the object interaction system is a major design aspect of the application. It involves showing a

prompt on an object when a user is within a certain distance. When the interact button is pressed, Unreal

Engine will display a widget on the user's screen. This widget is the objects information menu. This menu

will be interactable and will allow a user to play an audio file which is a transcription of the text present in

the widget. This audio file will be stored in Unreal Engine and will be retrieved when the ‘play audio’

button is pressed.

Level design: The level design is a crucial aspect of the project that ensures that the application is as

immersive and historically authentic as possible. Because the application is a recreation of a real place as it

existed in the past, careful work has been put into ensuring it is as accurate a recreation as possible.

Accuracy was achieved by referencing ordnance survey maps to get an exact layout of the town from the

period. The map was generated using topographic data from satellite captures using ‘Unreal Mapbox

Bridge.’ Placeholder ‘whiteboxed’ [8] buildings were then added to the level to represent the buildings

that were present during the period captured by the ordnance survey.

One building was scanned using drone photogrammetry to ensure its preservation and accuracy. This

process involved flying a drone around the object in question in an orbit and taking pictures every few

seconds to ensure all angles of the object were captured. These images were then input into Polycam -

which generated a 3D model of the object. This 3D model was then inputted into blender and the

unwanted vertices were deleted. This edited 3D model was then exported back into Unreal Engine and

placed in the applications environment.

Historical photography was consulted throughout the project to ensure an accurate recreation of the

other aspects of the environment such as road surfaces, grass, foliage, and other features of the town.

These historical images and historical information used in the application were sourced from the ‘Old

Dunboyne Society’ [9], ‘The Historical Picture Archive’ [10], the National Built Heritage Service [11] and

Meath County Council [12].

20

2.3. Implementation
This section of the report will discuss the implementation of the main features of the Epoch Explorer

application and a thorough explanation of the blueprint code used to realise these features. Each feature

is housed in its own section, and certain features fall under the category of a subsection of a main feature.

2.3.1. Main Menu
The main menu is its own level called MainMenuMap. This is what the user will load into when the

application is running. The actual level itself is empty, but when the application runs, the main menu

widget is retrieved and shown on the user’s screen. Widgets are a form of blueprint in unreal that allow

for the handling of user interface elements. The main menu widget was created and then populated with

a variety of assets created using the program ‘paint.net’ [13] and then imported into Unreal Engine. This

process of asset creation and importation was used to create all the widgets for this project.

 Figure 2 Main Menu Widget Blueprint

 Figure 3 Main Menu Widget Assets

21

At this point, the settings menu is also retrieved and the OnPlay event is run, which retrieves the user’s

current graphics settings.

Figure 4 MainMenuMap Blueprint

The mainMenu widget blueprint itself has the underlying logic that allows a user to spawn into the

environment, change their settings and quit the game. When the mainMenu is loaded, the users mouse

cursor will be shown on screen and their input mode will be set to UI only, which allows them to

interact with user interface elements. When a user clicks the ‘Start’ button, the application will open the

‘Dunboyne’ Level. The players mouse cursor, used to navigate the main menu, will be removed from their

screen and their input mode will be set to Game mode, ensuring that they can move their character when

spawned into the level. When the user clicks the ‘Settings’ button, the mainMenu widget will be removed

from their screen. The settingsMenu widget will then be created and shown on their screen.

Figure 5 mainMenu Widget Blueprint

22

2.3.2. Display Controls
When the application starts, the controls will be displayed to the player. This is handled by the code in the

BP_FirstPersonCharacter blueprint, which pauses the application when the Dunboyne level is

loaded – and then displays the Controls widget. When a user presses the X key on their keyboard, the

application is un-paused, and the Controls widget is removed from their screen.

Figure 6 Controls Widget Blueprint

2.3.3. Pause Menu
If a user wants to pause the application to either take a break, save their progress, load a save file, return

to the main menu, or quit the application - the pause menu allows them to do so. The pause menu is

handled by code housed inside the BP_FirstPersonCharacter blueprint. When the ‘P’ button is

pressed by the user on their keyboard, the engine will create the pauseMenu widget and show it on the

user's screen. The users' controls will also be switched to UI Only mode, so they can use their mouse to

click on the pauseMenu buttons. Finally, the application is paused.

An input action for pausing was created under actions.

 Figure 7 Pause Input Action

23

This input action, IA_Pause was then set to trigger when the ‘P’ button on the user’s keyboard is

pressed.

 Figure 8 IA_Pause Key Assignment

When the ‘P’ button is pressed, the application is paused, and the pauseMenu widget will be displayed

on the user's screen.

Figure 9 pauseMenu Blueprint

24

2.3.3.1. Resume Application
When a user has opened the pause menu, they can choose to resume the application by clicking the

‘Resume’ button. When this button is clicked, the game state is set to un-paused. The mouse cursor is

removed from the user’s screen and their game mode is set to Game mode. Finally, the pauseMenu

widget is removed from their screen.

Figure 10 Resume Button code in pauseMenu widget Blueprint

2.3.3.2. Save/Load Application
To implement the ability for a user to save their game, two blueprint classes were created;

EEGameInstance of type GameInstance and EESave of type SaveGame. These blueprints allow

Unreal Engine to store information about the game instance and the users save data.

 Figure 11 EEGameInstance and EESave Blueprint Classes.

In the EESave class, a variable called PlayerTransform was created. In Unreal Engine, a ‘Transform’

variable refers to the co-ordinates of an ‘actor’ in the environment. This variable will save the location of

the player character and allow the user to load the application and resume from the location they last

saved their progress at.

 Figure 12 PlayerTransform Variable in EESave Blueprint

25

In the pauseMenu widget blueprint, the application will retrieve the users current game instance, cast it

to the EEGameInstance class and set it to a variable called EEGameInstanceReference.

Figure 13 Setting EEGameInstanceReference Variable

In the EEGameInstance blueprint, a series of variables were created that handle the references to the

classes required for the save game functionality. A variable called Player is an object reference to the

player character. Player is used to cast to the GameInstance class, which allows it to access variables

from the player character, in this case, their transform/location.

 Figure 14 Variables in EEGameInstance Blueprint

Next, a series of functions were created that handle the logic for saving and loading the application.

 Figure 15 Functions in EEGameInstance

26

The SaveGame function handles the logic behind saving the player location to the save game slot. It

creates a save game object using the EESave blueprint. This is then set as a variable called

EESaveGameReference. The PlayerTransform variable inside EESave is then set to the

transform value of the player character. Finally, this transform information is stored inside the

EESaveGameReference variable, and saved as a save slot called SlotSaveName which will be used

to load the save game information.

Figure 16 SaveGame Function Blueprint

The LoadSaveGame function handles the logic behind loading the information from the

SaveGameSlot variable. It loads the slot, then casts to the EESave class, setting the

SaveGameReference variable with the information held inside the SlotSaveName variable.

Figure 17 LoadSaveGame Function Blueprint

The LoadApplication function handles the logic to extract the actor transform information from the

SaveGameReference variable, which allows the player character to be spawned in at the transform

co-ordinates stored using the SaveGame function.

 Figure 18 LoadApplication Function Blueprint

27

With the saving and loading handled, in the EEGameInstance blueprint, an event called

LoadGameFromMenu was created that will handle the loading of a save game. When this event is called,

a Boolean called Game Loaded? will be set to true to indicate that the loading process has begun. Next,

the LoadSaveGame function is run that will retrieve the EESaveGameReference from the

SlotSaveName slot. Once this occurs, the application will open the Dunboyne level, remove the mouse

from the user’s screen and then set their input mode to Game.

Figure 19 EEGameInstance Blueprint

With all the required functions present, the loading functionality is handled in the

BP_FirstPersonCharacter blueprint. When the player spawns into the world, the Player

variable inside EEGameInstanceReference will be set as the current player using a reference to

Self. The application will check to see if the Game Loaded? Boolean is set to true – which indicates

that the loading process had begun. If this is false, nothing will happen, and the game will start from the

normal starting point. If this Boolean is true, the application will run the LoadSaveGame and

LoadApplication functions and set the GameLoaded Boolean to false. This will spawn the player

character at the transform co-ordinates held in their save file, starting the level from that position.

Figure 20 Loading System in BP_FirstPersonCharacter Blueprint

The user can save their game by using the ‘Save’ button in the pauseMenu widget. When the user clicks

the ‘Save’ button, a SaveSlotName will be saved in the EEGameInstanceReference variable using

the SaveGame function. The mouse cursor will then be removed from the user’s screen and their input

mode is set to Game mode. Finally, the pauseMenu is removed from the user’s screen and the

application is un-paused.

Figure 21 Save Button System in pauseMenu Widget Blueprint

28

The user can load their game by using the ‘Load’ button in the pauseMenu widget. When the user clicks

the ‘Load’ button, the SlotSaveName variable will be retrieved from the

EEGameInstanceReference variable using the LoadGameFromMenu function, which will spawn

the player at the transform co-ordinates saved when they clicked ‘Save’.

 Figure 22 Load Button System in pauseMenu Widget Blueprint

2.3.3.3. Return to Main Menu/Quit Application
Through the pauseMenu widget blueprint, the user can return to the Main Menu or quit the application

entirely. When the ‘Return to Main Menu’ button is clicked by the user, the MainMenuMap level will be

opened, returning the user to the main menu. When the user clicks the ‘Quit Application’ button, the

application will be closed.

Figure 23 Return to Main Menu and Quit Application button systems in pauseMenu widget blueprint

29

2.3.4. Display Object Prompt
When a player is in the environment and walks close to an interactable object, the object will display an

interaction prompt due to an OnComponentBeginOverlap event making the Interaction widget

visible. When the player walks away from the object, the interaction prompt will disappear due to an

OnComponentEndOverlap event making the interaction prompt invisible.

Figure 24 Display Interaction Prompt blueprint

These events work by virtue of having a collision sphere placed around the object. When a user collides

with the sphere, the interaction prompt is made visible to the user. When the user stops colliding with the

sphere by walking out of its radius, the interaction prompt disappears.

Figure 25 Collision Sphere Placed around object to trigger Events

30

2.3.5. Object Information System
The object information system recognises when a player has entered a collision sphere of an object and

has pressed the interaction button. When this occurs, the object information widget for the relevant

object is displayed. A blueprint interface called InteractionInterface was created that handles the

interaction between the user and an object. Any interactable object has the InteractionInterface

assigned to it. An input action called IA_Interact was also created that maps the ‘E’ button on the

user’s keyboard to the interaction functionality.

Figure 26 Interaction Interface

 Figure 27 Input Action IA_Interact

In the BP_FirstPersonCharacter blueprint, when the input action IA_Interact is triggered by

the user pressing ‘E’ on their keyboard, the application creates an array of any actors that are overlapping

with the player character. The application will execute a for-each loop and will check to see if the actor in

the array implements the InteractionInterface interface. If this is the case, then the

Interaction event will be triggered, and the loop will break. If this is not the case, the loop will run

again.

Figure 28 Detection of Interaction with Objects Blueprint

31

When the Interaction event in an objects blueprint has been triggered, the application will create the

widget for the corresponding object and display it on the user’s screen. In this case, the Parochial House

object. The mouse cursor will be shown on the user’s screen and their input mode will be set to UI so

that they can interact with the information widget. The game state is also set to paused.

Figure 29 Interaction Event in interactable object’s Blueprint

Each object has its own unique information widget that displays historical information about the object.

Figure 30 Object information Widgets

Each widget has also an audio transcription of the object’s description in the form of a .wav audio file.

Figure 31 Audio transcription file for the Parochial House Object

32

These .wav files were created using the website ‘Narakeet’ [14], which converts text into text-to-speech

.wav files.

 Figure 32 Narakeet in use for the audio transcription of objects

When a user presses the ‘Play Audio’ button on an information widget, the application will play the .wav

file for the object by spawning a sound using a SpawnSound2D node. This sound is set as a variable

called Transcription, which is required to stop the sound during playback should a user wish to do

so. A Boolean PlayTranscription, is set to true to indicate that a sound is playing - and a delay with

a length equivalent to the length of the sound file is set. This is done to prevent the user continuously

pressing the ‘Play Audio’ button and restarting the sound file each time. Once the period of the delay is

over, the PlayTranscription Boolean will be set to false, and the DoOnce node will be reset so

another sound can be played.

Figure 33 Play audio transcription Blueprint

33

When a user wants to close the object information widget on their screen, they can click the ‘X’ button on

the top right of the widget. When this button is clicked, the application will un-pause the game and

remove the mouse cursor from the user’s screen and set their input mode to Game. Then, a branch will

trigger. The application will check if the PlayTranscription Boolean is true which indicates that an

audio file is currently playing. If this is the case, the Transcription variable will be retrieved and

stopped – stopping the playback of the audio transcription .wav file. The object information menu will

then be removed from the user’s screen. If the PlayTranscription Boolean is false, the information

widget will be removed from the player screen.

Figure 34 Close Information widget and Stop Audio Playback Bluprint

2.3.6. Out of Bounds System
The out of bounds system uses a similar collision detection functionality to what I implemented to show

the interaction prompt on an object. An actor called Boundary was created that consists of a box. Four

of these Boundary boxes surround the playable area of the environment and are invisible to the user

during runtime. A widget called BoundaryMessage was also created to display a message on the user’s

screen, warning them that they have reached the boundary of the level.

 Figure 35 Boundary Actor and BoundaryMessage Widget

Figure 36 Boundary Objects Surrounding Playable Area

34

When a user traverses to the edge of the playable area, their player character will overlap with the

Boundary object. The application will recognise when this overlap occurs using a

OnComponentBeginOverlap event. When the player is colliding with the Boundary object, the

Boolean BeyondBoundary will be set to true. The BoundaryMessage widget is created, set as a

variable called BoundaryWidget, and added to the user’s screen. This widget informs the user that

they are beyond the level boundary and should turn back. When a user collides with the boundary, a delay

of 10 seconds will start, giving the user time to turn around and return to the playable area. After 10

seconds, the application will check to see if BeyondBoundary Boolean is true. If this is the case, the

DestroyActor function will be run, destroying the player character.

Figure 37 Colliding with Boundary Blueprint

If a user has stopped colliding with the Boundary object, the BeyondBoundary Boolean will be set to

false. The BoundaryWidget will then be removed from the user’s screen and the variable will be set to

null.

Figure 38 Not Colliding with Boundary Blueprint

To handle the destruction of the user’s character when they have run out of time in the boundary, a

‘respawn’ system was implemented. The respawn system functions by firstly setting a variable in the

BP_FirstPersonGameMode game mode class. This variable called SpawnTransform sets the

transform co-ordinates of the initial spawn point of the player character when the level is first loaded.

 Figure 39 Setting of SpawnTransform Variable

35

With the SpawnTransform variable set, in the BP_FirstPersonGameMode game mode class, a

custom event called Respawn was created. The application will retrieve a reference to the player

character and will spawn an actor of the same class as the player character at the location set by the

SpawnTransform variable. Once the new player actor is spawned, the player will possess the new

actor. Respawning the player.

 Figure 40 Respawn Event Blueprint

The Respawn event is used in a custom Destroy event that overrides the default Destroy event

present in Unreal Engine. The new Destroy event casts to the game mode

BP_FirstPersonGameMode and retrieves the current player’s game mode. This Destroy event then

calls the Respawn event from the Game Mode class, which passes in a reference to the current player

character. This Destroy is used in the ‘Collliding with Boundary’ system in the Boundary blueprint to

destroy the player character and respawn them if they are out of bounds for more than 10 seconds.

Figure 41 Destroy Event Override Blueprint

36

2.3.7. Minimap and Main Map system
For the map system, there is a minimap that is always present on the user's screen with a series of hard-

coded waypoints that represent the major locations in the town. This aids them in navigating the

environment. Should the user want to travel a larger distance or get a better overview of the layout of the

town, they can press the ‘M’ key on their keyboard to open a main map. The user can click anywhere on

the map with their mouse cursor to add a custom waypoint, which will serve as a navigation aid for them

to follow. These custom waypoints are reflected in both the minimap and main map, just as the hard-

coded waypoints are. To create the minimap, I first needed an image to serve as the map. I went onto the

ordnance survey viewer Geohive and took a screenshot of the town of Dunboyne from 1909. This image

encompasses the playable area of the Epoch Explorer application.

 Figure 42 Dunboyne Map Asset

2.3.7.1. Minimap system
Once I imported this map of Dunboyne into Unreal Engine, I created a material instance for the minimap

called Mini_Map_Material. I also created a simple circle image with a chevron in the middle to

represent the player character. This was imported into Unreal Engine and applied as an opacity mask over

the Dunboyne map texture. With the textures imported, I needed to adjust the size of the map texture to

fit within the confines of the circle and have an appropriate level of zoom. To do this, I needed to adjust

the UV values of the map texture. UV values in Unreal Engine refer to a set of parameters that handle the

offset, rotation, and scale of a texture in the engine. The Unreal Engine documentation in conjunction with

a tutorial by ‘Valsogard Enterprise’ [15] proved invaluable in implementing this feature. I set the U and V

scale parameters to 0.16 which I felt was a good level of zoom for the map texture.

Next, I needed a way to move the map texture to simulate the map moving in the minimap when the

player moves in the environment. For this, I needed to retrieve the location of the player and tie the X and

Y coordinates of the player to the U and V values of the map texture. To achieve this, I created a material

parameter collection. Inside this parameter collection, I created a vector parameter called

PlayerCoOrds that tracks the players X and Y coordinates in the environment. I also added a scalar

parameter called PlayerRotation that tracks the players Z axis in the environment. The setting of

these values is handled in the PlayerHUD blueprint.

With the tracking parameters, the map would move – but not at a speed that properly reflected the

movement speed of the player. To ensure the map moved at the correct speed, the UV values of the

texture needed to be adjusted. I retrieved the PlayerCoOrds parameter and broke this value into two

components, R (Representing the player’s X axis value) and G (Representing the players Y axis value).

37

When the player moves forward in the X axis in the environment, the map texture needed to be dragged

downwards to represent the player moving “North”. So as the X value of the player increases - the V value

of the map texture needed to be subtracted to “drag” the map texture downwards at the correct speed.

The value of 52000 was settled on after rigorous testing. I would spawn into the environment and choose

a fixed point of reference such as a building. I would walk to the southern-most point of the building and

begin a timer. With the timer running, I would then walk to the northern-most point of the building and

stop the timer when I reached this point. With this timer value, I would then tweak the value subtracted

from the map textures V parameter until the scrolling of the map matched up with the player movement

exactly. With the value set, when I would reach the northern-most point of a building with my player

character, the chevron on the minimap would be at the northern-most point of the building too, meaning

that the players movement speed and the map scrolling matched up correctly. The same process was

repeated for the U value of the map, but this time I would traverse from the western-most point of a

building to the eastern-most point with a timer running.

The UV parameters in Unreal Engine are constrained between a value of 0-1. Because you can only have a

value in between 0-1, the 52000 that the X axis value is subtracted from is then divided by 52000 to

convert it to a value between 0-1. The same is also done for the Y axis value.

Finally, an offset is added to ensure that the centre of the minimap is placed where the player character is

in the environment. To figure out this value, I adjusted the offset values until the centre of the map

reflected the spawn point of the character, which is the x: 0 and y: 0 point of the environment. Values of

0.4756 and 0.4 achieved the result of centring the minimap on the players location.

These steps handled the movement of the map texture up-down and left-right, but I needed to also rotate

the map texture to reflect the players rotation in the environment. To do this, I added a

CustomRotator node and set the rotation centre to be 0.5 and 0.5 to allow the map texture to rotate

around the chevron in the middle of the minimap that represents the player location. I then plugged in the

playerRotation parameter, which handles the tracking of the player characters rotation value. This

value is set in the PlayerHUD class.

Figure 43 Mini_Map_Material Blueprint

38

The PlayerHUD class handles the creation of the minimap widget and the setting of the values of the

PlayerCoOrds and PlayerRotation parameter values. An event tick is used to update these values

every frame in the engine. The player character is retrieved, and their location is returned using a

GetActorLocation node. This location is then plugged into a SetVectorParameterValue node,

and the value is set as the PlayerCoOrds parameter. The player rotation is then retrieved using a

GetActorRotation node. The z axis is retrieved, which is the players rotation value. In the game

environment, the player rotation is a value between -180 and 180. The CustomRotator node can only

take in a value between 0-1. Therefore, the player rotation value needed to be converted. A

SelectFloat node was used to handle this conversion. If a rotation value is less than 0, the A value will

be selected. The A value is the rotation plus 360. If the value is above 0, B will be selected. B is the raw

value. These values are then divided by 360 to convert them between 0-1. The final value is then plugged

into the SetScalarParameterValue node and assigned to the PlayerRotation parameter.

Figure 44 Mini Map Logic in PlayerHUD Blueprint

With the movement of the minimap to scale with the players movement set up, I then went about adding

waypoints to the minimap. The first step in this process was to create an actor blueprint that would serve

to retrieve the world position of a waypoint, and an icon widget to show icons on the minimap widget.

Figure 45 MiniMapIconLocation Actor and MiniMapIcon Widget

39

Once these assets were created, I then added blueprints to the MiniMapIconLocation actor. When

the application is started, the MiniMapIcon widget will be created. Because there are multiple different

icons for each different actor, the icons for each are updated using the UpdateMiniMapIconWidget

event, which is housed in the MiniMapIcon widget class. Once the MiniMapIcon widget is added to

the user’s screen, a scene component called AngleBetween2Vectors is attached to the player

character. This scene component is used to get the game engine to run the calculations for the Angle

Between 2 Vectors formula [16]. This formula is used to update the position of the icons on the minimap

relative to the player character’s location. Once this scene component is attached to the player, the

UpdateIconActorWorldLocationUsingAB2V function is run. This function is run every frame

using an event tick to continuously update the relative location between the player character and a

MiniMapIconLocation actor.

 Figure 46 MiniMapIconLocation Actor Blueprint

The UpdateIconActorWorldLocationUsingAB2V retrieves the location of the actor using a

GetActorLocation node. The location of the MiniMapIconLocation actor is passed into a

SetWorldLocation node along with the scene component variable, AngleBetween2Vectors.

The MiniMapIcon variable set in the MiniMapIconLocation actor event graph is then retrieved

and is passed into the UpdateMiniMapIconWidgetPosition event, which is housed in the

MiniMapIcon widget blueprint. The relative location between the MiniMapIconLocation actor

and the player character is retrieved using the GetRelativeLocation node. This does the Angle

Between 2 Vectors calculation and the result is passed into the

UpdateMiniMapIconWidgetPosition event.

Figure 47 UpdateIconActorWorldLocationUsingAB2V Function Blueprint

With all the required functions set up, I could now add these waypoint icons to the minimap. This was

handled by the UpdateMiniMapIconWidgetPosition event in the for the MiniMapIcon widget

blueprint. The UpdateMiniMapIconWidgetPosition event uses the relative location between the

player character and a MiniMapIconLocation actor in the form of the InPosition input. This

input is applied through a Clamp node with a value of 4000, which sets the extent to which the icons can

move on the minimap widget. Without a Clamp in place, the icons would leave the bounds of the

minimap widget as the player character moves around the environment. The InPosition input is then

broken into a vector 2D so that the X and Y values of the MiniMapIcon widgets can be adjusted

independently. This is done to ensure that the positions of the MiniMapIcon widgets on the minimap

40

are accurate relative to the location of the corresponding MiniMapIconLocation actor in the

environment. To achieve this, a difference ratio is applied to the MiniMapIcon widgets. Once this ratio

is applied, the MiniMapIcon widget positions are set using a SetPosition node and are shown on

the minimap. How the difference ratio for these widgets was calculated is detailed in the next paragraph.

Figure 48 UpdateMiniMapIconWidgetPosition Event Blueprint

To determine the difference ratio between a MiniMapIconLocation actors’ location in the

environment and the location on the minimap of its corresponding MiniMapIcon widget, I needed to

use a reference point. As mentioned previously, the centre of the minimap corresponds to the spawn

location of the player character, which is set at an environment position of x: 0 and y: 0. I then placed a

MiniMapIconLocation actor inside the centre of Parochial House object. Its environment

coordinates were x: 2158.153346 y: 2200.530248. These are the offset values I needed.

 Figure 49 MiniMapLocation Actor Inside Parochial House Object

41

With these environment coordinates to hand, I then went to the Mini_Map_Widget class and moved

an icon widget to the position of the MiniMapIconLocation reference actor inside the Parochial

House. The coordinates on the Mini_Map_Widget of this icon were x: 266.0 and y: -251.081055. The

centre chevron of the Mini_Map_Widget is x: 200.0 and y: -200.

Figure 50 Values of widget location on the Mini_Map_Widget and the Values of the Centre of the Minimap

Using these values, I could calculate the correct ratio to set for the MiniMapIcon widgets. The distance

between the x value of the centre of the minimap and the icon on the minimap was 66 (266 – 200 = 66).

The distance between the y value of the centre of the minimap and the icon was -51.081055 (-251.081055

- -200 = -51.081055).

I then divided this difference with the offset values retrieved from the test in Figure 49, so 66 /

2200.530248 = 0.0299, and -51.081055 / 2158.153346 = -0.0236. These values were then used to properly

set the ratio between the MiniMapIcon widgets on the minimap and their corresponding

MiniMapIconLocation actors in the environment.

2.3.7.2. Main Map System
With a minimap system in place, I wanted to allow the user to get a better view of the entire environment

map with a larger, main map they could view on their screen by pressing the ‘M’ key. Using this main map,

they could then place a custom waypoint on the map that they could travel to. To achieve this, I first

created a new widget called MainMap and set the image in this widget as the ordnance survey map of

Dunboyne from Figure 42. Next, I created an interface called MapInterface that contains the function

MapToggle, which consists of a Boolean. This Boolean is used in the event MapToggle in the

PlayerHUD class, which checks to see if the MapToggle Boolean has been set to true by the user by

pressing ‘M’ on their keyboard. If MapToggle is set to false, the map should be removed from the user’s

screen. Then, a for-each loop will remove every one of the MiniMapIcon widgets from an array of icons.

Once this is done, the users game mode will be set to Game mode and the mouse cursor will be removed

from their screen. If MapToggle is true, the MainMap widget will be created and added to the user’s

screen. Then, the UpdateMainMapIcons collapsed graph will be run.

Figure 51 MapToggle event in PlayerHUD Blueprint

42

The UpdateMainMapIcons collapsed graph will retrieve every actor that has the

MainMapIconInterface implemented. These actors are the player character and all the

MiniMapIconLocation actors. A for-each loop is run that will create a MainMapIcon widget for

every actor with the MainMapIconInterface interface. It will then run the function

GetMainMapIconData that retrieves the Location, Icon widget and Rotation for each actor. This

function is used in both the MiniMapIconLocation actors and the player character actors. Once the

GetMainMapIconData function is run, the output of this function is input into the

CreateMainMapIcon event which is housed in the MainMapIcon widget class. The result of this

event is then added to the players screen and the icons for each actor are added to an array of icons.

Figure 52 Update Main Map Icons Collapsed Graph Blueprint

Figure 53 Get MainMapIconData functions in MiniMapIconLocation and BP_FirstPersonCharacter Blueprints

The CreateMainMapIcon event in the MainMapIcon widget class works by setting the texture,

environment position and angle parameters of an icon widget on the MainMap widget. The position of

the icons are run through a ratio and offset first to ensure that the position of the MainMapIcon

widgets on the MainMap align with the position of their corresponding MiniMapIconLocation

actors in the environment. This ratio and offset was calculated in the same manner as the ratio and offset

for the minimap icons discussed in Figure 50. The values of the ratio and offset on the MainMap are

different to the values used on the Mini_Map_Widget due to the fact that the MainMap is larger.

Figure 54 CreateMainMapIcon Event in MainMapIcon Blueprint

43

With the icons for the static MiniMapIconLocation location objects functioning, I added the ability

for a user to add their own custom waypoints to the map. I achieved this by creating a child class of the

MiniMapIconLocation actor – called CustomMiniMapIconLocation. I then added two

functions to the MainMap widget class. The first function OnMouseClick occurs when a user clicks

anywhere on the MainMap widget. This will run the MousePositionWorld function that converts the

coordinates of the spot that the user clicked on the MainMap widget to the corresponding environment

coordinates, which is then used to spawn a MiniMapLocation actor. This function works by retrieving

the x and y coordinates of the players mouse position on the screen with a

GetMousePositionScaledByDPI node. The function then retrieves the users screen size and scale,

so that the calculation will work for any screen size. The mouse position and viewport size and scale are

subtracted from one another and then converted to a 2D vector. The x and y co-ordinates are then

multiplied by 100 to properly match the environment co-ordinates. This result is then output back out to

the OnMouseClick function.

Figure 55 MousePositionWorld Function in MainMap Blueprint

Back in the OnMouseClick function, all actors of the CustomMiniMapLocation class are retrieved.

The value output by the MousePositionWorld function is converted from a 2D vector to a vector,

which is used for environment location coordinates. This vector is then converted into a ‘transform’ that is

plugged into a SpawnActor node. This will spawn a CustomMiniMapLocation actor at the

coordinates the user clicked on the MainMap widget. Once this has happens, the MapToggle Boolean

will be set to true, allowing for the MapToggle event in the PlayerHUD class to trigger, adding a custom

icon to the map.

Figure 56 OnMouseClick Function in MainMap Widget Blueprint

44

2.3.8. Creating the level
To authentically recreate the Dunboyne of 1909, I needed to have an accurate reference point to work

from. I wanted to ensure that the applications map was to-scale, and that the layout of the town was as

accurate as possible. To do this, I used the tool ‘Unreal Mapbox Bridge’ to capture a section of Dunboyne

on a map. This tool creates a 16-bit heightmap image of the selected area. I set the Unreal Engine map

size as 2017x2017, and I drew a box around the area I wanted to capture that was 3km x 3km. I input the

co-ordinates: latitude 53.41952 and longitude -6.47622. This would be the centre of the map. Mapbox

Bridge exported the selected section of the map as 16-bit heightmap data.

Figure 57 Files that Unreal Mapbox Bridge created

I then imported this heightmap file into a new level in Unreal Engine - which created the landscape.

Figure 58 Importing the Unreal MapBox Bridge heightmap to create an Unreal Engine landscape

45

Once I created the landscape, I added a directional light to represent the sun and a sky atmosphere to act

as a skybox. Exponential Height Fog was also added to simulate the haze that is naturally present on the

horizon in the real world.

Figure 59 Directional light, Sky Atmosphere and Exponential Height Fog added to project

After lighting the environment, I needed to be able to accurately place the buildings in the town and

ensure that everything was properly to scale. Unreal Mapbox Bridge also exported a .png of the satellite

data in addition to the heightmap data, which I could use as a reference. On the Geohive ordnance survey

site, I input the coordinates as: latitude 53.41952 and longitude -6.47622. These were the same as I had

input in Unreal Mapbox Bridge.

Figure 60 Geohive 1909 ordnance survey of Dunboyne

46

Now that I had the Unreal Mapbox Bridge image and the Geohive image, I used image editing software to

overlay the two images on top of each other, ensuring that they were both aligned and to-scale.

Figure 61 Unreal Mapbox Bridge and Geohive maps combined

I then imported this combined image as a texture sample into Unreal Engine and overlaid it onto the

landscape that the heightmap had created.

 Figure 62 Material created to texture landscape code snippet

47

 Figure 63 Texture overlaid onto the landscape

Once I had this landscape completed, I could use it as a reference to begin creating placeholder buildings

to get an idea of the layout of Dunboyne from 1909. This process of ‘whiteboxing’ was done by placing

down cube objects and re-sizing them to fit the outlines of the buildings that were present during the

1909 ordnance survey. In future development, I can then replace these placeholders with finished assets.

To showcase how these art assets will be created, I completed a scan of the Parochial House building, as

will be highlighted in the section 2.3.9. going over the use of photogrammetry in the application.

Figure 64 Placeholder buildings placed on the landscape

48

With the buildings of the map ‘whiteboxed’, I then moved onto placing the foliage assets of the project.

These foliage assets were downloaded from Unreal Engine’s ‘Megascan’ [17] asset library, a repository of

free-to-use 3D and 2D assets. I added all the tree assets I wanted to use into the project and enabled

‘Nanite’ [18] on them. Nanite functions by dynamically changing the number of polygons used in a 3D

asset based on the distance the player character is from that object. This ensures that high-polygon assets

can be used with minimal drops in performance. Because I would be placing so many foliage assets, it

made sense to utilise Nanite to improve the performance of the application.

 Figure 65 Enabling Nanite on Foliage Assets

After this, I then placed the tree assets in the environment, with careful attention paid to ensure that they

were in period-accurate locations and were the correct size based on their lifespan. This was achieved be

constantly referencing back to the ordnance survey map from 1909 and historical photography from the

period the project is set.

Figure 66 Placement of trees with Map and Historical photograph being referenced

49

After placing the trees in the environment, I then placed walls, fences, and hedgerows – paying close

attention to ensure that they matched the historical photography available. When these were placed, I

then began the process of texturing the environment to ensure that the recreation looked more

immersive and realistic. By using multiple Megascan texture assets that comprise of captures of real-world

textures such as grass, mud, and leaves, I “painted” textures onto the environment, using the ordnance

survey map as a guideline to ensure an authentic representation of the town.

Figure 67 Combining the various Megascan assets into a paintable texture

 Figure 68 ”Painting” of the landscape with Megascan textures in progress

After the textures were placed, I then added the final foliage assets in the form of grass, wheat, and

undergrowth in the forested areas of the environment. These served to add an extra level of fidelity and

immersion to the visual aspects of the application. I also added water to the river Boyne that runs through

the town using the ‘Water’ plugin in Unreal Engine.

 Figure 69 Screenshot of Dunboyne environment as of the project’s completion

50

2.3.9. Photogrammetry
A key aspect of my project is the use of photogrammetry to create assets for the environment. This

technique is used to increase the overall fidelity of the application as well as to act as a form of historical

preservation. Buildings that have changed little since 1909 are ideal candidates for the technique and one

of the key buildings I identified was the Parochial House that was present in historical photographs of the

period.

I contacted the local parish priest Fr. O’Connor and explained my project, requesting permission to

capture the building using drone photography - to which he agreed. My father is a licensed drone pilot

with the Irish Aviation Authority, so he controlled the drone while I described what needed to be done for

the photogrammetric process. The drone was flown in an orbit around the Parochial House, with pictures

being taken every few seconds. The drone was then lowered in altitude and the process was repeated

until a full 360-degree capture of the building was completed.

When these photographs were captured, I uploaded them to my PC and did a quick quality control of the

images, only keeping ones that were usable by virtue of not having any sections of the building cut off.

Figure 70 Images of the Parochial House captured using drone

51

I then uploaded these images from the drone to Polycam and set the details setting to ‘Full,’ as I wanted

to create the highest quality 3-D model possible.

Figure 71 Inputting images of the Parochial House into Polycam

52

After around an hour of processing, Polycam finished rendering the 3-D model - and this was the result:

Figure 72 3-D model of the Parochial House generated in Polycam

As you can see in Figure 72, every detail that was captured in the photographs was added to the model,

but the areas that appeared most frequently in the images such as the house itself, are of much higher

fidelity than the surrounding areas.

53

I exported the 3-D model that Polycam created as a .gltf/glb file and imported this file into Blender.

Figure 73 Polycam model imported into Blender

Because I only want the building as it existed in 1909, I needed to edit the 3-D model and remove

unwanted vertices such as the surrounding road, trees, walls, and the other buildings that have been

added onto the property as extensions since 1909.

Figure 74 Removing unwanted vertices from the model in Blender

54

Once this edit was finished, I had the final 3-d model of the Parochial House.

Figure 75 Final 3-D model in Blender after editing

This 3-D model was then exported as a .gltf/glb file and was imported into Unreal Engine 5 as an asset.

 Figure 76 Parochial House model placed in the applications environment

55

2.4. Graphical User Interface (GUI)
All GUI’s are currently placeholders and their colour-scheme and overall design are subject to

change as development progresses.

2.4.1. Main Menu
In the main menu level of the application, the image below is the widget that appears when a user starts the

application. It contains an image of the environment and the interactable menu itself. A user can start the

application by clicking the ‘start’ button. They can access the settings for the application by clicking the

‘settings’ button, and finally they can quit the application by clicking the ‘quit’ button.

Figure 77 The main menu and settings submenu of the application

2.4.2. Controls Menu displayed upon Start
When a user clicks the ‘start’ button on the main menu, the application loads the Dunboyne level. When this

loading has been completed and the user's character is spawned into the world - the application will pause and

display a widget that explains the control scheme for the application.

Figure 78 Control scheme that appears on user’s screen upon startup

56

2.4.3. Pause Menu
When the user is interacting with the application, if they press the ‘P’ button, the application will pause and

display a widget that shows the user the pause menu on their screen. From this pause menu the user can click

‘Resume’ to un-pause the application and remove the widget from their screen. They can click ‘Save’ and

‘Load’ to save their progress or load a save file. They can click ‘Return to main menu’ to return to the main

menu, and finally they can click ‘Quit Application’ to quit the application entirely.

 Figure 79 Pause menu as it appears in the application

2.4.4. Minimap
When the user spawns, the minimap is visible on the bottom-left corner of their screen. This map updates in

real-time with the player movement and the icons that represent locations of interest also update and move

around as the player navigates the environment.

 Figure 80 Minimap with locations of interest

57

2.4.5. Main Map
When the user presses the ‘M’ key, the main map will appear on their screen. This shows the entire area of the

explorable environment and features locations of interest. By clicking their mouse cursor anywhere on the

map, the user can place a custom waypoint that they can use as a navigational aid.

 Figure 81 Main map with custom waypoint and locations of interest

58

2.5 Testing and Evaluation

2.5.1 Functional/Unit Tests
Throughout the development process, I conducted a series of tests for the Epoch Explorer application. I

performed unit tests for the ‘Out of Bounds’ feature and the ‘Object Interaction’ feature. To conduct the tests,

I created a folder in my project called ‘Testing’ and copied the ‘Dunboyne’ level into this folder. I deleted all

the assets that were not required for testing to improve the load times of the tests, such as buildings and

foliage and renamed this level to FTEST_FunctionalTests. Inside this level, I then created a new game

mode called TestingGameMode and set this as the default game mode for the level.

With the testing level created, I then began to design unit tests for each of the features I was testing. I will first

explain the test for the ‘Out of Bounds’ system. I created a new test blueprint called BoundaryTest. I

spawned a BP_FirstPersonCharacter into the level which will represent the player character. In the

event graph for the test, I added a AddMovementInput node which will move the character in a given

direction. I input a reference to the BP_FirstPersonCharacter and set the AddMovementInput as

GetActorForwardVector. This setup will move the character forward every frame.

I then added an OnActorBeginBverlap node for the Boundary object. This will check if the character is

overlapping or touching the boundary, which will display the out of bounds message. If this is the case, the test

will finish successfully.

Figure 82 Boundary System Unit Test Blueprint

59

Next, I added the test for the ‘Object Interaction’ system. This tests to ensure that the ‘Interaction’ prompt

appears on the user’s screen when they reach the collision sphere of an object of interest. For this test, I also

set the character to move forward using the same nodes. This time however, an object with interaction

functionality is placed into the testing level rather than a boundary object. The application will check to ensure

that when the character overlaps with the object’s collision sphere, the interaction widget appears. If this is

the case, the test will finish successfully.

 Figure 83 Interaction Unit Test Blueprint

The tests are run through the ‘automation’ section of Unreal Engine’s ‘Session Frontend’ tool. From the results

of the unit tests, you can see that both tests passed successfully.

 Figure 84 Unit tests Passing

60

In addition to these tests I created, I also ran a suite of tests that the Unreal Engine provides to ensure that my

project meets the minimum standard of quality for an Unreal application. These tests ensured that the project

does not have any errors or bugs in the code before it is ‘packaged’ and made available to users. As you can

see, all these tests passed successfully.

 Figure 85 Suite of Unreal Engine tests Passing

2.5.2 Manual Tests
In conjunction with the unit tests, I also conducted a series of manual tests of the application throughout its

development. A key aspect of my application is ensuring that it is easy to use and runs on a wide variety of

hardware while maintaining a minimum level of performance. To achieve this, I monitored the performance of

the application by typing the StatStreaming command in the Unreal Engine command line interface. This

provides a live view of a variety of stats pertaining to the performance of the application such as the current

frames per second and memory usage.

By using this to test my environment, I found out that all the textures I was using was exceeding the ‘Streaming

Pool’ budget. The streaming pool is a memory repository of all the textures in the level and has a capacity of

1GB. If the application is running while the streaming pool is out of budget, this can result in the stuttering or

freezing of the application as textures are added and removed from the pool.

Figure 86 StatStreaming showing memory statistics

61

In addition to the streaming pool problem, my tests highlighted an issue with the fidelity of the foliage assets I

had added. When I was not close to the assets, my frames per second were close to 60, which is the ideal

target for my application. However, when near a tree, the FPS would drop to below 30, which was undesirable

as it would impact a user’s experience of the application negatively.

Figure 87 FPS counter when far away and close to a tree (enlarged for readability)

To solve this problem encountered by my tests, I decided to reduce the size of the textures of a variety of

assets in the environment. As standard, Megascan assets come with a resolution of 4096x4096. This is a very

high level of fidelity; however, it requires the latest high-end graphics cards to utilise in an environment

without negatively impacting performance. In addition, this is such a high level of fidelity for assets that a user

is unlikely to examine up-close, so using valuable streaming memory to store such large textures didn’t make

sense. Because of this, I changed the size of the textures to 2048x2048 instead. This is still a high-resolution

texture, but as you can see it cut the size of a single texture from 16MB to 4MB. As well as the savings in

memory, the fps also increased drastically.

Figure 88 Changing texture size to improve performance

Figure 89 Improved FPS while close to tree after changing texture size

62

3.0 Conclusions
The development of the Epoch Explorer application has been driven by my passion for history, my enjoyment

of video games and my desire to provide others with a more engaging and immersive educational experience.

Through using the interactive capabilities that Unreal Engine offers and my historical research, the application

aims to bridge the gap between the past and present by allowing users to explore a historically authentic

recreation of the town of Dunboyne circa 1909.

The aim of the project was to create an engaging and interactive educational experience that fosters a user’s

connection with history and gives an insight into how towns develop and grow over time. Through a

commitment to provide a high level of attention to detail and authenticity, users can immerse themselves in

the past and experience how the town of Dunboyne may have appeared to our ancestors.

At the core of the design ethos of Epoch Explorer was accessibility. The application was developed with the

goal of being intuitive and user-friendly, ensuring that even those unfamiliar with video games could use the

application quickly and efficiently. This was achieved through the minimalistic and high contrast design of the

main menu, controls menu and the object information menu. All these design decisions were inspired by the

core principles of Jakob Nielsen’s 10 Usability Heuristics for User Interface Design.

By leveraging the power of Unreal Engine, the features of the application such as the map systems,

information menus, and boundary systems were constructed via blueprint code. Unreal Engine’s Megascan

asset library and Nanite system proved invaluable in creating a visually pleasing, performant, and immersive

recreation of Dunboyne.

While the Epoch Explorer application currently focuses on a single town, the systems implemented such as the

map system, object information menus and photogrammetric scanning can be applied to any setting. This has

the potential to be applied to a wide range of time periods and locations and has great potential for

commercial viability. My hope is that Epoch Explorer sparks the curiosity and interest in history of its users and

gives them a deeper appreciation for the heritage that surrounds us all in our day-to-day lives.

While I am pleased with how the application has developed, I recognise that there are still some limitations

with the project in its current state - primarily the fact that many of the buildings in the application are

‘whiteboxed’. However, this was a conscious decision based on the timeframe for the project. Most of the

time on the project was spent developing the applications systems, user interfaces and environment. With

more time and resources, the other buildings of the town can be recreated authentically, further improving

the authenticity of the project. I look forward to implementing this in the future.

63

4.0 Further Development and Research
Given additional time and resources, there are a variety of aspects of the project that could be improved

upon. The primary concern would be to populate the town with high-quality building assets that are

recreated through references to historical photography or photogrammetric scanning. When this is

achieved, the application will provide an even more immersive experience to its users.

To further improve the authenticity and immersion of the application, non-playable characters (NPC’s)

could be added to the applications environment. These NPCs would help to make the town more

immersive by having characters go about their routines in the town, making it feel more alive. This could

be achieved by using Unreal Engine’s ‘Metahuman’ system that allows for photorealistic depictions of

humans in an environment. This would require the creation of many art assets from scratch such as

historically accurate clothes to ensure that the authenticity of the project is maintained.

Another aspect that could be introduced would be to then improve the user’s ability to fully appreciate

these high-quality recreations and scans from all angles in the environment – rather than just from a

human’s perspective as is available currently. This would be achieved by implementing a ‘birds eye view’

system. When a user presses the ‘birds eye view’ button in an object’s information menu, they could be

transferred into a new view around the object. This could be done using Unreal’s camera system. The user

would be anchored to the object they are interacting with, and they will be able to move around it via

inputs that are mapped out using the blueprint system. All these features would be modular and will be

able to be applied to any object in the world, ensuring that a user could view any object of interest from

any angle they wish.

Once the recreation of Dunboyne is fully completed, I can then move onto recreating another historical

town. The is such a wealth of different towns and settings that I could explore, so choosing the next one

will be an interesting endeavour.

Mid-way through the development of the application in March 2024, I came across a project by the

National Built Hertiage Service in collaboration with Meath County Council called ‘Wonder Wander’ [9]

which had just been released. This is a historical walking tour that showcases noteworthy local buildings

and provides information behind them. This proved to be a very useful resource when sourcing historical

information about the buildings in my own project. At the time of writing, I have contacted the National

Built Heritage Service querying their interest in attending my showcase of the Epoch Explorer application

and I am awaiting their response. My hope is that if they are interested in the application, it may provide

an avenue for it to be used in museums or other educational settings.

64

5.0 References

[1] Epic Games (2023) Unreal Engine 5. Available at: https://www.unrealengine.com/en-US/unreal-

engine-5 (Accessed 13 December 2024)

[2] Blender (2023) Blender 4.0. Available at: https://www.blender.org (Accessed 13 December 2023)

[3] Polycam (2023) Polycam. Available at: https://poly.cam (Accessed 14 December 2023)

[4] JustGeekTechs (2023) Unreal Mapbox Bridge. Available at: https://terrain.justgeektechs.com/#/

(Accessed 15 December 2023)

[5] Geohive (2023) Geohive map viewer. Available at: https://webapps.geohive.ie/mapviewer/index.html

(Accessed 16 December 2023)

[6] Nielsen Norman Group (1994) 10 Usability Heuristics for User Interface Design. Available at:

https://www.nngroup.com/articles/ten-usability-heuristics/ (Accessed 05 April 2024)

[7] Epic Games (2024) Introduction to Blueprints. Available at:

https://dev.epicgames.com/documentation/en-us/unreal-engine/introduction-to-blueprints-visual-

scripting-in-unreal-engine?application_version=5.3 (Accessed 05 April 2024)

[8] Game Developer (2016) White Boxing Your Game. Available at:

https://www.gamedeveloper.com/design/white-boxing-your-game (Accessed 05 April 2024)

[9] Facebook (2024) Old Dunboyne Society. Available at:

https://www.facebook.com/profile.php?id=100070131743046 (Accessed 07 April 2024)

[10] Historical Picture Archive (2024) Dunboyne. Available at:

https://www.historicalpicturearchive.com/picture-categories/dunboyne/ (Accessed 07 April 2024)

[11] National Built Heritage Service (2024) Wonder Wander Dunboyne. Available at:

https://www.buildingsofireland.ie/app/uploads/2024/03/Wonder-Wander-Dunboyne.pdf (Accessed 07

April 2024)

[12] Meath County Council (2009) Dunboyne Architectural Conservation Area Statement of Character.

Available at: https://www.meath.ie/system/files/media/file-uploads/2024-

03/Dunboyne%20Architectural%20Conservation%20Area%20Character%20Statement.pdf (Accessed 07

April 2024)

[13] Paint.net (2024) Paint.net Download. Available at: https://www.getpaint.net/download.html

(Accessed 09 April 2024)

[14] Narakeet (2024) Narakeet. Available at: https://www.narakeet.com/ (Accessed 27 April 2024)

[15] Valsogard Enterprise (2021) Unreal Engine 5 | How to control texture UVs in Unreal Engine. Available

at: https://www.youtube.com/watch?v=iBSWo4tqbNA (Accessed 27 April 2024)

[16] Geeksforgeeks (2024) Angle between Two Vectors Formula. Available at:

https://www.geeksforgeeks.org/angle-between-two-vectors-formula/ (Accessed April 29 2024)

[17] Unreal Engine (2024) Megascans. Available at: https://www.unrealengine.com/marketplace/en-

US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0 (Accessed 03

May 2024)

[18] Unreal Engine (2024) Understanding Nanite – Unreal Engine 5’s new virtualized geometry system.

Available at: https://www.unrealengine.com/en-US/blog/understanding-nanite---unreal-engine-5-s-new-

virtualized-geometry-system (Accessed 04 May 2024)

https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.blender.org/
https://poly.cam/
https://terrain.justgeektechs.com/#/
https://webapps.geohive.ie/mapviewer/index.html
https://www.nngroup.com/articles/ten-usability-heuristics/
https://dev.epicgames.com/documentation/en-us/unreal-engine/introduction-to-blueprints-visual-scripting-in-unreal-engine?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/introduction-to-blueprints-visual-scripting-in-unreal-engine?application_version=5.3
https://www.gamedeveloper.com/design/white-boxing-your-game
https://www.facebook.com/profile.php?id=100070131743046
https://www.historicalpicturearchive.com/picture-categories/dunboyne/
https://www.buildingsofireland.ie/app/uploads/2024/03/Wonder-Wander-Dunboyne.pdf
https://www.meath.ie/system/files/media/file-uploads/2024-03/Dunboyne%20Architectural%20Conservation%20Area%20Character%20Statement.pdf
https://www.meath.ie/system/files/media/file-uploads/2024-03/Dunboyne%20Architectural%20Conservation%20Area%20Character%20Statement.pdf
https://www.getpaint.net/download.html
https://www.narakeet.com/
https://www.youtube.com/watch?v=iBSWo4tqbNA
https://www.geeksforgeeks.org/angle-between-two-vectors-formula/
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/en-US/blog/understanding-nanite---unreal-engine-5-s-new-virtualized-geometry-system
https://www.unrealengine.com/en-US/blog/understanding-nanite---unreal-engine-5-s-new-virtualized-geometry-system

65

6.0 Poster

66

7.0 Appendices

7.1 Project Proposal

7.1.1 Objectives
This project sets out to create an interactive historical recreation of the town of Dunboyne circa the early

1900’s. The aim of this project is to enable a user to navigate a historically accurate recreation of the town that

is recreated using a combination of Blender and Unreal Engine 5.

The environment will be created using Unreal Engine 5 and will be based upon historical photos, maps, and

surveys. The buildings and other objects will be created using Blender - with an emphasis on the technique of

photogrammetry to produce more immersive and lifelike textures on objects.

The project will allow a user to learn about the history of the town through interactive user interface elements

that will display information about the buildings and the other sights of the town. The primary objective of the

project is to immerse the user in an authentic recreation of the town so that they gain a greater insight into

how much the town has changed over the last 100 years. The project also aims to aid in the historical

preservation of the town by ensuring that the recreation is as accurate, authentic, and informative as possible.

7.1.2 Background
I chose to undertake this project as I have a keen interest in history. I find learning about the lives of our

ancestors and how much the world has changed from the present to be fascinating. When the requirement to

pick a final year project arose - I had many different ideas, but none of them were focused on an area that I

was passionate about. I reasoned that if I am to spend the next few months working on a project - I would

prefer it to be in an area that I have a genuine interest in. Therefore, a historical recreation developed using a

variety of software tools would be an interesting and challenging project to undertake.

In addition, there is much that I do not know about the history of my town - even though I have lived here for

over 18 years. I felt that in the process of developing an accurate recreation of the town, I would need to

gather a wealth of knowledge with regards to my town's history. The knowledge required to create this project

would in-turn give me a greater insight into the history of my town and make me more appreciative as to how

it has developed in the past century.

In terms of why I chose to create an interactive 3D environment - I have an avid interest in video games and

their development. I find that as a medium, video games are uniquely suited when it comes to immersing a

user in a historical environment. With film or photography, you are merely a passive observer. With video

games that take place in historical settings, you can be an active participant and freely navigate a recreation of

a variety of locations.

There are many video games that recreate historical settings such as the ‘Assassins Creed’ franchise and the

designers of these games put meticulous effort into referencing the existing historical documentation to

ensure that an authentic recreation is achieved. There is a version of the Assassins Creed games called

‘Discovery Tours’ that offer tours of the virtual worlds the developers created [1]. These tours are used in the

field of education to try and engage students with history. I took inspiration for this project from these tours.

In terms of both immersion and historical preservation, the medium of video games have a unique value.

Outside of the realm of video games, there are also a variety of historical recreations made using 3D modelling

technology. An example I came across is by ‘Maxim Chichka’ - who recreated the historic Schnoor

neighbourhood in the town of Bremen, Germany using Unreal Engine 5 [2]. I took inspiration from this and

ideally, I would hope that my project ends up at a similar state of fidelity and immersion.

What differentiates my project from others I have seen will be the use of photogrammetry and the interactive

UI elements. I intend for my project to be a virtual museum exhibit where a user can walk up to a building,

interact with a user interface prompt, and then learn about the building and its history. The examples I have

found online using Unreal Engine 5 simply recreate an area - but do not implement any systems that allow a

user to navigate it through a virtual avatar, such as Maxim Chichka’s recreation. Those recreations I have found

67

such as the Assassins Creed Discovery Tours are not 1:1 recreations and take a variety of artistic liberties in

their recreations of the worlds they have designed. For example - while they include key landmarks, these Tour

worlds are scaled-down versions of locations. They also do not utilise the technology of photogrammetry to

scan actual buildings into their games. My project aims to be a 1:1 recreation of the town of Dunboyne -

scanning in actual buildings that were present during the period.

I intend to meet the objectives of the project by using Blender to accurately recreate the towns buildings that

have changed drastically or are no longer there, referencing historical photography and maps to ensure

authenticity. For buildings that remain unchanged from the period the project focuses on - I intend to use

photogrammetry to scan the actual buildings, with some tweaking to undo minor changes such as new

windows, weathering and extensions that have occurred over the years.

7.1.3 State of the Art
Since the beginning of the field of 3D modelling, there have been examples of those who have used the

medium to recreate historical settings. However, my project will differ from others that already exist as it has

never been done for my specific town and my project will be utilising the latest in 3D rendering technology. I

would consider Unreal Engine 5 to be an emerging technology as it was only released 1 year ago and upon

release it was heralded for its ability to create photo-realistic graphics using it’s ‘Nanite’ system for geometry

and it’s ‘Lumen’ technology for lighting [3]. The use of photogrammetry, Nanite, Lumen and other state-of-the-

art methods to create a historical recreation of Dunboyne has never been done before and I feel that it will be

both a challenging and rewarding undertaking.

As mentioned in the previous section - during my research I have found examples of people recreating historic

streets in Unreal Engine 5, but these recreations are just environments with no ability for the user to navigate

the environment using a virtual avatar or interact with specific buildings and learn about them. My project will

be unique in the sense that it will allow a user to walk up to a building, interact with it and learn about the

history of it through UI elements - which will provide both an educational and immersive experience.

7.1.4 Technical Approach
My first step in the development of this project will be to primarily gain an understanding of the tools I will use

to develop the project. I plan to complete a series of tutorials in both Blender and Unreal Engine 5 to gain a

basic level of competency in these tools as I have never used them in the past.

In terms of the requirements and milestones of the project, there are several that I have identified at this

stage. Firstly - I plan to source the required historical information, be they photographs, maps or surveys. I

have already taken it upon myself to contact the local historical society as well as the owner of one of the

oldest pubs in the town who said they have a variety of images they could provide me with.

Once I have the required source material, I will then start work on the basic layout of the town. I will create the

terrain and layout of the town in a rough format using Unreal Engine 5, using the source photographs, maps,

and surveys as a guideline. This step will involve recreating the roads and the general topography of the town's

terrain. After the initial prototype of the terrain is done, I will then be able to get to work on creating assets

such as the buildings and other objects in the town.

This milestone will involve creating rough approximations of the towns buildings in Blender to get a rough

layout of the town.

After the general topography and layout of the towns buildings has been completed - I can then work on the

milestone of implementing a user-controlled avatar that will allow navigation of the environment. After this

task is completed, I will then be able to also implement the various user interface elements such as the ability

for a user to interact with a building and learn about its history.

By this stage in development, I expect to be at the mid-point and have a rough prototype that will highlight the

core elements of the project - a rough recreation of the town's terrain, it’s buildings and the ability for a user

to navigate the town.

68

Once the midpoint has passed, I then plan to start fleshing things out and increasing the fidelity of the town by

adding more realistic ground clutter, increasing the count of objects and in general making the recreation of

the town truer to life. As part of this task - I will begin the process of photogrammetry for the town's buildings.

When the scans are finished - I will then be able to import them into Unreal Engine 5, completing the project.

7.1.5 Technical Details
There are a variety of technical requirements for my project. The two main technologies that will be utilised

extensively will be ‘Blender’ and ‘Unreal Engine 5’. Unreal Engine 5 will be used as the projects game engine. It

will allow me to create the environmental terrain features, place and edit objects and allow for the creation of

the project's mechanics such as player movement through an avatar and the interaction with UI elements.

Blender will be utilised to create 3-D models from scratch and to refine the photogrammetric scans into usable

models.

The photogrammetric scans of assets will be conducted either via drone or iPhone 12. The captured images

will then be input into the program ‘Polycam’ [4] that can convert these images into 3-D models. These 3-D

models can then be imported into Blender for cleanup or directly into Unreal Engine 5.

7.1.6 Special Resources Required
In terms of special resources, I already own a DSLR capable of taking high quality images, but even my mobile

phone would suffice for this role. I will need to take photographs of historical buildings in the town - but doing

so solely from ground-level would not suffice as I would be unable to capture all the details of a building.

Because of this fact, I will need to conduct aerial scans of buildings using drone photography to fulfil the level

of fidelity I want to achieve. My father is a photographer and is also licensed to fly drones with the Irish

Aviation Authority. He has indicated that he is willing to accompany me in taking drone photography of the

historical buildings that were present in the town during the early 1900’s.

I do not intend to undertake this stage of development until early next year - so in the meantime I will contact

my local councillor to ask permission to take these photographs as a measure of courtesy.

In terms of ethics and legality - the process of capturing photographs of buildings using drone photography

does not fall under GDPR as there is nothing under GDPR that prohibits taking photographs of a public place.

The only caveat to this rule is if images of people are captured and published without their consent [5][6]. I will

ensure that no images of people will be captured as I plan to conduct the aerial photography in the early

morning when no other people are present.

Any images that may capture a person incidentally will not be published under any circumstances for this

project. This is because the photographs will be used to create 3-D models of buildings only. Only images of

buildings will be ‘published’ by being implemented in my 3-D environment - no images of people will be

published during this project. GDPR only applies to images of people, not buildings.

Regardless of this fact - I also plan to contact the owner of each building I am planning to photograph

beforehand as a measure of courtesy to the property owners.

7.1.7 Project Plan
As I have only started learning to use the tools required - I do not have an in-depth understanding as to how

long exactly each stage of development may take, but I am giving myself around a month to work on major

features and 2 weeks on smaller features. As work on the project progresses and I move closer towards the

midpoint, the plan will become clearer but as of the time of writing of this proposal - this is an approximate

plan for the project's development:

October 12th - 31st: Learn Blender and Unreal Engine 5 - complete tutorials to grasp the basics of these

technologies

November 1st - 15th: Gather required sources - historical photographs, maps and surveys, local testimony

69

November 15th - 30th: Implement basic terrain layout of the town in Unreal Engine 5. Unreal Engine 5 has

intuitive systems in place that make the creation of terrain straightforward. The basic terrain layout of the

town should be completed during this stage of development.

December 1st - 20th: Populate town with basic buildings and objects in line with historical references - models

will be placeholders but will serve to illustrate the general layout of the town for the midpoint. Implement user

navigation and user interface elements.

January 1st - 31st: Conduct photogrammetric scans of key buildings - buildings that have been unaltered from

the early 1900’s to present. These will be identified in the historical photographs and maps. If they have not

changed much in the past century - they can be scanned and included in the project.

February 1st - 28th: Conduct photogrammetric scans of textures that may be used on buildings no longer

standing - For buildings that no longer exist (such as the old church) or that have changed significantly in the

past century, these scans will be approximations of the original building materials to try and be as authentic as

possible. For example, if it can be deduced that the building had a facade of a certain colour and material - a

photogrammetric scan of a similar facade will take place.

March 1st - 31st: Convert photogrammetric scans into models using Blender and Unreal Engine 5. Once the

scans have been captured - they can then be converted into 3D models in Blender and then imported into

Unreal Engine 5.

April 1st - 15th: Finishing touches on terrain, buildings, objects - environment will be populated with clutter and

fine-tuned to be more aesthetically pleasing and lifelike.

April 15th - May 10th: Final round of testing of the project. Testing will focus on the areas of the user's

navigation, the performance of the project and the debugging of UI elements.

May 12th: Final submission.

7.1.8 Testing
In terms of testing, since my project is focusing on creating a 3-D environment that a user will navigate - I am

not certain that I will be able to conduct system or unit tests. Because of this, my testing will most likely be

manual testing to ensure that a user can navigate the environment without getting stuck on geometry or

running into invisible obstructions etc.

The only aspect I can foresee being unit tested would be the UI features that display information about the

history of a building or object in the town. These elements are controlled by systems within Unreal Engine 5

and could possibly be unit tested.

7.1.9 Proposal References
[1] Ubisoft (2023) Discovery Tour by Ubisoft: Teacher Learning Resources. Available at:

https://www.ubisoft.com/en-gb/game/assassins-creed/discovery-tour (Accessed: 13 October 2023)

[2] Maxim Chichka (2023) Schnoor made in Unreal Engine 5. Promenad. Available at:

https://www.youtube.com/watch?v=KrGSlGns9HA (Accessed: 13 October 2023)

[3] Unreal Engine (2023) Nanite Virtualized Geometry in Unreal Engine | Unreal Engine 5.0 Documentation.

Available at: https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/

(Accessed: 15 October 2023)

[4] Polycam (2023) Polycam - LiDAR & 3D Scanner for iPhone & Android. Available at: https://poly.cam/

(Accessed: 16 October 2023)

[5] Data Protection Commission (2022) Guidance on the Use of Drones. Available at:

https://www.dataprotection.ie/sites/default/files/uploads/2022-

https://www.ubisoft.com/en-gb/game/assassins-creed/discovery-tour
https://www.youtube.com/watch?v=KrGSlGns9HA
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://poly.cam/
https://www.dataprotection.ie/sites/default/files/uploads/2022-05/Guidance%20on%20the%20use%20of%20drones%20-%20May%202022%20Final.pdf

70

05/Guidance%20on%20the%20use%20of%20drones%20-%20May%202022%20Final.pdf (Accessed: 20

October 2023)

[6] Citizens Information (2023) Owning and operating drones in Ireland. Available at:

https://www.citizensinformation.ie/en/travel-and-recreation/sport-and-leisure/owning-and-operating-a-

drone/ (Accessed: 20 October 2023)

7.2 Reflective Journals

October
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I began work on the initial stages of my project. The initial few days of this month were spent

brainstorming a variety of different ideas I had for the project. I spent the first part of the month researching

the viability of these ideas and trying to weigh the pros and cons of each. After some deliberation and a

discussion with Frances Sheridan - I settled on a project that focuses on the history of my town. This is area of

study that I am quite passionate about, and I feel like it will be an interesting topic to base a project around. I

recorded and submitted my project pitch in the form of a three-minute video, which was accepted. I also

completed my project proposal document. This involved creating a general overview of my project - why I

chose it, how I plan to complete it and the technical requirements of the project.

Reflections:

This month was crucial for my projects progress as it allowed me to settle on a topic for the project. Both the

pitch video and the proposal document were good at challenging my ability to research, plan and then convey

my ideas in both a verbal and written format. The deliberation and research I conducted in order to complete

the proposal document has succeeded in giving me a tangible roadmap that I can follow to see the project to

completion. It helped to flesh out my ideas further and gave me confidence that the project was indeed

feasible and could be seen to fruition. The proposal also helped me to identify a variety of challenges that I will

need to contend with. The most immediate challenge will be to create the terrain for the 3-D environment in

Unreal Engine 5. This will act as the ‘baseline’ for the entire project and will be crucial to its future

development and success.

Next Actions:

In order to address the challenge of creating the terrain for my project, I need to collect as many historical

sources as possible - be they photographs, maps or surveys. I plan to do this by using a mix of publicly available

resources, such as historical photography and maps that are available online, as well as sourcing privately

owned photographs. I have already been in contact with a barman in the local pub ‘Brady's’ who has informed

me that he has a variety of historical photographs from the time period in his possession that he could send

onto me. These will surely aid me in overcoming the challenge of constructing an accurate recreation of the

town’s terrain. By using these historical photographs and maps, I will be able to ensure that the in-engine

terrain is as accurate and true to life as possible.

https://www.dataprotection.ie/sites/default/files/uploads/2022-05/Guidance%20on%20the%20use%20of%20drones%20-%20May%202022%20Final.pdf
https://www.citizensinformation.ie/en/travel-and-recreation/sport-and-leisure/owning-and-operating-a-drone/
https://www.citizensinformation.ie/en/travel-and-recreation/sport-and-leisure/owning-and-operating-a-drone/

71

November
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I obtained many examples of historical photography of Dunboyne from online sources that will prove

useful when creating buildings and other features of the town for my recreation. I spoke to the owner of the

local pub ‘Bradys’ who said that unfortunately he could not find the photographs he thought he had in his

possession. However, this month I applied for and received a ‘readers ticket’ with the National Library of Ireland.

This ticket allows me to gain access a wealth of historical archives and photographic collections that will be very

helpful in terms of obtaining references for my project.

I started work on the prototype for my project. I retrieved satellite heightmap data of the Dunboyne area using

the ‘Unreal Mapbox Bridge’ application. This created a heightmap of a 3x3km area around Dunboyne that

included topographical data such as rivers and hills. I then imported this heightmap into Unreal Engine 5, which

created the landscape for my project. After doing this, I needed to be able to reference the historical 1909

ordnance survey in order to accurately recreate the Dunboyne of this time period. When Mapbox Bridge

generated the heightmap, it also created a satellite map of the selected area. I used the same map co-ordinates

for both Mapbox Bridge and the online ordnance survey map viewer, GeoHive. This meant the two maps were

centred at the same point of reference.

I then took a screenshot of the ordnance survey map and using image editing software, I overlaid this screenshot

onto the Mapbox Bridge satellite map, adjusting the scale so both lined up exactly. This final image was then

imported into Unreal Engine 5 and overlaid onto the landscape as a texture. Using this texture as a guide, I was

then able to start creating simple placeholder buildings in the exact place they stood in 1909. Every building in

the 3x3km map was placed and this will serve as a useful reference aid when placing the finalized assets.

After some deliberation with my supervisor, I settled on including Virtual Reality (VR) to interface with my

project. A user will be able to navigate the town while using a VR headset. This will ensure that the project is as

immersive as possible. Due to the large size of my map and the time constraints of this project, I separated the

map into grid references that I can prioritize. Due to the level of fidelity I aim to achieve, I plan to focus on the

town centre for this project - but future development can be done on the surrounding areas.

Reflections:

I succeeded in sourcing a variety of historical information and photography. I was also able to create a prototype

of the environment that will serve as a basis for future development. However, there are a few challenges

remaining that I need to solve before the midpoint deadline on the 20th of December. I need to implement

features such as a main menu. I need to add the ability for a user to walk up to a building and interact with it in

order to show a user interface widget that will display information about its history. I still need to scan a building

using photogrammetry for the midpoint in order to showcase the photogrammetric aspect of my project. To

demonstrate the use of Blender for the midpoint, I need to create a building from scratch and then texture it

manually and import it into Unreal Engine 5.

 I also need to implement the ability for a user to view the recreation using a VR headset instead of a monitor.

Because reading text in VR can be challenging due to the resolution limitations, I also plan to include an audio

narration of any user interface widgets that display building information.

Next Actions:

To address the need for an example of photogrammetry in the project before the midpoint, I got in contact with

Fr. O’Connor of the Dunboyne and Kilbride parish on November 21st. I explained the project to him and

requested to scan the Parochial House building in the town centre using drone photogrammetry, as it has

72

remained largely unchanged since 1909. He accepted, and I will be able to scan the building between the 8th and

10th of December. Ideally, I would need overcast weather for this scan to ensure that there are no shadows or

other undesired artifacts on the final asset. Should the weather not be ideal, I plan to scan in the building anyway

to serve as a proof of concept for the midpoint - and then re-scan it before the final project submission in May

2024 when there are better weather conditions present.

To demonstrate the use of Blender for the midpoint, I plan to recreate the old Roman Catholic church that is no

longer standing. This will be done manually in Blender using photographic sources as a reference. I will then

manually texture this building and import it into Unreal Engine 5. This technique of manually modelling buildings

will need to happen for multiple buildings that no longer exist in the town that can’t be scanned using

photogrammetry, but these will be developed after the midpoint.

From my research into the Unreal Engine 5 documentation, I believe that implementing a main menu, the

ability for a user to interface with the project using a VR headset and adding in the ability for a user to interact

with a widget to display information about a building will be achievable before the December 20th midpoint

deadline.

December
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I continued implementing a variety of features in my project to have it at a presentable state for the

midpoint deadline.

I was able to conduct a photogrammetric scan of a building and import it into my project, which allowed me to

showcase the utility of photogrammetry and also allowed me to practice the techniques required to conduct

this process.

I completed my midpoint report, presentation and demo this month, which served as a valuable reflection and

insight into the future of the project.

After attempting to implement VR into my project, I had to make the decision to not go ahead with this plan. I

had converted my project into a VR compatible one in Unreal Engine. I had set up a control scheme and a few

prototype Graphical User Interfaces (GUI’s). However, performance was a major issue. Because of the scale of

my project, the number of assets and the graphical fidelity of these assets - VR was not a viable technology to

introduce into the project. There were major performance issues that made the application unplayable - such

as stuttering, input lag and crashing. Because of these issues, I decided to instead focus my efforts on having a

project that a user could interact with using a mouse and keyboard, or a controller.

Reflections:

This month I made great progress in terms of having a working prototype for my project. I was able to get the

GUI for the application mostly implemented, I conducted a photogrammetric scan of a building and imported it

into the project - which gave me valuable experience in both photogrammetry and the use of Blender. I was also

able to get the ‘Object Prompt’ system of the project implemented.

There are however many challenges still remaining. I still need to implement the ‘Object Information Widget’

system that displays an informative menu that gives a user information about a buildings history. I also need to

implement the ‘Birds Eye View’ mode that will allow a user to enter a view that allows them to rotate around an

object of interest in order to view it from every angle. A map system for the project and an out-of-bounds system

will also need to be implemented.

73

Aside from these functional requirements, I also need to enrich the projects environment to make it more photo-

realistic and immersive. This will require the creation of a large number of assets in Blender - such as buildings

and other objects of interest.

In addition, I will need to texture the landscape of the project with realistic textures in order to immerse the

user in their surroundings.

Next Actions:

While I have listed all the outstanding challenges that remain in the project, I will need to budget my remaining

time on the project wisely. If I spread myself too thin by trying to work on small parts of every feature in the

project, I may not get any feature fully implemented.

To ensure this undesirable outcome doesn’t come to fruition, I aim to complete the most important and

functionally complex aspects of the project first. I have determined that the ‘Object Information Widget’ system

will require the largest amount of time and effort to complete, therefore I plan to largely devote myself to getting

this implemented in January.

To achieve this goal, I will need to examine the Unreal Engine documentation to gain a greater understanding

of the functions available to me in the ‘blueprint’ system. The Object Information Widget will require many

blueprints to implement, so I will need to study and experiment in Unreal Engine to overcome this challenge.

January
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I made progress on implementing the ‘Object Information Widget’ system for my project. I created

blueprints on the player character that enables the user to press the ‘E’ key to interact with an object. By using

a for-each loop, the system will check if the player character is within the boundaries of an object that is

interactable. If this is the case, the object information widget will be displayed on the user’s screen with

information about the object.

Reflections:

I succeeded in implementing the core functionality of a major feature in the project this month. I still need to

make the widget that appears more user friendly and visually appealing – as currently it is just in a placeholder

state. Once I flesh out this feature more by making it more interactable and adding visual flair, it will be in a

better state.

In February, I will need to work on the ‘Birds eye view’ system that will allow the user to enter a mode where

they can view an object from any angle. This mode will be accessed from the object information widget that

appears on their screen, and I anticipate it will involve much time and effort to see to fruition.

Next Actions:

To address these challenges, I plan to flesh out the object information system more to make it easier to

navigate and more visually pleasing. Once this is done, I can then add a button that allows a user to enter the

birds eye view mode. Having done this, I will then need to implement the code that handles the birds eye view

system. For this, I will need to consult the Unreal Documentation and come up with a way to change the

players perspective from their character to a controllable camera that orbits an object. This will involve

creating new camera objects, editing the control inputs a player has at their disposal, and implementing a wide

array of new blueprints.

74

February
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I began implementing the birds eye view system for the project a mini-map system. The birds eye

view system proved a challenge as due to the nature of Unreal Engine, having a user switch to a different

character is doable, but because the input system for the bird’s eye view character will be different to the default

first-person character – challenges arose. After troubleshooting these issues, I decided to move the birds eye

view system down in priority and worked on the mini-map system instead.

This mini-map allows a player to better navigate the environment and aids them in understanding whereabouts

in the town they are at any given time. To implement this system, I needed to create a variety of new assets and

blueprints. Firstly, I had to create the actual map assets using image editing software and import them into the

game engine. Once this was done, I created blueprint logic that retrieved the users X and Y co-ordinates and

then moved the map to-scale to reflect the user’s movement on the mini-map.

Reflections:

I succeeded in getting the mini-map system mostly implemented. This involved a lot of tweaking of parameters

to ensure that the map was to the right scale and moved in-line with the user’s navigation of the environment.

The mini-map currently moves in the x and y axis correctly, but I am currently tweaking how it moves in the z

axis so that it rotates when the users character rotates.

I will keep the birds eye view system on a low priority for now as it will prove a challenge to implement this

system in the way that I initially envisioned. I will work on higher priority features in the meantime.

Next Actions:

To address the challenges, I will continue to experiment with blueprint parameters to ensure that the rotation

of the mini-map on the z axis is to-scale and in line with the user’s mouse movements. This will require a lot of

tweaking and experimentation, but I feel this aspect of the project is almost completed. Once this is done, I

will then work on implementing the main map system that allows a user to place waypoints in the world that

will allow them to better navigate to a point of interest.

March
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I continued tweaking the mini map system that I began to implement last month. I was able to

tweak the scaling and parameters of the minimap such that it now accurately reflects the players movement in

the environment, aiding them in their navigation of the town. I also began work on the main map system,

where a user can press a key and display a large, detailed map of the town that will also aid them in

navigation. This map will also the user to place waypoints that can guide them towards objects of interest.

These waypoints will be reflected in the world and on the minimap.

75

Reflections:

I succeeded in fine-tuning the mini map system and got a large amount of the work done on the main map

system. This involved a lot of tweaking of parameters and experimenting in order to come up with a

satisfactory implementation of the map system. I still need to complete the waypoint system, which I am

currently working on.

Next Actions:

I will need to complete the waypoint system in order to have a fully realised map system in the application.

Once this is implemented fully, I can then move onto implementing the out-of-bounds system and also tweak

the user interface of the application, as it is currently in a placeholder state.

April
Student Name: Mark Cummins Course: BSHCSD4

Student Number: x20400634 Supervisor: Emer Thornbury

Achievements:

This month I succeeded in implementing the main map and waypoint system. This allows a user to better

navigate the environment by giving them points of reference on their minimap and main map for them to

travel to. This feature took some time as I needed to implement a system that would calculate the angle

between two vectors in order to allow the waypoint positions on the map to update with relation to the

player’s position. I also added the functionality of a saving and loading system, and the out of bounds system.

These systems will let a player resume the game from their save point and will also prevent a user from leaving

the boundary of the playable area.

Reflections:

I succeeded in implementing two major systems, the main map waypoints and the out of bounds system. I also

implemented a minor system of saving a player’s progress. I still need to fix some bugs with these systems and

fine tune them to make them more user friendly. I now need to add more art assets and textures to my

environment to achieve a more realistic portrayal of the town.

Next Actions:

I plan to add a variety of art assets to the project such as trees, walls, and other objects into the environment.

This will make the environment seem more realistic and true-to-life. At every stage of this process, I will

consult my references such as historical ordnance surveys and historical photography to ensure that my

recreation of the town is as authentic as possible, in-line with the goals of the project. I will also conduct

testing of my project and introduce a series of bug fixes.

