

National College of Ireland
Bachelor of Science (Honours) In Computing

Cybersecurity

2023/2024

Sean Carr

x20508479

x20508479@student.ncirl.ie

SimpleScan

Technical Report

1

Contents
Executive Summary ... 2

1.0 Introduction .. 2

1.1. Background ... 2

1.2. Aims ... 2

1.3. Technology .. 3

1.4. Structure ... 3

2.0 System ... 4

2.1. Requirements .. 4

2.1.1. Functional Requirements .. 4

2.1.1.1. Use Case Diagram ... 4

2.1.1.2. Requirement 1 User Registration .. 4

2.1.1.3. Description & Priority .. 4

2.1.1.4. Use Case .. 4

2.1.1.5. Requirement 2 User Login .. 5

2.1.1.6. Description & Priority .. 5

2.1.1.7. Use Case .. 5

2.1.1.8. Requirement 3 Network Scanning .. 6

2.1.1.9. Description & Priority .. 6

2.1.1.10. Use Case .. 6

2.1.1.11. Requirement 4 Start Web spider scan .. 8

2.1.1.12. Description & Priority .. 8

2.1.1.13. Use Case .. 8

2.1.1.14. Requirement 5 Start Web active scan .. 9

2.1.1.15. Description & Priority .. 9

2.1.1.16. Use Case .. 9

2.1.1.17. Requirement 6 View scan Results ... 11

2.1.1.18. Description & Priority .. 11

2.1.1.19. Use Case .. 11

2.1.2. Data Requirements ... 12

2.1.3. User Requirements ... 13

2.1.4. Environmental Requirements ... 13

2.1.5. Usability Requirements ... 14

2.2. Design & Architecture ... 14

2

2.3. Implementation .. 15

2.4. Graphical User Interface (GUI) .. 24

2.5. Testing ... 28

2.6. Evaluation ... 28

3.0 Conclusions ... 28

4.0 Further Development or Research ... 28

5.0 References .. 29

6.0 Appendices .. 29

6.1. Project Proposal .. 29

6.2. Reflective Journals .. 31

6.3. Other materials used .. 31

Executive Summary
This Report shows how I developed and deployed my web-based web app and network
scanning tool that can be used to increase security of websites or networks for business
owners or individuals, this project aims to make a simple user-friendly experience for people
looking to perform security scans such as spidering or active scans on websites using ZAP,
Aswell as performing networks scans on networks using Nmap.

The Key functionalities of my tools is that you can monitor different types of scans you have
made, view the scan results, and generate reports in XML.All functionality is managed by
sessions and secure user authentication which also allows you to find scan results you have
made in the past. OWASP Zap uses its API to perform the security assessments while Nmap
is used to perform network scans.

This project demonstrates how to perform network and web security scans through a web
app in simple way while also being secure and making results easily accessible. I would like
to expand the project in the future to make it more comprehensive and add more features.

1.0 Introduction
1.1. Background
I undertook this project so I could develop an accessible tool that can be used by a
business or individual to perform detailed scans of a web app or a network, in my
internship and part time work I see how useful these tools are at finding vulnerabilities
so I made a way anyone can use them withing their application.

1.2. Aims
The project aims to provide a web application that allows the user to perform
automated web scans by spidering then actively scanning the website, It allows network

3

scans to be perform to identify open ports and services, it can then parse these into the
website from xml and allows the user to see the results in a more digestible way.

1.3. Technology
The application uses numerous technologies to work:

Python and flask: Used for server-side operations and requests.

HTML, CSS, Bootstrap: Used to design a nice-looking user-friendly frontend.

JavaScript: Enhances how to frontend interacts with the backend and updates.

PostgreSQL and SQL alchemy: The database system and ORM for managing the scan results and
data from the web and network scans.

OWASP Zap API: performs the web scanning via a local zap API in daemon mode.

Nmap: performs network scans via subprocess in python code.

Jinja2: Uses “blocks” to display content from the server side.

Amazon EC2 :Hosts and serves all apps on the web

1.4. Structure
Executive summary: summarises key points of the project.

Introduction: Outlines backgrounds, aims, technology and structure of the document

System Design: Shows architecture of the system, how data flows and how components
interact.

Implementation: Details Implementation of the system features, shows code snippets
and how the methodologies work.

Testing and results: Explains testing approaches used and the outcomes.

Future Development: Suggest improvements for the project in the future.

Conclusion: Summarises what the project achieved and how it affects the users

Appendices and references: Additional info such as reports and ethics applications or
references etc.

4

2.0 System
2.1. Requirements

2.1.1. Functional Requirements
2.1.1.1. Use Case Diagram
2.1.1.2. Requirement 1 User Registration
2.1.1.3. Description & Priority
This requirement allows new users to register for the web application, it ii used for user
management and access control It is extremely high priority to keep to app secure.

2.1.1.4. Use Case
Scope

The scope of this use case is to register a new user to the system

Description

This use case describes the way which a new user can create an account within
the system

Use Case Diagram

Flow Description

Precondition

The system is operational and accessible from a web browser

Activation

This use case starts when a visitor accesses the registration page

Main flow

1. The System displays the registration page.
2. The Visitor enters their desired username and password and clicks

register

5

3. The system validates the credentials and then creates a new account
4. User is redirected to the login page

Alternate flow

None
Exceptional flow

E1 : Username already exists
1. The system detects the username is taken.
2. System displays an error message.
3. Use case restarts at step 1 main flow.

Termination

The User is redirected to the login page after successful registration or stays on
registration if error

Post condition

System is ready for new requests

2.1.1.5. Requirement 2 User Login
2.1.1.6. Description & Priority
This requirement allows existing users to log in to the system , it is used to access
features of the app, It is very high priority to keep to app secure.

2.1.1.7. Use Case
Scope

The scope of this use case is to authenticate a user then authenticate them to
the system

Description

This use case describes the way which a new user can create an account within
the system

Use Case Diagram

Flow Description

6

Precondition

The User must be registered in the system.

Activation

This use case starts when a visitor accesses the login page.

Main flow

1. The System displays the login page.
2. The Visitor enters their registered username and password and clicks

login.
3. The system validates the credentials.
4. User is redirected to the Dashboard.

Alternate flow

None
Exceptional flow

E1 : Username already exists
1. The system detects the credential hashes do not match.
2. System displays an error message.
3. Use case restarts at step 1 main flow.

Termination

The User is redirected to the dashboard after successful login or remains on page
after failing to login

Post condition

System displays dashboard with past user scans

2.1.1.8. Requirement 3 Network Scanning
2.1.1.9. Description & Priority
This requirement allows authenticated users to perform network scan on selected ips,it
is a high priority functionality as it one of the core features.

2.1.1.10. Use Case
Scope

The scope of this use case is to perform network scans and display parsed results

Description

This use case describes the way which a user can initiate a network scan and
view the results

Use Case Diagram

7

 Flow Description

Precondition

The User must be logged in to the system.

Activation

This use case starts when a visitor accesses the network page.

Main flow

1. The system displays the page
2. User enters the Ip addresses ,ports and flags(A1)
3. System executes the scan with the parameters(E1)
4. System displays the scan results parsed

Alternate flow

A1:No inputs for flags or ports

1. User does not enter any ports or flags
2. System uses defaults flag and ports
3. System proceeds at step 3 of main flow

Exceptional flow

8

E1 : Scan Failure
1. The system encounters an error during scan
2. System displays an error message.
3. Use case restarts at step 1 main flow.

Termination

Scan results are displayed or an error message is shown

Post condition

The system is ready for another scan

2.1.1.11. Requirement 4 Start Web spider scan
2.1.1.12. Description & Priority
This requirement allows existing users to start a web spider scan on selected urls.It is a
core functionality so high priority

2.1.1.13. Use Case
Scope

The scope of this use case is to perform a spider scan on a specified url

Description

This use case describes how a user can initiate a spider scan to map out the
sitemap and links of a site

Use Case Diagram

Flow Description

Precondition

The User must be logged into the system.

Activation

9

This use case starts when a user access the web scan page and wants to perform
a spider scan.

Main flow

1. The user enters their specified url into the input field
2. They click the spider scan button
3. System sends the url to the backend and zap api initiates the scan(E1)
4. System monitors when the scan is finished and displays when finished

Alternate flow

None
Exceptional flow

E1 : Url not supplied
1. The url is not provided by the user
2. Systems displays error message
3. Restart at main flow 1

Termination

The Spider scan successfully finishes or an error message is thrown

Post condition

User can initiate other scans or review results

2.1.1.14. Requirement 5 Start Web active scan
2.1.1.15. Description & Priority
This requirement allows existing users to start a web active scan on selected urls.It is a
core functionality so high priority

2.1.1.16. Use Case
Scope

The scope of this use case is to perform active scan on a specified url

Description

This use case describes how a user can initiate a active scan to find and detect
vulnerabilities within the application

Use Case Diagram

10

Flow Description

Precondition

The User must be logged into the system.

Activation

This use case starts when a user access the web scan page and wants to perform
a active scan.

Main flow

1. The user enters their specified url into the input field
2. They click the active scan button
3. System sends the url to the backend and zap api initiates the scan if a spider scan has

been performed(E1)
4. System monitors when the scan is finished and saves results when finished

Alternate flow

None
Exceptional flow

E1 : Url not supplied
4. The url is not provided by the user
5. Systems displays error message
6. Restart at main flow 1

E2:spider scan not performed
 Spider scan has not been performed
 System displays that spider scan needs to be performed
Termination

The Spider scan successfully finishes or an error message is thrown

11

Post condition

User can initiate other scans or review results

2.1.1.17. Requirement 6 View scan Results
2.1.1.18. Description & Priority
This requirement allows users to view results of previous scans they have made ,It is
good to help track past scans ,medium priority.

2.1.1.19. Use Case
Scope

The scope of this use case is to retrieve and display scan results

Description

This use case describes how a user can view detailed scan results from previous
network or web scans

Use Case Diagram

Flow Description

Precondition

The User must be logged in and have made previous scans on the system.

Activation

This use case starts when a user navigates to a scan results page

Main flow

1. The System displays the list of scanned ips or scanned webpages

12

2. User selects a specific scan to view the results
3. The system retrieves and displays the scan details(E1)

Alternate flow

None
Exceptional flow

E1 : No scans made/found
1. The system finds no scans have been made or found
2. System displays that no scan is found

Termination
Scan results are displayed or message is thrown

Post condition

User can view other results or log out

2.1.2. Data Requirements
Data Requirement 1: User Data

Description: The system must be able to securely store username and passwords

Fields:

Username: String

Password hash: String

Relationships: Users might have associated scan results

Storage: Data should be stored hashed in a database securely

Data Requirement 2: Scan Data

Description: System must store details of network and web scans made by users

Fields:
Scan id: String, unique identifier for each scan.
User id: Integer, foreign key linked to the User table, used as a session id.
Ip address: String (for network scans).
url: String (for web scans).
scan_type: String, type of scan ('network', 'web spider', 'active scan').
status: String, status of the scan ('started', 'in progress', 'completed', 'failed').

 results: Text, JSON formatted string of scan results.

13

Xml report: Text, XML formatted report of the scan

 Relationship: each scan is associated with a user

Storage: Scan data should be stored in a database with relationships to user ids and indexed
to be quickly accessed when requested.

2.1.3. User Requirements
User Requirement 1: Ease of Use

Description: The system should be user friendly users should be able to use the system
without full knowledge of the way the system works

How To:

Intuitive UI

Small number of steps to start scans / view results.

User Requirement 2: Performance

Description: The system should perform well under normal use, while able to perform
multiple scans without lag

How To:

Response time should not exceed 5 seconds per request.

System should be scalable to 5 + scans performable at same time.

User Requirement 3: Security

Description: The system should be able to securely handle user data and not be vulnerable
to common vulnerabilities

How to:

Secure authentication mechanisms

Encryption of sensitive data

Regular testing

2.1.4. Environmental Requirements
Web app should be running on a server with a dual core processor,have at least 8gb ram to
perform multiple scans at same time,and then at least 100Gb of storage to store user
scans.

The software must be comptabile to run on any popular operating system and then be
accessible from all popular browsers such as chrome edge and firefox.Database must be
running on Postgre SQL12 or later and must use python 3.8 with flask for backend.

14

For Hosting it must be ran on a hosting service that allows web scanning and networking
scanning on it such as amazon web services ,hosting services like Heroku will not allow
hosting of these tools as I have encountered before that it is not possible to host nmap and
zap on services like this.Logs must be monitored to see if any malicious activity is taking
place or if there is any outages etc.

Ther must be compliance with all standards ,we must comply with GDPR when handling
personal data, security standards must also be followed for handling info about security of
other systems.

All these requirements make sure that the hosting of the app go smooth and you do not run
into any errors and then you comply with any security or compliance standards while being a
reliable platform.

2.1.5. Usability Requirements
The systems should be running efficiently so that users can do what they want,it use shoulda
s little resources ap possible while still being able to complete tasks,users should be able to
learn the system easily and perform tasks quickly and system should be usable by anyone.

2.2. Design & Architecture
The system is a web app that is designed for web and network scanning,it uses flask and python
for the backend as thee framework and language,and integrates ZAP API for security scans.The
architecture is a Web server(nginx),Flask server,(Backend) database(PostgreSQL),and ZAP Api for
web scanning.

The Web server(nginx and Flask)

• Handles HTTP Requests and responses
• serves my app,web pages and APIs
• handles user sessions and authentication.

My Database(PostgreSQL and SQLAlchemy)

• Stores User Data,network scans and web scans
• Uses Models User,NetworkScan and ScanResult

ZAP API

• Used to initiate scans and give back results
• Interacts with frontend to perform scans when they are requested

Frontend(HTML/CSS/Javascript)

• Designs the User interface
• Uses ajax to display scan queries live for web scanning

15

2.3. Implementation
First of all I will go over how the file gets everything when the file is ran it sets up the
initial configuration in __init__.py

Here it imports flask sqlalchemy and then sets database then initialses the app then configures
the routes

Wsgi.py then runs the app through the command

gunicorn --timeout 120 --bind 0.0.0.0:8000 wsgi:application which serves the flask app to my
amazon ec2 instance on the cloud.

16

The first thing the user sees is the login screen as they are not authenticated to the app yet

There is a jinja 2 block that gets all alerts on these pages and updates them when there is an
alert through flasks alert feature.

When a user registers in the routes it takes the supplied username and password in the form

It then checks for an existing user then if none exists it send the password to the set password
function which then hashes the password using werkzeug security hashing and stores it in the
database then displays a success message and redirects to the login page so a user can log in

17

Login works very similar but instead it just compares the password hashes to the ones in the
database for security reasons.

Once the user is on the home page they are presented with a bootsrap navbar that is made using a
default.html which is extended to make everythying the same across all webpages as seen below

In the home page a user can see any previous network scans that have been made in the past as
seen in the gui ,these scans are displayed in a separate page and are defined in the routes as seen

It uses jinja 2 to again loop through all of these scans from the user model based off of the userid
session tracker then returns them as scans and ip addresses.

These scans are associated via a foreign key in the NetworkScan table that stores all scans from
nmap and displays them on the scan page when requested through the functionality.

Now we need to see how the actual network scan functionality is made.on the network scanning
page we can input ports flags and ips on the form which is then sent to a subprocess of nmap which
checks if there is any ports fields missing and if so replaces them with default settings as seen here

18

It will then input all of these into the nmap command with an xml output and then run the
command via the subprocess as a result and will then parse these xml via our
parse_nmap_xml()FUNCTION

The parse function we have in our network.py file will take the xml output and then find all the info
we have defind it to find via etree

 ,it will store address info such as ip and ports for the address section of the xml output and append
them to the scan data array we have made

 then for the port sections it will take states and then info about what is happening on that port just
like this

19

it will then append it to the next part of the array and then return it to the runnmap function

It then displays this on the network page when we first complete the scan

After it will save to the NetworkScan model table with the raw xml data and associate it to the
userid of the user logged in with the ip address also

It all comes together to work like this.

Now for the Web scanning part

20

First of all it displays all the forms and buttons and hidden output

The buttons start tasks in the backend

In the backend we have our zap api configured where it is running

We boot the zap api by a command in our ec2 instance

./zap.sh -daemon -host 0.0.0.0 -port 9090 -config api.disablekey=false -config
api.addrs.addr.name=.* -config api.addrs.addr.regex=true -config api.key=AMWFOWAIOFNA

It uses the zap.sh file to start in daemon mode on port 9090 with our api key set

The buttons we have set kick off certain functionality in the backend start spider and start active
scan have the same functionality just different types of scans it send them to the backend like this

Frontend to routes to web.py

21

It will then get the data from the target url form through json and if it is not a url it will return an
error

It will then set the endpoint as the scan type and send it using the target url and api key as seen

And then use the request library to send a request to the api with the endpoint we made with the
supplied information it will then get the response from zap and take the information that zap gives
to us and then return it as seen in this snippet

This then displays the response in the output field as seen.

This allows updating of the page with json and no need to refresh the page.

Scan Status is the same but just hits a different api endpoint and displays the scan status with inline
html whenj it gets a json response

22

Finally we have generation and viewing of xml reports for the scan

When the user clicks the generate it send a post request to the backend that creates a zap api
request similar to the previous ones

23

It will send the report then save the content as xml_report it will then decode the xml as it is not
readable if so,then it will check if there is a scan already and update it if so and if not then it will
create the new scan and ad it to the db,it will then try to commit and return the json response
whether it is committed if not to the frontend

all of these scans are then acceesible via the view scan report button which will kick off this
functionality in the backend

24

It works very similar to the generate result but instead will query the database instead of something
from zap

It will check for the scan id then if it finds it it will query the model and pull the scan id and xml
report then return the xml report to the frontend as seen in the 1st screenshot.

2.4. Graphical User Interface (GUI)
Login/Register Screen

25

26

Each page contains error display

These screens show the forms for logging/registering into the system and are accessible from
each through the navbar at the top

Dashboard

This is the landing page once we log in ,we can see previously scanned results for the currently
logged in user,we can click on these and get the results from the previous scan,you can navigate
to other pages and even logout if you want to.This navbar is present in all pages from now on

Scan Info

27

When clicking scanning results it will display them here and you can read into the details of the
scan performed

Network Scanning

This page is accessible by clicking the network scanning page and will display a from to input a
ip,ports and flags once entered and scanned it will display what nmap has found

Web Scanning

Landing page that contains functionality for web scanning with target url you want to scan and
then able to check status and view report of scans

28

Here is all functionality activated and how it looks when done so.

2.5. Testing
For testing I did some manual testing by inserting payloads for xss ,sql injection and did not
receive any errors I also scanned my site and it did not give any critical vulnerabilities

2.6. Evaluation

3.0 Conclusions
I think I have made a very good tool it has well designed modular codebase that I can make
further modifications to if I want to ,I can maintain it easily and do not have a lot of
technical debt if any,it is integrated with powerful tools like nmap and zap which allows me
to make network and web scans.It Successfully meets all functional requirements and has
good integration of all the tools I wanted to use ,in the future I would like to remove the
dependency on these tools but for now it is fine.It has great security features such as
session management hashing of passwords and secure systems.I am overall happy with this
project and it can stand on its own as a good project.

4.0 Further Development or Research
If I hadfurther time to work on this project I would like to make it a bit more scalable with
other tools , iwould also like to remove the need for other tools such as nmap or zap and
maybe develop my own tools but these tools are fine for now/the near future.I would then
also wish to improve some of the functionality of the website such as associating risks with
websites or parsing the xml of web scans to be a bit more readable and then also I would
like to test my application some more.

29

5.0 References
www.zaproxy.org. (n.d.). API Reference. [online] Available at:
https://www.zaproxy.org/docs/api/.

nmap.org. (n.d.). XML Output (-oX) | Nmap Network Scanning. [online] Available
at: https://nmap.org/book/output-formats-xml-output.html.

Flask (2010). Welcome to Flask — Flask Documentation (3.0.x). [online]
flask.palletsprojects.com. Available at: https://flask.palletsprojects.com/en/3.0.x/.

Amazon Web Services, Inc. (n.d.). Amazon EC2 Resources - Amazon Web Services.
[online] Available at: https://aws.amazon.com/ec2/resources/.

6.0 Appendices
6.1. Project Proposal

https://www.zaproxy.org/docs/api/
https://nmap.org/book/output-formats-xml-output.html
https://flask.palletsprojects.com/en/3.0.x/

30

N
a
t
i
o
n
a
l
C
o
l
l
e
g

31

6.2. Reflective Journals

14590_Sean_Carr_o
ctober_x20508479_3

14590_Sean_Carr_x2
0508479_31100_1631

14590_Sean_Carr_X
20508479_59501_679

14590_Sean_Carr_x2
0508479_march_5950

14590_Sean_Carr_x2
0508479_reflection_a

6.3. Other materials used

https://github.com/seancarr717/VulnScanner

https://drive.google.com/file/d/1HwFReRAVBz3XRVRQaYiKAfXCAtsokMem/view?usp=shari
ng

https://github.com/seancarr717/VulnScanner

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1 User Registration
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.1.5. Requirement 2 User Login
	2.1.1.6. Description & Priority
	2.1.1.7. Use Case
	2.1.1.8. Requirement 3 Network Scanning
	2.1.1.9. Description & Priority
	2.1.1.10. Use Case
	2.1.1.11. Requirement 4 Start Web spider scan
	2.1.1.12. Description & Priority
	2.1.1.13. Use Case
	2.1.1.14. Requirement 5 Start Web active scan
	2.1.1.15. Description & Priority
	2.1.1.16. Use Case
	2.1.1.17. Requirement 6 View scan Results
	2.1.1.18. Description & Priority
	2.1.1.19. Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	6.2. Reflective Journals
	6.3. Other materials used

