
Configuration Manual

MSc Research Project

Data Analytics

Deepak Yadav
Student ID: x21219991

School of Computing

National College of Ireland

Supervisor: Mr. Hicham Rifai

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Deepak Yadav

Student ID: x21219991

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Mr. Hicham Rifai

Submission Due Date: 14/12/2023

Project Title: Butterfly and Moth Species Detection and Classification Using
Deep Learning

Word Count: 2006

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Deepak Yadav

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Deepak Yadav
x21219991

1 Introduction

This section serves as a manual to the software and hardware configuration employed
in the development of the model presented in the thesis. It operates as a collection of
directives for potential code reuse or rerun on varying systems. This project investigates
the implementation of profound learning models for the prediction of butterfly species
through an interactive web application powered by Streamlit. Streamlit, a Python library,
enables the creation of user-friendly web applications with minimal code. The developed
application permits users to upload butterfly images for real-time species classification
using diverse pretrained models, such as EfficientNetB0, VGG19, ResNet50, and a But-
terflyNet CNN model.

2 System Specifications

The system configuration provided below is utilized in the creation of the project. It is
recommended that users consider using a configuration similar to the one outlined below
to ensure optimal performance when running the provided code artifacts.

The code is executed on Google Colab, a cloud platform renowned for its capabilities in
coding and running machine learning and deep learning models. Google Colab integrates
TensorFlow and Keras, enhancing execution speed by leveraging GPU and TPU resources
when necessary.

The table in 1 outlines the key specifications of the system used for the project.

Table 1: System Specifications

Processor 12th Gen Intel(R) Core(TM) i5-1240P 1.70 GHz
Installed RAM 16.0 GB (15.7 GB usable)
System type 64-bit operating system, x64-based processor

3 Software Requirements

This section provides an overview of the essential software components required to utilize
and engage with the classification approach.

Python has been chosen as the implementation language for this project because of its
accessibility, open-source nature, and extensive library support. This language specifically
facilitates the implementation of advanced technologies such as TensorFlow, Keras, and

1



Streamlit, which play pivotal roles in the development and visualization of deep learning
models.

To ensure smooth functionality on Google Colab and Streamlit, it is crucial to have
the latest version of Google Chrome installed. This is imperative for achieving optimal
performance when executing Colab notebooks and accessing web pages hosted by Stream-
lit.

In order to commence working with the models, a sample set of butterfly images is
required for testing purposes.

Furthermore, the project temporarily stores the models in your local Google Drive.
In order to accommodate this, it is necessary to possess a minimum of 2 GB of free space
available in your Google Drive. This will guarantee a seamless experience while working
with the developed models.

3.1 Google Colab

Google Colab is a cloud-based platform widely used for coding and running machine
learning and deep learning models. It provides free access to GPU and TPU resources,
significantly speeding up model training. To use Google Colab, follow these steps:

1. Open your browser and navigate to Google Colab (https://colab.research.
google.com/).

2. Sign in with your Google account.

3. Upload the notebook file provided named x21219991 Deepak Yadav.ipynb.

3.2 Libraries

This project leverages the following libraries for image classification. It’s essential to
install these libraries to ensure smooth execution.

The provided code snippet takes care of installing and importing all the required
libraries into the user’s Colab environment. Each import statement is accompanied by
comments for better understanding.

Refer to Figure 1 for a visual representation.

Figure 1: Visual Representation of Installed Libraries

2

https://colab.research.google.com/
https://colab.research.google.com/


4 Dataset Resources

For this research, the dataset comprises over 13,000 photos representing 100 distinct but-
terfly species, sourced from the Kaggle (2021) data repository. All images are uniformly
sized at 224 x 224 x 3 pixels and saved in JPG format. The labels column provides the
species label for each image file. A glimpse of sample images from the dataset is presented
in Figure 2.

To ensure project robustness and independence from Kaggle’s platform, the dataset
was downloaded from Kaggle and subsequently uploaded to a public GitHub repository.
This precautionary step guards against potential issues, such as file deletion by users or
downtime on the Kaggle platform. The code accesses the dataset directly from GitHub,
facilitating seamless integration into the Colab environment.

Refer to Figure 2 for a snapshot of the Kaggle Dataset page.

Figure 2: Snapshot of Kaggle Dataset Page

Refer to Figure 3 for a snapshot of the code for downloading the required dataset files.

Figure 3: Snapshot of Dataset GitHub Code

3



5 Utility Functions

In the course of this project, several key functions have been crafted to enhance efficiency
and streamline various processes. Here’s an overview of the essential functions utilized:

• create class mapping(directory): Generates a mapping from class folder names
to unique identifiers.

• plot images(tensorflow dataset, class mapping, num batches=4): Visualizes
images from a TensorFlow dataset using Matplotlib.

• create image dataset(directory, batch size=32, image size=(224, 224)):

Creates a TensorFlow image dataset from a specified directory.

• plot loss(history): Plots training loss and validation loss over epochs using
Plotly.

• plot accuracy(history): Plots training accuracy and validation accuracy over
epochs using Plotly.

• get class names(data dir): Retrieves sorted class names from subfolder names
within a directory.

• evaluate test(model, modelName, test, test dir): Evaluates a model on a
test dataset, printing various metrics and visualizations.

These functions play pivotal roles in tasks ranging from data preparation to model
evaluation, contributing to the overall success of the project.

5.1 Additional Functions

• filter images(dir list, image exts): Filters images in specified directories
based on allowed image extensions. Removes images with extensions not in the
specified list. Prints information about removed images.

• count images in dir(directory, image extensions): Counts the number of im-
ages in a given directory with specified image extensions. Returns the count.

• generate directory stats(dir list, image extensions): Generates statistics
for each directory in the list. Returns total folder count, total image count, folder
names, subfolder counts, and image counts.

• display directory stats(dir list, image extensions): Displays directory stat-
istics using Plotly. Returns total folder count and total image count.

These additional functions play a crucial role in image preprocessing, data exploration,
and statistical analysis within the project.

4



6 Exploratory Data Analysis

The provided dataset is pre-divided into training, testing, and validation sets. To con-
duct Exploratory Data Analysis (EDA), the project examined the image count and class
balance, visualizing the distribution through a bar plot.

Refer to the Exploratory Data Analysis section in the notebook file for detailed in-
sights. Additionally, Figure 4 offers a snapshot of the bar plot illustrating the image
count in the training dataset.

Figure 4: Snapshot of Image count in the train dataset

7 Deep Learning Models

To comprehensively assess the researcher’s model, this project has developed various
alternative models for comparative analysis. The models share consistent parameters, in-
cluding patience and epochs, ensuring a fair evaluation. Evaluation metrics are visualized
using the dedicated functions: plot loss(history) and plot accuracy(history).

7.1 ButterflyNet Model

The image classification Convolutional Neural Network (CNN) designed follows a se-
quential model structure incorporating key elements for effective feature extraction and
regularization. The architecture initiates with basic feature extraction and progressively
captures intricate patterns through additional convolutional layers. Batch normalization
ensures training stability, max pooling reduces spatial dimensions, and dropout minim-
izes overfitting risks. The model is compiled using the Adam optimizer with a learning
rate scheduler, complemented by dense layers and dropout for robustness. The project’s
summary provides a comprehensive overview of the network’s architecture and paramet-
ers.

In the ”Build Deep Learning Model” section of the notebook, the code for the CNN
model, including the utilization of the early stopping callback, can be found. The code

5



snippet illustrates the implementation of early stopping, configured to monitor validation
loss with a patience of 3 epochs. The model undergoes 50 epochs, and the resulting train-
ing history is stored. The trained model is saved as ”ButterflyNet.keras” (see Figure 5
for a snapshot of the CNN model training).

Figure 5: Snapshot of ButterflyNet Model Training

7.2 EfficientNetB0 Model

To harness transfer learning, the project integrates the pre-trained EfficientNetB0 model
for image classification. The model’s layers are frozen to retain pre-trained weights. A
custom sequential model is then created, extending with flattened layers, dense layers,
batch normalization, dropout, and a softmax output for 100 classes. The model is com-
piled using the Adam optimizer with a learning rate scheduler. The summary provides
insights into architecture and parameters. EfficientNetB0 enhances feature extraction
capabilities, valuable for image classification. The model is trained with an early stop-
ping callback, and the training history is saved as ”custom model EfficientNetB0.keras”.

7.3 VGG19 Model

The project incorporates the VGG19 pre-trained model for image classification. All layers
of the VGG19 model are frozen to preserve pre-trained weights. A custom sequential
model is constructed, adding flattened layers, dense layers, batch normalization, dropout,
and a softmax output for 100 classes. The model is compiled using the Adam optimizer.
The summary provides an overview of architecture and parameters. VGG19 contributes
to robust feature extraction. The model is trained with an early stopping callback, and
the training history is saved as ”vgg custom model.keras”.

7.4 ResNet50 Model

The ResNet50 pre-trained model is integrated into the project for image classification.
All layers of the ResNet50 model are frozen to maintain pre-trained weights. A cus-
tom sequential model is crafted, incorporating flattened layers, dense layers, batch nor-

6



malization, dropout, and a softmax output layer for 100 classes. The model is com-
piled using the Adam optimizer, and the summary provides insights into its architecture
and parameters. ResNet50 enhances feature extraction capabilities. The model un-
dergoes training with an early stopping callback, and the training history is saved as
”resnet custom model.keras”.

8 Model Evaluation

The table 2 presents the evaluation metrics for four distinct deep learning models applied
to a test dataset. Notably, the ResNet50 model stands out with a significantly lower
test loss of 0.2285 and an impressive accuracy of 95.00%. Meanwhile, the ButterflyNet
Model achieved a test loss of 0.5081 with an accuracy of 85.40%. The VGG19 model
demonstrated competitive results with a test loss of 0.2771 and an accuracy of 92.80%,
and similarly, the EfficientNetB0model recorded a test loss of 0.2349 and an accuracy of
93.60%. This comparison underscores the effectiveness of ResNet50 in achieving superior
accuracy, while the other models exhibit commendable performance in image classification
tasks.

Table 2: Test Results Summary for All Models
Model Test Loss Test Accuracy
ResNet50 Model 0.2285 95.00%
EfficientNetB0 Model 0.2349 93.60%
VGG19 Model 0.2771 92.80%
ButterflyNet Model 0.5081 85.40%

9 Streamlit

Streamlit is a robust Python library that streamlines the development of interactive web
applications. With a concise codebase, users can effortlessly convert data scripts into
shareable web apps. Streamlit’s user-friendly design empowers developers, including those
with limited web development experience, to seamlessly create and deploy applications
for data visualization, machine learning, and beyond.

In this project, Streamlit plays a crucial role in tunneling the webpage to an external
site, facilitating users to upload their butterfly images for species prediction. The app.py
file under the Streamlit section encapsulates the code for the web page.

9.1 Obtaining External IP

• Execute the cell located at the end of the presented notebook after successfully
running all preceding cells.

Consult Figure 6 for a visual representation of the code.

• Copy the URL provided as ”External URL” from the cell’s output by right-clicking
on the link and selecting ”Copy link address.”

7



Figure 6: Snapshot of Obtaining External IP

Figure 7: Snapshot of Endpoint IP

• Click on the link labeled ”your url is:” and paste the copied URL as depicted in
Figure 7.

• Remove the ”http://” and the number after ”:” as illustrated in Figure 8.

Figure 8: Snapshot of Final Endpoint IP

• Click on the ”Click to Submit” button.

8



9.2 Homepage

Users are directed to a page designed by app.py and can view the webpage, as seen in
Figure 9. Click the ”Let’s Go” button.

Figure 9: Snapshot of Landing WebPage

Users are guided to another page where they can upload a test image using the ”Browse
files” button, as depicted in Figure 10. The ”Exit” button returns to the homepage.

Figure 10: Snapshot of Uploading Test Image Page

Upon uploading an image, the page processes and predicts the species, displaying the
output at the bottom. The species name and model confidence percentage are presented,
along with the uploaded image, as shown in Figure 11.

9.3 Selection of Models

Users can select different models for the same image by using the dropdown menu available
at the top of the page, below the ”Exit” button.

Users can click and choose the model, as represented in Figure 12.
For a seamless experience, close the tab or stop the Colab cell to exit the webpage.

9



Figure 11: Snapshot of Species Prediction

Figure 12: Snapshot of Model selection

References

Kaggle (2021), ‘Butterfly & moths image classification 100 species’, https://www.

kaggle.com/datasets/gpiosenka/butterfly-images40-species.

10

https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species
https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species

	Introduction
	System Specifications
	Software Requirements
	Google Colab
	Libraries

	Dataset Resources
	Utility Functions
	Additional Functions

	Exploratory Data Analysis
	Deep Learning Models
	ButterflyNet Model
	EfficientNetB0 Model
	VGG19 Model
	ResNet50 Model

	Model Evaluation
	Streamlit
	Obtaining External IP
	Homepage
	Selection of Models


