===y

\‘
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc Data Analytics

Bhagya Vinod
Student ID: 22106111

School of Computing
National College of Ireland

Supervisor: Dr. Christian Horn

‘-—
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee
Ireland
School of Computing
Student Name: Bhagya Vinod
Student ID: x22106111
Programme: MSc Data Analytics Year: 2023
Module: MSc Research Project
Lecturer: Dr. Chrsitian Horn
Submission Due
Date: 14/12/2023
Project Title: Early Detection of Alzheimer’s using Deep Learning Techniques
Word Count: Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Bhagya Vinod
Signature:

14/12/2023
Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Bhagya Vinod
X22106111

1 Introduction

This configuration manual lists all the software, hardware and underlying code needed to
carry out the research project “Early Detection of Alzheimer's using Deep Learning
Techniques™.

2 System Configuration

2.1 Hardware

Processor . 12th Gen Intel(R) Core(TM) i7-1255U 1.70 GHz
Installed RAM: 12.0 GB (11.7 GB usable)

Device ID : 28C1A32F-4A19-4630-950E-8B6FB9ABB445
Product ID : 00342-42315-95217-AAOEM

System type : 64-bit operating system, x64-based processor

2.2 Software
Software Computing Tools Used: Python 3.9.13, Jupyter Notebook, Microsoft Word

3 Project Development

The figure depicts the overall steps followed to conduct the project

1.Enquiring about Alzheimer’s diseases 2. Identifying insights

:

3. Data extraction

A
4. Summarization extraction
6. Deploying the insights

5. Evaluating Literature Review

Figurel: Methods followed to conduct the study

4 Deep Learning Code
4.1 Importing Necessary Library

Pandas: To work with datasets, Python’s Pandas package is utilized. It provides tools for
exploring, cleaning, analysing and manipulating data.

TensorFlow: A platform that facilitates the application of optimal techniques for modelling,
data processing, tracking performance and training models.

PIL: The Pillow library has every essential feature needed for image processing

import numpy as np

import pandas as pd

import random

import os

from pathlib import Path

from PIL import Image

import tensorflow as tf

from random import randint
from tensorflow import keras
import tensorflow_addons as tfa
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model

from tensorflow.keras.layers import Conv2D, Flatten

from sklearn.model_selection import train_test split

from sklearn.metrics import matthews_corrcoef as MCC

from distutils.dir_util import copy_tree, remove_tree

from sklearn.metrics import balanced_accuracy score as BAS

from tensorflow.keras.applications.resnet5@ import ResNetSe

from tensorflow.keras.applications.xception import Xception

from tensorflow.keras.applications.densenet import DenseNet169

from tensorflow.keras.applications.inception v3 import InceptionV3

from sklearn.metrics import classification_report, confusion matrix

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.applications.efficientnet import EfficientNetB3
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.preprocessing.image import ImageDataGenerator as IDG
from tensorflow.keras.layers import SeparableConv2D, BatchNormalization, MaxPool2D, GlobalAveragePooling2D

Figure 2: Library Import

4.2 Hyperparameters and Image Settings for Neural Network Training

EPOCHS = 186

BATCH_SIZE = 32

IMG_SIZE - 128

IMAGE_SIZE - [128, 128]
DIM - (IMG_SIZE, IMG_SIZE)

Figure 3: Settings for Training

The above code sets hyperparameters and image-related constants for training a neural
network.

4.3 Loading Training Data File Paths and Labels

train_dt = Path(’'./dataset/Combined Dataset/train’)
filepaths = list(train_dt.glob(r'**/*_jpg'}))
labels = list(map(lambda x: os.path.split(os.path.split(x)[@])[1], filepaths))

Figure 4: Training Data path

This code snippet utilizes Path module to create a relative path to the training dataset directory.
The training dataset is stored at location ‘./dataset/Combined Dataset/train’. Following this, it
makes use of this path to get a list of file paths for each JPG file found in the specified directory
and all of its subdirectories.

train_df.head()

Filepath Label

0 dataset\Combined Datasefitrain\Moderate Impair.. Moderate Impairment

1 datasetiCombined DatasetitrainiMo ImpairmenfiM... Mo Impairment
2 dataset\Combined Datasetitrain\Mild Impairment.._ Mild Impairment
3 dataset\Combined Datasetitrain\Mild Impairment... Mild Impairment

4 dataset\Combined Datasefitrain\Moderate Impair.. Moderate Impairment

Figure 5: Subset of training Dataset

4.4 Loading Testing Data File Paths and Labels

test_dir = Path('./dataset/Combined Dataset/test’)

filepaths = list{test_dir.glob({r"**/* _ jpg'})

labels = list(map(lambda x: os.path.split(es.path.split(x)[@])[1], filepaths))
filepaths = pd.Series(filepaths, name='Filepath').astype(str)

labels = pd.Series(labels, name="Label’)

test_df
test_df

pd.concat([filepaths, labels], axis=1)
test_df.sample(frac=1).reset_index(drop = True)

test_df.head()

Filepath Label

0 dataset\Combined DatasetitestiViery Mild Impair... Very Mild Impairment
1 datasetiCombined DatasetitestiVery Mild Impair... Very Mild Impairment
datasef\Combined DatasetitesfiVery Mild Impair_.. Very Mild Impairment
datasef\Combined DatasetitestiVery Mild Impair... Very Mild Impairment

= W W

dataset\Combined DatasetitesfiVery Mild Impair... Very Mild Impairment

Figure 6: Testing Data path and subset of testing dataset

For the test dataset, a DataFrame called test_df is created in this code segment. Initially, file
paths are gathered, and labels are extracted from the designated directory and all of its
subdirectories. Two columns make up the resulting DataFrame: ‘Label’ for matching labels
and ‘Filepath’ for image file paths.

4.5 Building a Convolutional Neural Network for Image Classification

Model: "onn_sodel”

Layer [Type) i i i T futput Shapa i i " Paras &
coivdd {ComelD} (Wi, 228, 118, 18) 448 -
coivdd 1 (ConwiD) (Wi, 228, 118, 18) 1328
max_pool ingdd {MaxPool nglin) [mone, &4, 54, 15}]
coivdd 2 (ConwiD) (Wi, &4, S8, 32) 4588
coivdd 3 (ConwiD) (Wi, &4, S8, 32) ot
batch_norsalizavion {Batchmorsalization) (Wi, &4, S8, 32) 138
sax_poolingdd 1 (MaxPooling2D) (W, 32, 3k, 32} [}
coivdd & (ConwiD) (Wi, 32, 3k, 64 23E0E
coivdd § (ConwiD) (Wi, 32, 3k, 64 IBO2E
batch_norsalization 1 (BatchMorsalization} (Wone, 32, 32, 68} 56
max_poolingdd 2 (MaxPoolingZD) (mone, 16, 16, &4)]
coivdd 6 (ConwiD]) (Wi, 16, 18, 128) FIBSE
coivdd T (ConwiD) (Wi, 16, 18, 128) 4TSRS
batch_norsalizavion 2 (Batchéorsalization} (Wone, 18, 16, 128) 512
sax_poolingdd 3 (MaxPooling2D) (Wi, &, 8, 128} [}
convdd B (ConwiD) (Wi, &, 8, 156} II515E
last cony_Bayer (Conw2D) (Wi, &, 8, 156} SO88E8
batch_norsalization 3 (Batchéorsalization}) (Wone, &, B, 158} 182a
max poolingdd & (MaxPooling2D) (Wi, 4, 4, 156} (]
Flatten {FLatten) (Wi, S296]) [}
dropout {Dropout] (W, 28957]
dense [Denke) [mone, S12) e TEES
batch_norsalization & (BatchMorsalization) (Wone, 512} i
dropout 1 [Dropout) [mone, S12)]
dense 1 (D e} (Wi, 138 (1112
batch_norsalizavion S5 (BatchMorsalization) (Wone, 128} 512
dropout I [Dropout) [mone, 128)]
dense 3 (D) [mone, &4 BI5E
batch norsalizatios & (BatchMorsalization}) (Wone, 43 256
dropout 3 [Dropout) [mone, &4]
dense_3 {Danca) (Wi, 43 258

otal parasc: 3355343 (11 88 ME)
rainable parass: 3352088 [12.7% WA}
Won-Traknable parass: 2365 [0.35 KB

Figure 7 : CNN Architecture

For the purpose of classifying images, the above code defines a Convolutional Neural
Network(CNN) using the Keras Sequential API (Joseph, et al., 2021)The architecture consists
of dense layers, max-pooling layers, batch normalization, dropout for regularization and
multiple convolutional layers with rectified linear unit(ReLU) activation. With four output
classes, the CNN is built for a multi-class classification task, and the softmax activation
function is used in the final layer.

4.6 Compiling the Custom Convolutional Neural Network

OPT = tf.keras.optimizers.Adam(learning rate=8.8e1)

METRICS = [tf.keras.metrics.CategoricalAccuracy(name="acc'),
tf.keras.metrics.AUC(name="auc"),
tfa.metrics.F1Score(num_classes=4)]

custom_model_combined. compile(optimizer="adam’,

loss=tf.losses.CategoricalCrossentropy(),

metrics=METRICS)

Figure 8: Training process of CNN

This code snippet configures the training process for the previously defined custom CNN
model. The following steps are performed:

« The learning rate of 0.001 is used to instantiate the Adam optimizer. During training,
the optimizer is in charge of changing the model’s weights based on the established
gradients.

« During training, a set of metrics will be chosen to be monitored. The metrics chosen
in this instance are F1 score, area under the curve (AUC), and categorical accuracy.

« Using the custom CNN model, the compile method is invoked. It details the metrics,
loss function, and optimizer that will be applied during training.

4.7 Implementing Early Stopping and Model Checkpointing

In [19]: earlystopping = EarlyStopping(monitor = 'val loss’,
mode = ‘min’,
patience = 18,
verbose = 1)
filepath = './best_weights.hdf5"
checkpoint = ModelCheckpoint(filepath,
monitor = ‘val_loss’,
mode="min",

save_best_only=True,
verbose = 1)

callback_list = [earlystopping, checkpoint]

Figure 9: Callback Configuration for Early Stopping and Model Checkpointing

The above snippet sets up callbacks for early stopping and model checkpointing during the
training of a neural network. Neural networks are often trained using callbacks in order to avoid
overfitting and maintain the optimal model weights depending on validation performance.
Model checkpointing saves the model with the best validation performance for later use, while

early stopping supports in ending training if the model’s performance on the validation set
stops improving.

4.8 Transfer Learning with ResNet50 for Image Classification

base_model = ResNet5@(weights="imagenet’, include_top=False, input_shape=(*IMAGE_SIZE, 3))
for layer in base_model.layers:
layer.trainable = False
model _tl = Sequential([
base_model,
GlobalAveragePooling2D(),
Dense(1824, activation="relu'),
Dropout(®.2),
Dense(512, activation='relu"},
Dropout(®.2),
Dense(4, activation='softmax')
1, name="transfer_learning_model™)
model_tl.compile(optimizer=0PT, loss='categorical_crossentropy’, metrics=METRICS)

Figure 10: Transfer Learning Model Configuration

The above-mentioned code demonstrates how to utilize transfer learning to image classification
using the ResNet50 pre-trained model.

5. Result
5.1 Training Progress and Early Stopping

Epoch 24: val_loss did not improve from ©.16999

320/328 [] - 1755 547ms/step - loss: ©.8329 - acc: ©.9899 - auc: 8.9994 - f1_score: 8.9899 - v
al_loss: 3.6875 - val_acc: ©.4464 - val_auc: 8.6629 - val_f1_score: 6.3128

Epoch 25/188

32e/32@ [] - ETA: @5 - loss: 8.8472 - acc: 8.9846 - auc: @.9989 - f1_score: ©.9846
Epoch 25: val_loss did not improve from 8.16999
320/32@ [] - 1735 541ims/step - loss: ©.8472 - acc: ©.9846 - auc: ©.9989 - f1_score: 8.9846 - v

al _loss: 1.3466 - val_acc: ©.7123 - val_auc: 8.8953 - val_f1_score: 8.6277
Epoch 26/188

32e/32@ [] - ETA: @5 - loss: ©.0486 - acc: 8.9881 - auc: ©.9992 - f1_score: ©.9821
Epoch 26: val_loss did not improve from 8.16999
32e/32@ [] - 1735 542ms/step - loss: 0.8486 - acc: @.9881 - auc: ©.9992 - f1_score: 8.9881 - v

al loss: ©.8556 - val_acc: ©.7936 - val_auc: ©.9388 - val_f1_score: @.7727
Epoch 27/188

320/32@ [] - ETA: @5 - loss: 8.8534 - acc: 8.9818 - auc: ©.9989 - f1_score: 8.9818
Epoch 27: val_loss did not improve from 8.16999
32e/32@ [] - 1755 547ms/step - loss: 0.8534 - acc: ©.9818 - auc: ©.9989 - f1_score: 8.9818 - v

al _loss: ©.9838 - val_acc: ©.7522 - val_auc: 8.9173 - val_f1_score: 8.8294
Epoch 27: early stopping

Figure 11: Training and Evaluation Summary

The training was terminated early at epoch 27 because validation loss did not improve further,
avoiding the possibility of overfitting and preserving the optimal model weights for use at a
later time.

5.2 Evaluating Model Performance on Test Data

test_scores = custom_model_combined.evaluate(test_images)
print(“"Testing Accuracy: %.2f%%"%(test_scores[1] * 1e8))
pred_labels = custom_model_combined.predict(test images)

def roundoff(arr):
"""To round off according to the argmax of each predicted label array."""

arr[np.argwhere(arr != arr.max())] = @
arr[np.argwhere(arr == arr.max())] = 1
return arr

for labels in pred_labels:
labels = roundoff(labels)

pred = np.argmax(pred_labels,axis=1)

print(classification_report(test_images.classes,pred,target_names=CLASSES))

40/48 [====] - 8s 193ms/step - loss: B8.983@ - acc: ©.7522 - auc: ©.9173 - f1_score: 9.8294
Testing Accuracy: 75.22%
48/48 [====] - 8s 187ms/step
precision recall fl-score support
Mild Impairment 8.9@ 8.96 9.92 179
Moderate Impairment 1.86 8.92 9.96 12
No Impairment 8.99 a.53 8.69 648
Very Mild Impairment 9.68 8.o8 9.74 448
accuracy 8.75 1279
macro avg 9.87 8.85 9.83 1279
weighted avg .84 8.75 8.75 1279

Figure 12: Model Evaluation and Classification Report

This code is crucial for determining how well the trained model performs across different
categories and for evaluating how well it generalizes to new, unseen data.

5.3 Evaluation Metrics for Model Performance

The Balanced Accuracy Score and Matthew’s Correlation Coefficient are two more evaluation
metrics that are computed and printed by the snippet of code below

print(“"Balanced Accuracy Score: {} %".format(round(BAS(test_ls, pred_ls) * 188, 2)))
print("Matthew's Correlation Coefficient: {} &".format(round(MCC(test_ls, pred_ls) * 1@a, 2)))

Balanced Accuracy Score: 84.62 %
Matthew's Correlation Coefficient: 66.93 %

Figure 13: Accuracy of CNN Model

By calculating the average sensitivity and specificity for each class, the Balanced Accuracy
Score is a metric that accounts for dataset imbalances.

5.4 Transfer Learning Model Training and Evaluation

history_tl = model t1.fit(
train_images,
validation_data=test_images,
epochs=EPOCHS,
callbacks=callback_list
)
test_scores_tl = model_tl.evaluate(test_images)
print(“Transfer Learning Model Testing Accuracy: %.2f%%" % (test scores_tl1[1] * 1e@))

Predicting and evaluating performance

pred_labels t1 = model_tl.predict(test_images)

pred_tl = np.argmax(pred_labels t1, axis=1)

print(classification_report(test_images.classes, pred tl, target names=CLASSES))

print(“Transfer Learning Balanced Accuracy Score: {} %".format(round(BAS(test_images.classes, pred_tl) * 188, 2)))
print(“Transfer Learning Matthew's Correlation Coefficient: {} %".format(round(MCC(test_images.classes, pred_tl) * 188, 2)))

Figure 14: Transfer Learning Model Training and Evaluation

The previously defined ResNet50 based architecture is used to train a transfer learning model.
The model’s performance is evaluated on the test dataset and an in-depth report of the findings
is given, along with testing accuracy, a balanced accuracy score, a classification report, and
Matthew’s correlation coefficient.

— —

328/328 [] - 3355 1s/step - loss: 8.7283 - acc: B.6651 - auc: B8.9016 - f1_score: 8.6563 - val_
loss: 8.9488 - val_acc: ©.5152 - val_auc: ©.8200 - val_f1_score: ©.4083
Epoch 38: early stopping

40/48 [] - 425 1s/step - loss: ©.9488 - acc: 8.5152 - auc: ©.8200 - fl_score: ©.4008
Transfer Learning Model Testing Accuracy: 51.52%
40/48 [] - 44s 1s/step
precision recall fil-score support
Mild Impairment 8.34 8.55 8.42 179
Moderate Impairment 8.16 8.75 8.26 12
No Impairment 8.63 8.75 8.68 648
Very Mild Impairment 8.42 8.17 8.24 443
accuracy 8.52 1279
macro avg 8.39 8.55 9.48 1279
weighted avg 8.51 8.52 8.49 1279

Transfer Learning Balanced Accuracy Score: 55.34 %
Transfer Learning Matthew's Correlation Coefficient: 23.51 %

Figure 15: Transfer Learning Model Evaluation Results

The above snippet shows the training process of a transfer learning model using the ResNet50
architecture with a focus on early stopping. The transfer learning model is trained over a
predetermined number of epochs, showing metrics for training and validation such as accuracy,
loss, AUC and F1-score at each epoch. In order to prevent overfitting, early stopping is used to
monitor the validation loss and stop training if it does not improve after a predetermined
number of epochs.

5 References

Joseph, F. J.)., Nonsiri, S. & Monsakul, A., 2021. Keras and TensorFlow: A Hands-On Experience. s.l.:s.n.

