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Abstract

This study addresses the dynamic challenge of predicting variable air transport
demand in Ireland and its partner nations. Investigating the repercussions of the
COVID-19 pandemic on freight and passenger movement within Ireland, the re-
search underscores the critical need for precise predictions to enhance operational
efficiency and strategic foresight. Utilizing a comprehensive approach, the paper
employs four distinct time series forecasting models, such as ARIMA/SARIMA,
Simple Exponential Smoothing, Double Exponential Smoothing (Holt’s Linear),
and Triple Exponential Smoothing (Holt-Winters) and meticulously evaluates their
efficacy in forecasting both passenger and freight demand. Notably, the findings
indicate the superior performance of the Holt Linear model in predicting passenger
demand, while the SARIMA model stands out for its accuracy in freight demand
forecasting. This study provides valuable insights into forecasting methodologies
within the aviation industry, establishing the foundation for technological advance-
ments in capacity optimization and informed decision-making.

1 Introduction

The air transport industry is pivotal in facilitating freight and mail movement and pas-
senger travel, both domestically and internationally. The geographical location of Ireland
makes it a critical hub for air transportation, connecting it with its partner countries.
However, aviation sector navigation is a dynamic and complex challenge influenced by
various factors Standfuss et al. (2021). According to the Central Statistics Office (CSO),
more than 38 million passengers and 146,000 tonnes of freight in 2019 were handled by
Ireland’s main airports, before the COVID-19 pandemic severely disrupted the aviation
industry1. In 2020, the passenger numbers dropped by almost 80%, while the freight
volumes decreased by 4%2. In 2021, the passenger numbers recovered slightly, reach-
ing 9.1 million, but still remained far below the pre-pandemic levels, while the freight
volumes increased by just 2%3. The demand for air transport forms the bedrock for air-
lines crafting their flight schedules and ground support strategies for passenger travel and
freight flow. Disruptions and delays in schedules, particularly in crowded airports, create
a ripple effect that causes operational bottlenecks and discontent among passengers and
congestion which spans the entirety of the air transport system Zografos et al. (2017).

1https://www.cso.ie/en/releasesandpublications/ep/p-as/aviationstatisticsquarter22022/
2https://www.cso.ie/en/releasesandpublications/er/as/aviationstatisticsquarter32021/
3https://www.cso.ie/en/releasesandpublications/ep/p-tranom/transportomnibus2021/aviation/
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Confronted with the unpredictable stemming from various unforeseen factors the quest
for more reliable forecasting methods for aviation demand emerges as a pivotal challenge
for the civil this industry.
Passenger or freight loading delays can have negative consequences for airports, airlines,
and customers, as they can affect the profitability, operational efficiency, and satisfaction
of the air transport sector. The average cost of delay per minute for airlines in Europe
was estimated at 76.5 euros in 2016, translating into a total cost of 17.6 billion euros for
the whole year. It was found that the main causes of delay were airline-related (aircraft,
crew and baggage issues), airport-related (security, capacity and infrastructure issues),
and en-route-related (weather issues and air traffic control). Reducing delays could gener-
ate significant benefits for the industry and society, such as lower emissions and operating
costs, higher revenues and passenger satisfaction4. Zografos et al. (2017)examined the
impact of passenger boarding and freight loading on the turnaround time of aircraft,
which is the time between the arrival and departure of an aircraft at an airport. The
study considers various factors, such as aircraft type, passenger profile, baggage and cargo
volume and ground handling equipment to optimise resource allocation. It is extracted
that technological advancements can aid decision-making to pave the path of recovery for
the aviation sector from such incidences Kitsou et al. (2022). Irish airports need to have
accurate and reliable forecasts of the air transport demand to adapt to the changing mar-
ket conditions, optimize operations and increase passenger travel for revenue generation.
In airports with restricted access, (many of the busiest European ones), limitations can
lead to either loss of demand or a shift in demand to less favourable times of the day or
alternative airports. Conversely, at less busy airports, airline demand may significantly
lag behind the available capacity, resulting in the underutilization of infrastructure re-
sources Jacquillat and Odoni (2018). Therefore, predicting future air traffic demand is
formidable given the influence of seasonal variations, economic shifts, and ever-changing
travel preferences.

1.1 Research Question

In addressing the challenges faced by the aviation sector, this research addresses the
following question: ”How can time series forecast models adapt to the high fluctuating
passenger and freight demands?”. The current work seeks to fill the gap in the literature
on the application of time series models for air transport demand forecasting, especially in
the Irish context. The objective is to predict the maximum passenger and freight traffic,
along with comparing the accuracy of different time series forecasting models such as AR-
IMA/SARIMA, simple exponential smoothing, double exponential smoothing and triple
exponential smoothing based on obtained evaluation metrics (MAE, MSE, RMSE). This
will provide a quantitative measure of alignment with the actual data, which is crucial
for identifying the highly reliable forecasting approach. Visual comparison of forecasted
values with actual data will help the research in analyzing each model’s adaptation to
the fluctuations in passenger and freight flow.

The research is organised as follows: Section 2 includes a review of the existing literature
on the current and future trends of air transport demand, understanding the methods
and models already used for air transport demand forecasting, and their benefits and

4https://www.independent.ie/business/world/europes-flight-delays-cost-100-a-
minute/37934906.html
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limitations. Section 3 describes the methodology used for this study. In addition to the
description of the dataset, section 4 involves the design specification followed by Section
5 which describes the implementation steps of the time-series forecasting models. Eval-
uation of the models using statistical values of MAE, MSE and RMSE is discussed in
section 6. Section 7 does the contrast and comparison of the results with the existing
literature. Lastly, section 8 concludes the main findings and contributions of the study
and restates the research question and objectives.

2 Related Work

Predicting the demand for air transport is a vital task in the aviation sector, facilitating
the strategic planning and efficient utilization of capacities at different airports. Accurate
and reliable forecasts aid in decision-making for airport and airline authorities. However,
it is a complex challenge due to the various factors and uncertainties influencing the travel
choices and inclinations of both passengers and freight shippers. Suh and Ryerson (2019)
delves into the forecasting of aviation demand and considers two factors that contribute
to the demand uncertainties: dynamic socioeconomic changes and industry trends. The
findings from publicly available data indicate that in regions where passenger numbers
show a consistent increase over time, the likelihood of demand reduction in airports within
those areas is diminished. Moreover, the air transport industry is subject to frequent
disruptions, such as economic crises, natural disasters, pandemics, and environmental
regulations, that can have a strong impact on demand trends and patterns. This section
critically analyses four models for predicting air transport demand forecast from existing
studies.

2.1 Econometric models

Such models are widely used in aviation demand forecasts, as they have the capability
of capturing the causal relationships between demand and explanatory variables, such as
income, price, GDP, exchange rate, and other socio-economic and demographic factors.
Econometric models have two types, that is, aggregate and disaggregate. Aggregate
models estimate the demand at a macro level (region, country, or market). In contrast,
disaggregate models estimate the demand at a micro level (household, individual, or seg-
ment). The gravity model is one of the most sort aggregate models, which assumes that
two location’s demand is directly proportional to their size and inversely proportional to
their distance. For example, in a 2018 study, Matsumoto and Domae (2018) the grav-
ity model was applied to a study that examined the impact of international air traffic
on East and Southeast Asian city’s hub status from 1982 to 2012. Surprisingly, results
revealed a positive correlation between distance and air cargo volumes for specific cities.
A subsequent 2019 study using a similar gravity model identified a decline in generative
factors like GDP and population post-2000. This decline may result from shifts in GDP
components, indicating the need for future air traffic gravity models to incorporate more
direct measures, such as consumer spending on goods and transportation services.
The vector autoregressive (VAR) model is another aggregate model, which can capture the
interdependencies and feedback effects among multiple variables. For example, Gunter
and Zekan (2021) utilized a Global Vector Autoregression (GVAR) model to analyze pas-
senger figures from the foremost 20 global airports, those in the Asia-Pacific region, and
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those in Latin America-Caribbean areas. In considering air passenger numbers as an in-
dicative measure of demand, the GVAR framework incorporated country-specific proxies
for key economic determinants such as fare price and income of passengers at the airport
level. Additionally, foreign variables were derived by establishing a weighting matrix
grounded in the volume of flight connections among the selected airports. Although the
study is rooted in air transportation, the modelling methodology demonstrated can be
applied to demand forecasting in any tourism sector where the emphasis is on interde-
pendencies. However, it was also revealed that the VAR model requires an enormous
amount of data and may suffer from overfitting and multicollinearity issues.
An example of a disaggregate model is the discrete choice model, designed to grasp the
inclinations and decisions of individual travellers or shippers based on the utility or appeal
of each available option. In their work, Zhu et al. (2019) utilized a nested logit model to
predict passenger demand for high-speed rail and air transport in China, utilizing survey
data from 2015. They took into account four attributes for each mode: travel time, travel
cost, service frequency, and comfort level. The researchers determined that the nested lo-
git model effectively captured the diversity and interconnectedness of preferences among
various traveller segments, such as business and leisure. However, they acknowledged
that the discrete choice model is unanticipated on the presence and quality of survey
data and may not entirely mirror the real behaviour and fluctuations in the market.

2.2 Time Series Models

Another widely utilized method for forecasting air transport demand is time series mod-
els, which prove effective in capturing temporal patterns and trends within the demand,
including seasonality, cyclicity, and irregularities. These models are typically categorized
into two types: univariate and multivariate. Univariate models solely rely on the histor-
ical data of the demand itself, whereas multivariate models incorporate historical data
from other correlated variables in addition to the demand.
One of the most widely used univariate models is the ARIMA model, it can capture linear
and stationary relationships among past, present, and future values of demand. In the
study Madhavan et al. (2023) both ARIMA and BSTS models were used to forecast a
decade’s worth of data (2009–2018) for air passenger and freight demand in the Indian
aviation industry. It was found that the ARIMA model was useful in capturing the sea-
sonal variations and multiplicative nature of the air passenger data. Along with ARIMA,
BSTS (Bayesian Structural Time Series) proved suitable for short-term forecasting of four
(international and domestic passenger, international and domestic air cargo) commercial
aviation sectors. Although the research found that ARIMA has good forecast accuracy,
however, it was less accurate in accommodating the uncertainty aspects, which may in-
clude over-fitting risks.
The study Jamil and Akbar (2017) forecasts hotspots of passengers using an Automatic
ARIMA Model for conducting time-series analysis based on spatio-temporal data derived
from Bandung’s local taxi company. The Automatic ARIMA model, applied in this
research, reveals its capability to accurately predict spatio-temporal time-series data,
particularly when dealing with substantial datasets. The Mean Absolute Scaled Error
(MASE) values of 0.8797 for the New York City dataset and 0.6338 for the Bandung data-
set support the findings. However, the reliability of the analysis lowers when the actual
demand approaches zero. According to the research, this is attributed to data quality is-
sues rather than deficiencies in the prediction model. Another common univariate model
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is the exponential smoothing model, which can capture the level, trend, and seasonality
of the demand, by assigning different weights to the past observations. For the first time,
Dantas et al. (2017) introduced a novel forecasting approach, Bagging Holt-Winters, com-
bining Bagging and the Holt-Winters exponential smoothing method to predict future air
transportation demand. Empirical results demonstrate consistently high forecast accur-
acy, outperforming established benchmarks like SARIMA, Holt-Winters, ETS, Seasonal
Naive, and Bagged.BLD.MBB.ETS across 13 of 14 time series. The method’s simplicity,
parallelizability, and reduced sMAPE highlight its significance as an effective forecasting
tool for the aviation sector. Additionally, the proposed methodology offered two notable
advantages, that is, it is straightforward to implement, and despite potential slowness in
Bagging due to Bootstrap replicates, the method is easily parallelizable. These outcomes
underscore the significance of the Bagging Holt-Winters methodology as a valuable fore-
casting tool for the air transportation industry.
A typical multivariate model is the seasonal ARIMA or SARIMA model, which can cap-
ture the linear and stationary relationships among the demand and other variables, as
well as the seasonal patterns and trends. For example Nai et al. (2017) used the SAR-
IMA model to predict passenger demand at a regional airport in China where monthly
air passenger data spanning from 2004 to 2015 was used. This model incorporated four
external variables, namely GDP, population, income, and price. The study revealed that
the SARIMA model enhanced the predictive accuracy compared to the ARIMA model,
particularly during peak and off-peak seasons. Nevertheless, the researchers cautioned
that the SARIMA model demands meticulous parameter selection and might not effect-
ively address the non-stationary and non-linear attributes inherent in demand patterns.

2.3 Machine Learning Models

Machine learning models represent a modern and dynamic approach to predicting air
transport demand. They possess the ability to comprehend complex and non-linear re-
lationships between demand and explanatory variables, revealing hidden patterns in the
data. These models are broadly categorized as supervised and unsupervised. Supervised
models leverage labelled data, incorporating historical demand and explanatory variables,
while unsupervised models work with unlabeled data, handling raw images and texts. In
the context of forecasting air transport demand, supervised models are commonly fa-
voured.
One of the popular supervised models is the Artificial Neural Network (ANN) model,
which can approximate any nonlinear function by using a network of interconnected
nodes and layers. For example, Baxter and Srisaeng (2018) proposes using an Artifi-
cial Neural Network (ANN) to predict Australia’s annual export air cargo demand from
1993 to 2016. The ANN model incorporates input parameters like world real merchand-
ise exports, global population growth, world jet fuel prices, air cargo yields worldwide,
outbound flights from Australia, and the Australian/United States dollar exchange rate.
2003 and 2015 cargo demands dummy variables address the cyclical fluctuations. The
multi-layer perceptron (MLP) architecture yields a high R-value of 0.97, indicating strong
predictive capability. Key variables impacting demand include global population growth,
global air cargo yields, and the inclusion of a dummy variable for fluctuations in 2015.
The results highlight the interconnectedness between Australia’s export air cargo de-
mand, global population growth, and world trade volumes. However, challenges such
as data requirements and the risk of overfitting and underfitting are noted in the ANN
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model.
The utilization of artificial intelligence (AI) methods in predicting air cargo demand has
witnessed a growing trend in recent years primarily attributed to their robust capabilities
in nonlinear mapping and autonomous learning from historical data. A notable instance
of this application was found in Sun et al. (2019), where a sophisticated nonlinear vector
auto-regression (NVAR) neural network method was employed for forecasting air pas-
senger flow at Beijing International Airport. The results of this study underscored the
effectiveness of NVAR neural networks in handling the inherent fluctuations present in air
passenger flow data. When compared to alternative forecasting methods, the NVAR ex-
hibited superior performance due to its stability, as well as its accuracy in both directional
forecasting and forecasting at the level of detail.

2.4 Hybrid Models

Artificial Neural Network (ANN) and Support Vector Machine (SVM) stand out as the
most commonly employed hybrid AI models, often fine-tuned through evolutionary al-
gorithms for aviation forecasting as indicated by Kern et al. (2004). Alekseev and Seixas
(2009) employed a back-propagation neural network, to predict air passenger throughput
in Brazil by decomposing raw time series into multiple input variables. This method
enhanced the forecasting performance. While artificial neural networks (ANN) often
outperform traditional models, they have drawbacks like susceptibility to local minima,
sensitivity to parameters, over-fitting, and structural definition challenges. In contrast,
support vector machines (SVM) are rarely used independently for statistical indicator
forecasting. The common approach involved creating a hybrid model to capture linear
and non-linear patterns separately and then integrating them for the final forecast. For in-
stance, Xie et al. (2014) devised a hybrid method integrating seasonal decomposition and
the Least Squares Support Vector Regression (LSSVR) to forecast air passenger traffic
at Hong Kong International Airport. They segmented the raw data into trend-cycle,
seasonal factor, and irregular components through x-12-ARIMA. These components were
individually forecasted and then combined through additive or multiplicative methods
to yield the ultimate result. The authors advocated for seasonal decomposition as an
effective means to forecast air passenger traffic. In Xu et al. (2019) study, the proposed
SARIMA-SVR model demonstrated superior accuracy compared to alternative methods,
reinforcing the idea that the inclusion of Gaussian White Noise contributes to enhanced
forecasting precision.

In conclusion, the literature review highlights the critical role of forecasting in the air
transport sector for effective planning of capacity across airports. Econometric model
like the gravity model, offers valuable insights into the causal relationships between de-
mand and socioeconomic factors. Time series models, particularly ARIMA and exponen-
tial smoothing, prove effective in capturing temporal patterns. The study on ARIMA
and BSTS demonstrates their usefulness but highlights the challenge of addressing un-
certainty aspects, including overfitting risks. Furthermore, because econometric models
often assume stable relationships between time series, it is not feasible to forecast the
complex and nonlinear air cargo series Li et al. (2020). The time series approach emerges
as a viable option for forecasting air passenger traffic because of the intricacies involved
in selecting and testing variables in econometric modelling. However, its limitation lies
in often being nonlinear and nonstationary and its incapacity to distinctly identify the
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reasons behind the growth in air passenger traffic Bao et al. (2012).
Artificial Neural Network (ANN) model on the other hand showcases reliability in captur-
ing nonlinear relationships. Despite having high predictive capability, certain challenges
like the need for large and diverse data and the risk of overfitting possess potential draw-
backs. Hybrid models such as ANN and SVM, display improved forecasting performance,
but the sensitivity to parameter selection, and the necessity of defining network structure
raise challenges in association with ANN. Overall, critical analysis of the related studies
suggests that no single model is universally superior and the choice of model selection
depends on the specific context, data availability, and forecasting requirements. This
study will focus on time series forecasting using ARIMA, SARIMA, autoARIMA and
Exponential Smoothing of air passenger and freight and mail across Ireland and partner
countries.

3 Methodology

This study utilises the Knowledge Discovery in Databases (KDD) methodology to achieve
the aim of forecasting air transport data for Ireland and partner countries. Figure 1
displays the methodology steps involved in this study which are described below:

Figure 1: Methodology for Air Transport Demand Forecast

3.1 Data Collection

Step one involves the data collection process which forms the foundational step for sub-
sequent predictive analysis of passenger and freight demand. The utilization of robust
passenger Eurostat (2023a) and freight Eurostat (2023b) datasets sourced from Eurostat’s
air transport data section enhances the methodological integrity of the study. These
publicly available datasets, serve as a foundation for conducting in-depth analysis for
obtaining metrics to identify the best prediction methods.

3.2 Data Pre-Processing

Following the initial data collection, the second pivotal step involves a comprehensive
process of data preprocessing, this stage significantly influences the accuracy and effect-
iveness of subsequent forecasting. Loaded datasets are cleaned and prepared to ensure
their quality and reliability in the modelling phase. To facilitate the accurate temporal
alignment which is essential for time-series forecasting, variables from the dataframe are
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selected to convert into datetime format. Subsequent measures involve sorting, as well as
the determining of unique values along with the length of the dataframe, which is essen-
tial for gaining insights into the data structure. Addressing null values is an important
step of data preprocessing, which aims to eliminate potential outliers that could intro-
duce deviations and compromise the reliability of predicted values. By systematically
handling missing data, the preprocessing stage enhances the robustness of the dataset.
An additional step involves the creation of separate dataframes for both passenger and
freight individually to store the top three airports grouped values and target variables
for further time series forecasting. This approach to data preprocessing ensures that the
dataset is refined, organized, and free from irregularities. These steps help to build a
groundwork for the development of reliable time series predictive models.

3.3 Data Transformation

Once the data is preprocessed, the third step involves data transforming into a format
that data mining techniques can analyze. The aggregated data’s temporal trends are
visualized through a line plot, which provides an overview of the passenger and freight
selected airports’ overall patterns. Using the additive and multiplicative decomposition of
time series data, each dataset is deconstructed into its fundamental components—trend,
seasonality, and residuals. This provides an understanding of inherent patterns present in
the data and contributes to improved data modelling, anomaly detection, and forecasting
accuracy. A critical stationarity test is executed on both datasets utilizing the Dickey-
Fuller test. This test serves as a pivotal tool in determining the stationarity of time series
data by assessing the presence of a unit root. The obtained p-value is compared against a
significance level of 0.05. Rejection of the null hypothesis and achieving a p-value below
the significance level indicates that the time series is stationary. A more negative test
statistic value proves in favour of stationarity. The comparison of the test statistic value
with critical values further informs the stationarity determination. Diverse data trans-
formation methods are applied, including differencing, log transformation, and moving
averages, each contributing to attaining stationarity through distinct mechanisms. Dif-
ferencing involves determining the variance between successive data points, while log
transformation stabilizes variance. The application of moving averages entails computing
means within defined windows of data points. the inversion of transformed data must
be performed to restore accurate values for subsequent data forecasting. The effective-
ness of each transformation method is assessed through the Dickey-Fuller test, ensuring
the selection of the most suitable approach for achieving stationarity. Throughout this
process, seasonal decomposition plots offer valuable insights into the impact of each trans-
formation method on the data’s underlying patterns. Data transformation establishes a
foundation for further analysis of data and helps in achieving the research objectives.

3.4 Data Mining

The fourth step is to build and fit time series models for both passenger and freight data
to generate forecasts. Optimal model parameters are established by generating Auto-
correlation Function (ACF) and Partial Autocorrelation Function (PACF) graphs, which
help in the identification of lag values crucial for model accuracy. This study adopts
an approach with an attempt at auto ARIMA, allowing for the automatic exploration
of the best parameters suitable for model fitting, denoted as (p, d, q) and (P, D, Q).
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The common obstacle in ARIMA forecasting is the parameter selection or order value
determination, which is overcome by implementing the automatic ARIMA model pro-
posed by one of the studies Hyndman and Khandakar (2008) as well, as it determines
the order value automatically. Following parameter determination, the time series data
undergoes training and testing data split. The training set spans from 2020 to 2022,
while the subsequent 6 months of 2023 are reserved for testing the models. The auto
ARIMA model is then fitted to the training data, providing a summary that contains
configuration details and performance metrics. Further, diagnostic plots are generated
and scrutinized to assess the model’s validity, identifying any potential issues that may
impact its reliability. Next, a crucial step is employed to generate forecasts for the spe-
cified number of periods determined by the length of the test data. For assessing the
model’s performance and generalization to unseen data predictions on the test data are
performed. Performance of evaluation metrics becomes important with a focus on the
model’s accuracy, reliability, and ability to capture underlying patterns and variations.
This is achieved through a comparison of the obtained predictions to the actual values
within the test data. The outcome of this comparative analysis tells about the model’s
efficacy in generalizing to unseen data. Three additional time series models are applied
to obtain predictions of passenger and freight predicted values, these are, Simple Expo-
nential Smoothing (SES), Holt’s Linear Exponential Smoothing (HL), and Holt-Winters’
Exponential Smoothing (HW). Each model undergoes a similar process, contributing to
a comprehensive evaluation of their predictive capabilities in forecasting both passenger
and freight traffic.

3.5 Data Evaluation

Step five involves the interpretation and evaluation of the results obtained from models
and forecasts. The data evaluation part is a crucial step in checking the robustness of
the time series forecasting models. The evaluation metrics calculated for comparison are
the Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE). These metrics help in identifying how close the predicted values are to
the actual data. All four forecasts (ARIMA/SARIMA, Simple Exponential Smoothing,
Holt’s Linear and Holt-Winters) are shown together with the actual data on a line graph
for ease of visual comparison. The generated graph reveals the extent to which models
capture the patterns in the data. The evaluation metrics table helps in understanding
the best forecasting model and the subsequent model’s predicted value is also displayed.
The reliability and accuracy of these models are calculated based on obtained evaluation
metrics and visual graph representation.

3.6 Knowledge Representation

This final step involves representing the knowledge extracted from the passenger and
freight data in a way that airports and airlines can comprehend. This is done through
visualizations of different plots showcasing the maximum and least traffic flow from Ire-
land useful for allocating resources efficiently and selecting forecasting models for future
planning of passenger and freight demand fluctuations based on obtained evaluation met-
rics. Knowledge representation can be understood further from the evaluation part and
the discussions mentioned.
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4 Design Specification

High demand for passenger or freight in selected airports can lead to uneven resource
allocation within the airport and the aviation sector constantly adapts to new models
and solutions that can ease the distress and provide smooth operations to the passenger
travelling 1. Therefore, this research is proposed to predict the demand across passen-
ger and freight traffic in Ireland and partner airports and obtain metrics which help to
analyse the best-fit model for those accurate predictions. The data that has been used
for the current research is obtained from Eurostat’s air transport public dataset. The
research was conducted using the Python 3.10.9 programming language within the Jupy-
ter Notebook 6.5.4 environment. Python’s versatility, extensive libraries, and ecosystem
made it an ideal choice for implementing and analyzing complex algorithms in the con-
text of time series forecast. Jupyter Notebook, with its interactive and dynamic nature,
provided a well-suited platform for developing, documenting, and presenting the code,
facilitating a transparent and reproducible research process. The combination of Python
and Jupyter Notebook empowers this study with the flexibility and efficiency needed to
explore, model, and interpret intricate datasets related to air transport demand forecasts.
Data loading, pre-processing, analysing and visualising are performed on the aforemen-
tioned. For the implementation essential Python libraries were used, such as Pandas and
NumPy for data handling and manipulation, Matplotlib and Seaborn for creating visu-
alizations, Statsmodels for time series, ACF and PACF analysis and Adfuller from same
to test stationarity, PMDARIMA provided an automated parameter and model selec-
tion, Scikit-Learn for evaluating performance of models based on metrics (MSE, RMSE,
MAE). Lastly, the Tabulate library gave a structured format of the predicted values and
evaluation metrics for easy understanding of the outcomes.

Post preprocessing of passenger and freight data, the Dickey-Fuller test assesses time
series stationarity. Rejecting the null hypothesis relies on a p-value below 0.05 and a
more negative test statistic. Various data transformations, including differencing, log
transformation, and moving averages, are tested, and the best Dickey-Fuller values de-
termine optimal stationarity. Differencing captures successive data distinctions, log trans-
formation stabilizes variance, and moving averages compute means within defined data
windows. Reverting transformed data is crucial for accurate forecasting. Systematic
illustration, stationarity tests, and seasonal decomposition plots aid in evaluating each
transformation’s impact. Next, the AutoCorrelation Function (ACF) and the Partial
AutoCorrelation Function (PACF) plots are generated to identify lag values, which are
crucial for configuring model parameters and understanding the temporal relationships
within the data. Following this initial exploration, the dataset is split into training set
spanning from 2020 to 2022 and testing set covering the subsequent 6 months of 2023.
Time series forecasting models used in this study are ARIMA/SARIMA, Simple Exponen-
tial Smoothing, Double Exponential Smoothing (Holt’s Linear) and Triple Exponential
Smoothing (Holt-Winters). These models have been selected with due consideration of
previous work performed using them. As discussed in related work section2 under time
series models, it was inferred that the seasonal variations were captured well by the AR-
IMA model. For implementation purposes on both the datasets of passenger and freight,
the auto ARIMA model is used which generates the best forecasting model. This not
only gave better results but also eased out the process of implementing multiple models
to find the best one. Exponential smoothing has also been used in previous studies to
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forecast passenger demand.

After splitting the data into training and testing, first, an Auto ARIMA model is chosen,
and the model is subjected to a detailed examination through diagnostic plots, providing
insights into its configuration and performance metrics. The next step involves generating
forecasts based on the trained models and assessing their accuracy and reliability. This
evaluation is carried out by comparing the model’s predictions with the actual values in
the test set. To quantify the model’s performance, three key evaluation metrics are cal-
culated: Mean Absolute Error (MAE), which tells on average, how far off the predictions
are from the actual values, also better accuracy is achieved with a smaller MAE. Next,
Mean Squared Error (MSE), emphasizes larger errors even more than MAE, it calculates
the average of squared differences between the predicted and the actual value. Lastly,
Root Mean Squared Error (RMSE) is useful for undermining the typical size of errors and
it provides an easily interpretable metric as the target variable has the same unit. These
metrics offer a comprehensive understanding of how well the model captures patterns and
variations in the data. This entire process is then repeated for three other forecasting
models: Simple Exponential Smoothing(SES) which assigns decreasing weights to past
observations exponentially, assuming a constant level. Holt’s Linear or Double Exponen-
tial Smoothing(HL) extends Simple Exponential Smoothing to accommodate data with a
linear trend by incorporating two smoothing parameters for both the level and trend com-
ponents. Holt-Winters’ or Triple Exponential Smoothing(HW) further enhances Double
Exponential Smoothing by incorporating a seasonality component, making it suitable for
time series data with both trend and seasonality. Holt-Winters model uses three smooth-
ing parameters for level, trend, and seasonality and is hence able to capture complex
patterns in the data. Each model undergoes the same rigorous evaluation process, and
the evaluation metrics results are displayed. Each model serves specific requirements such
as SES handles the basic time series, DES addresses the trends, and TES accommodates
both trends and seasonality. Additionally, line graphs are plotted to visualize the fore-
casts generated by each model against the actual data. This section thus provides an
overview of systematically following these steps and thoroughly evaluating each model’s
predictions using standardized metrics for assessing the effectiveness of various time series
forecasting methods on passenger and freight traffic data. The graphical representations
and numerical metrics both facilitate the objectives of this research.

5 Implementation

Passenger and freight demand forecast for Ireland and partner airports is obtained by us-
ing four different time series models. Using the passenger5 and freight6 datasets obtained
from Eurostat in (.csv) format covering monthly statistical data from January 2020 to
June 2023, two dataframes are created to load them with the number of passengers (in
millions) travelling and the number of freight and mail (in 1000 tonnes) carried from
Ireland to each reporting country. The following Table 1 describes the column headings
present in the dataframes. After loading, the time period column values in both datasets
are converted to datetime format with the help of the inbuilt pandas function. This is
to ensure correct temporal alignment with the time-series forecasting. Sorted values for

5https://ec.europa.eu/eurostat/databrowser/view/avia par ie custom 8975440/default/table?lang=en
6https://ec.europa.eu/eurostat/databrowser/view/avia gor ie custom 8975476/default/table?lang=en
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Table 1: Passenger and freight and Mail Dataset Description

Coloumns Description
DATAFLOW Data flow information
LAST UPDATE The last update time of the data
freq Frequency of the data
unit Unit of measurement
tra meas Transport measure
airp pr Partner airport
TIME PERIOD Time period of the data
OBS VALUE Observed value
OBS FLAG Observation flag

both dataframes, count of unique values and length of dataframe are examined there-
after. To forecast the passenger and freight demand values, target variables, which are,
partner airport and observed values (passenger and freight count) are selected about the
time period variable. The highest number of passenger and freight flows from Ireland
are identified using the inbuilt value counts Python function. Further, the null values
are checked and due to no relevance to the forecast the observation flag column, which
showed the presence of null values is ignored.
Further, the total passenger and cargo traffic generation for Ireland and partner airports
is analyzed through Figure 2 line plot from 2020 to 2023. The first figure displays the
total count of passengers who travelled from Ireland to other airports, while the second
figure displays the total count of freight carried from Ireland to other airports. Newly

Figure 2: Total count of passenger and freight traffic flow from Ireland to partner airports

created dataframes store the value of the top three airports having the highest passenger
and freight traffic. Further, the top three airport pairs having maximum and minimum
passenger and freight flow are calculated. The calculation of the least passenger and
freight carrying airport pairs’ shares and mean of values is essential for airports and air-
lines. This helps them to make decisions for seizing operations on low revenue generation
routes or diverting them for effective outcomes. A line graph created next displays the
share of passenger and freight traffic contributed by the top three airports over three
years. Passenger and freight data is aggregated over time periods and the total count is
visualized through a line plot which gives an overview of the overall trend and pattern
for the selected airports. Using the additive and multiplicative decomposition of time
series data is decomposed into its three components—trend, seasonality, and residuals.
This helps in understanding patterns present in data, thus improving data modelling,
detecting anomalies and forecasting.Figure 3 displays the multiplicative decomposition
of time series for passenger traffic and Figure 4 displays freight and mail traffic. After
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Figure 3: Decomposition of passenger
traffic

Figure 4: Decomposition of freight traffic

checking the stationarity of the datasets across different transformations and verifying
the results using the Dickey-Fuller test, the time series data is split into training and
testing sets. Data from 2020 to 2022 is used for training, and the subsequent 6 months of
2023 are used for testing the models for passenger and freight demand forecast. The auto
ARIMA model is fitted to the training data and it provides a comprehensive summary,
including configuration details and performance metrics. Diagnostic plots are generated
and displayed to assess the model’s validity and identify potential issues. Next, a crucial
step is employed to generate forecasts for the specified number of periods determined by
the length of the test data. For assessing the model’s performance and generalization to
unseen data predictions on the test data are performed. By comparing these obtained
predictions to the actual values in the test set, the model’s accuracy, reliability, and
ability to capture patterns and variations can be assessed. Following the same steps,
Simple Exponential Smoothing (SES), Holt’s Linear Exponential Smoothing (HL), and
Holt-Winters’ Exponential Smoothing (HW) forecasting models are applied to predict
passenger and freight traffic. The evaluation metrics obtained assess the accuracy of the
time series model’s predictions. In the end, all four forecasts are plotted against actual
data in a line graph for visual comparison of their performance. An evaluation metrics
table helps in understanding the best forecasting model and the subsequent model’s pre-
dicted value is also displayed. The reliability and accuracy of these models are calculated
based on obtained evaluation metrics and visual graph representation. The evaluation
section next discusses the results obtained in detail for predicting air passenger and freight
demand.

6 Evaluation

Two types of experiments were conducted in this study for Irish airports, that is, pas-
senger demand forecast and freight and mail demand forecast. The research aimed to
predict maximum passenger and freight flow across Ireland and partner airports. For
ease of forecasting, the top three airport pairs were selected for predicting passenger
and freight demand. The best time series forecasting model selection based on the ob-
tained evaluation metrics was essential for fulfilling research objectives. The following
sub-sections discuss the experiments in detail.
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6.1 Passenger Demand Forecast

After preprocessing the passenger dataset and using the value counts Python inbuilt func-
tion to find the airport pair with maximum passenger flow, it was revealed that Dublin,
Ireland airport to Heathrow, London airport had a share of 39.2%. The share of each
airport is calculated and plotted using a line graph. Table 2 has the top three partner
airports with the maximum passenger traffic share (in %) along with the mean number
of passengers per year. Each airport’s traffic share in the overall total is computed in a
table. Figure 5 displays the top 3 airports with maximum passenger traffic. Next, the

Table 2: Top 3 airport pairs with maximum passenger traffic

Airport Pair Mean Pax/Year Share
Dublin - London Heathrow 249601 39.2
Dublin - London Gatwick 196773 30.9
Dublin - Amsterdam/Schiphol 190658 29.9

Figure 5: DUBLIN-HEATHROW airport shown in Green has top shares for total pas-
sengers generated.

stationarity test was performed on a new dataframe containing only the top 3 airports’
passenger traffic. The examination of stationarity in the passenger time series data was
conducted through the application of the Dickey-Fuller test. The acquired test statistic,
registering at -1.62, underwent comparison with critical values corresponding to various
significance levels. The associated p-value, determined to be 0.46, was juxtaposed with a
critical value of -2.93 at a 5% significance level. Given that the test statistic exceeds this
critical value and the p-value surpasses the significance threshold, the null hypothesis can-
not be rejected. hence, the data was non-stationary. Furthermore, the test incorporated
1 lag and drew insights from 40 observations. Cumulatively, these findings imply that
the transformation of data was required to establish stationarity before the application of
time series models. Next, to convert the non-stationary data to stationary, first-order dif-
ferencing is performed. The stationarity test gave a test statistic value of -7.351515e+00
and the p-value dropped significantly at 1.003112e-10. Therefore, the test statistic sig-
nificantly deviating from the critical values at 1%, 5% and 10% suggests a rejection of
the null hypothesis and establishes the presence of stationarity in the time series data,
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validating its suitability for time series modelling and analysis. Next, forecasting models
are implemented and the auto ARIMA model reveals a configuration of SARIMAX(2,
1, 0), representing a seasonal autoregressive integrated moving average model with two
autoregressive lags and a first-order differencing to achieve stationarity. The coefficients
for the autoregressive terms, ar.L1 and ar.L2, are 0.5310 and -0.3198, respectively. These
values suggest a positive impact of the first lag and a negative impact of the second lag on
the dependent variable. The significant p-values associated with these coefficients (both ¡
0.05) support their relevance in the model. The estimated sigma2 of 1.749e+04 indicates
the variance of the model’s error term. The Ljung-Box test reveals a low Q statistic
(0.01) with a high p-value (0.94), suggesting that the model adequately captures tem-
poral patterns. However, the Jarque-Bera test indicates non-normality in the residuals,
emphasizing the need for caution in interpreting the model. The Heteroskedasticity test
yields a p-value of 0.05, suggesting potential heteroskedasticity. The evaluation metrics
obtained from the ARIMA/SARIMA, SES, DES and TES forecasting models and the
model comparison graph are analysed in the upcoming discussion section.

6.2 Freight and Mail Demand Forecast

For freight and mail traffic it was revealed that Dublin, Ireland airport to Cologne Bonn,
Germany airport had a share of 37.8%. The share of each airport is calculated and plot-
ted using a line graph. Table 3 has the top three Ireland and partner airports with the
maximum freight and mail traffic share (in %) along with the mean number of freight per
year. Each airport’s traffic share in the overall total is computed in a table. Next, Fig-

Table 3: Top 3 airport pairs with maximum freight traffic

Airport Pair Mean Freight/Year Share
Dublin - Cologne Bonn 2645 37.8
Dublin - London Stansted 2212 31.6
Dublin - East Midlands 2139 30.6

ure 6 displays the top 3 airports having maximum freight and mail traffic from Ireland to
partner countries. Next, the stationarity test was performed on a new dataframe contain-
ing only the top 3 airports’ freight traffic. The acquired test statistic, registering at -1.03,
underwent comparison with critical values corresponding to various significance levels.
The associated p-value, determined to be 0.74, was juxtaposed with a critical value of
-2.93 at a 5% significance level. Given that the test statistic exceeds this critical value and
the p-value surpasses the significance threshold, the null hypothesis cannot be rejected.
hence, the data was non-stationary. Furthermore, the test incorporated 2 lags and drew
insights from 39 observations. Cumulatively, these findings imply that the transforma-
tion of data was required to establish stationarity before the application of time series
models. Next, to convert the non-stationary data to stationary, first-order differencing
is performed. The stationarity test gave a test statistic value of -7.351515e+00 and the
p-value dropped significantly at 1.003112e-10. Therefore, the test statistic significantly
deviating from the critical values at 1%, 5% and 10% suggests a rejection of the null hy-
pothesis and establishes the presence of stationarity in the time series data, validating its
suitability for time series modelling and analysis. Next, forecasting models are implemen-
ted and the auto ARIMA model reveals a model configuration of SARIMAX(2, 1, 0)x(1,
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Figure 6: DUBLIN-KOELN/BONN airport shown in Blue has top shares for total freight
generated.

0, 0, 12). This suggests a seasonal autoregressive integrated moving average model with
two autoregressive lags, one seasonal autoregressive lag with a 12-month seasonality, and
a first-order differencing required for achieving stationarity. The coefficients associated
with the autoregressive terms (ar.L1 and ar.L2) and the seasonal autoregressive term
(ar.S.L12) indicate their impact on the dependent variable. The negative coefficient for
ar.L1 and ar.L2, significant at a 5% level, suggests a negative influence on the variable.
Additionally, the positive coefficient for ar.S.L12, also significant, implies a positive sea-
sonal impact. The diagnostic statistics such as the Ljung-Box test and Jarque-Bera test
provide insights into the model’s goodness-of-fit, suggesting adequacy for time series fore-
casting. The small p-values associated with these tests indicate that the model adequately
captures the temporal patterns and exhibits normality. Moreover, the Heteroskedasticity
test indicates homoskedasticity, further validating the model’s reliability. The evaluation
metrics obtained from the SARIMA, SES, DES and TES forecasting models and the
graph displaying a comparison of them are analysed in the upcoming discussion section.

6.3 Discussion

This section discusses the findings from the above two experiments. For freight and mail
peak demand forecast, models are plotted together to compare the best out of them.
Figure 6.3 compares the performance of four forecasting models against actual data over
six months of 2023. The models compared are ARIMA/SARIMA, Simple, Double and
Triple Exponential Smoothing. In both graphs, the x-axis represents the time period
from January 2023 to June 2023 and the y-axis represents the passenger (in millions) and
freight (in 1000 tonnes) count. The blue line in both graphs represents the actual data,
while other lines represent the forecasted values from four models. The corresponding line
to the model is mentioned in the index. In the first graph for passenger predictions, the
actual data displays a fluctuating trend with a peak around March 2023. Holt’s Linear
model follows the actual data relatively closely, suggesting that the seasonality and trend
are captured effectively. The ARIMA/SARIMA model also appears to track the actual
data well during the first couple of months, indicating that underlying patterns in the
data were being captured. SES and Holt-Winters models do not capture the fluctuations
as effectively, this may be due to the incompetence of these models to handle seasonal-
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Figure 7: Passenger Data Figure 8: Freight and Mail Data

ity, which is present in the data. In the second graph for freight predictions, the actual
data shows a sharp increase in freight count in March, followed by a decrease and then a
steady increase in values. Here, the Holt-Winters model tracks the actual data in trend
and seasonality peaks, however, lacks in predicting values close to the actual data. The
SARIMA model does not follow the sharp increase reliably, which might suggest that the
seasonal component is not able to fully capture the actual data. SES and Holt’s models
do not capture the trend or seasonality at all, which is indicated by their relatively flat
lines compared to the actual data.
Figure 6.3 displays results of all evaluation metrics of time series models applied for max-
imum passenger and freight forecast. For passenger demand, the Holt Linear’s model ex-

Figure 9: Passenger Evaluation metrics Figure 10: Freight and Mail Evaluation
metrics

hibited the lowest MAE(40.79), MSE(2318.7) and RMSE(48.15), indicating that it is the
best-performing model. The ARIMA model has a high MAE (87.05), indicating a notable
deviation between predicted and actual values. Additionally, the ARIMA model demon-
strated a substantial MSE (10831.5) and a corresponding RMSE (104.07), highlighting
the model’s challenges in accurately capturing the variability in passenger demand. In
comparison, the SES model has lower MAE (84.96) and MSE values, suggesting improved
accuracy. The Holt-Winters model, however, exhibited the highest MAE (145.13), MSE
(31159.4), and RMSE (176.52), which reveals a significant discrepancy between forecasted
and observed passenger demand. These results collectively suggest that the Holt Linear
model performed relatively well among the evaluated models, providing more accurate
forecasts for passenger demand.
In the study Nai et al. (2017) SARIMA model outperformed for passenger forecast, how-
ever, the SARIMA model emerged as the best-performing model in this study for freight
demand, with the lowest evaluation metrics. This indicates that the SARIMAmodel holds
a superior ability to predict demand accurately. In close pursuit are the SES (Simple Ex-
ponential Smoothing), Holt Linear or DES, and Holt-Winters or TES models. Although
SES, Holt Linear, and Holt-Winters show comparable MAE and MSE metrics, indicating
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similar accuracy levels, the Holt-Winters model exhibits a slightly higher RMSE (1.01),
suggesting that it is less precise in capturing the fluctuations. These evaluation metrics
collectively favour the SARIMA model as the optimal choice for forecasting freight de-
mand, as it consistently outperforms its counterparts.
Figure 6.3 displays the maximum passenger and freight predicted values for 2023. Based

Figure 11: Passenger Forecast (millions) Figure 12: Freight Forecast (1000 tonnes)

on Holt’s Linear passenger predicted values for January 2023 to June 2023 show that
June 2023 has the maximum prediction of passengers which is approximately 1142.64
(in millions). Whereas, based on SARIMA freight predicted values, March 2023 has
the maximum prediction of freight traffic which is approximately 5.76 (in 1000 tonnes).
These values give an insight into the data that fluctuating demands could arise from
these partner airports for future travel season and pre-planning for tackling such sudden
demand would keep airlines and airports from crashing under pressure 1. Concerning the
objectives of this research maximum passenger and freight traffic demand has been com-
puted, as well as best forecasting model based on calculated evaluation metrics is present.
Further visual comparisons of the forecasted and actual values provide an analysis of each
model’s adaptation to fluctuations.

7 Conclusion and Future Work

The primary objective of this research was to predict the best time series forecasting
model based on the evaluation metrics that adapt to highly fluctuating passenger and
freight demands in the aviation sector. The study successfully addressed this objective
by evaluating and comparing the performance of four time series forecasting models, AR-
IMA/SARIMA, simple Exponential Smoothing (SES), Double Exponential Smoothing
(DES) or Holt’s Linear, and Triple Exponential Smoothing (TES) or Holt-Winters. The
research applied rigorous evaluation metrics (MAE, MSE, RMSE) to assess the accuracy
of each forecasting model. The key findings indicate that the Holt Linear model demon-
strated superior performance, achieving the lowest error metrics among other evaluated
models for passenger demand forecasting. Conversely, for freight demand forecast, the
SARIMA model emerged as the optimal choice, consistently outperforming other models
in terms of accuracy. The success of this study is evident in its ability to quantitatively
measure forecast accuracy and gauge the selection of appropriate models based on per-
formance metrics. The findings contribute to bridging the existing gap in the literature
regarding time series forecasting for air transport demand, especially concerning the Irish
aviation sector. The research highlights the critical role of accurate forecasts in planning
and optimizing passenger and freight capacity across airports. While the research has
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proven successful in achieving its objectives, certain limitations should be acknowledged,
such as addressing uncertainty aspects, of forecasting models remain a challenge, and
the incapacity of econometric models to vividly identify the reasons behind air passenger
traffic growth adds complexity to the forecasting task.
Future work is recommended to further fine-tune the forecasting methodologies. Explor-
ing the hybrid models or machine learning approaches could bring forward solutions to
the mentioned limitations. In conclusion, this research provides valuable insights into
time series forecasting for air passenger and freight demand, offering a foundation for
future advancements in the aviation field. The proposed models and methodologies hold
potential for practical implementation, ultimately contributing to more effective planning,
decision-making, and a safer and more efficient air transport system.
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