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Configuration Manual

Ram Abhilash Vasamsetti
x22117491

1 Introduction

This Configuration Manual describes the hardware and software requirements and neces-
sary configurations utilized in the research project ”Using Time Series Predictive Models
for Early Detection of Gambling Addiction in Problem Gamblers”

The manual is divided into 4 main sections. Section 2 gives the overview of the
Research project. The section 3 highlights the Hardware and Software Prerequisites.
The next Section 4 elaborates the implementation requirements where necessary libraries
are discussed. The section 5 gives as overview of the dataset and its import. Section 6
briefs about the models and any necessary configurations.

2 Research Overview

This research project focuses on using Time series predictive models such as ARIMA,
SARIMA and LSTM to forecast the future betting patterns of Problem Gamblers, Thereby
detecting Gambling Addiction. The work uses K means clustering for detection of prob-
lem gamblers and forecasting models to predict their future betting patterns.

3 System Prerequisites

3.1 Hardware Prerequisites

The implementation is carried on the windows system with the following configuration :

Processor Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz 2.50 GHz
Installed RAM 16.0 GB (15.9 GB usable)
System type 64-bit operating system, x64-based processor

Table 1: Operating System configuration

3.2 Software Prerequisites

Jupyter Notebook from Anaconda with Python Version: 3.11.3 has been for the imple-
mentation for this Research project.



4 Implementation Requirements

The Fig. [1| presents all the python libraries used in the research project. Any libraries
missing in the machine are installed via the command ”pip install [library name]”.

In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import numpy as np
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette score
from pandas.plotting import parallel coordinates
from ipywidgets import interact, DatePicker
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared _error, mean_absolute error
from statsmodels.tsa.arima.model import ARIMA
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.optimizers import Adam

Figure 1: Required Libraries for implementation

5 Dataset

5.1 Dataset Source

The dataset have been obtained from the Transparency Project. A Harvard Medical
university initiative for encouraging research of Addictions (Division on Addiction} 2021)).
The dataset used has been contributed to The Transparency Project via (Gray et al.;
2012)) research on Responsible Gambling. The folder contains 5 files as in Table

Raw Datset [.Demographics_Gray_LaPlante_PAB_2012.dat
Raw Datset I1.Daily aggregates_Gray_LaPlante_PAB_2012.dat
Raw Datset I11.Responsible gambling details_Gray_LaPlante_ PAB_2012.dat
CodeBook_for Gray_LaPlante_ PAB_2012 (Variable Definitions )
AnalyticDataset_Gray_LaPlante PAB_2012.dat (Not Used for this Research )

Table 2: Data Source Contents

Out of all the dataset source files, Only Raw Dataset I ( Demographic Information),
Raw Dataset IT ( Daily Aggregates ) and Raw Dataset III ( Responsible Gambling details)
are imported into the dataframes. The CodeBook file contains the legend and column
definitions for each dataset used. The Analytics Dataset is a comprehensive dataset
collected by the primary researcher. As per the research objectives, dedicated analytics
have been performed in the data gathering and transformation phase and, thus, this file
has not been used.



5.2 Dataset Import

The code as indicated in Fig. [2is used with delimiter as \t . All the three raw datasets
are imported. The path of the datasets need to be specified as mentioned in Fig.
where datasets are stored in a folder called [dataset]. Please ensure the datasets are not
tampered by manually copy pasting the data.

daily agg df = pd.read_csv('./datasets/Raw Datset II.Daily aggregates Gray LaPlante PAB 2012.dat', delimiter='\t')
rg_det_df = pd.read_csv('./datasets/Raw Datset III.Responsible gambling details_Gray_LaPlante_PAB_2012.dat', delimiter="\t')
demog_df = pd.read_csv('./datasets/Raw Datset I.Demographics_Gray_LaPlante_PAB_2012.dat’, delimiter="\t')

Figure 2: Code for importing datasets to the project

5.3 Merging of Dataset

The datasets upon minor transformations on datetime, are merged to simplify the data
relation. The Fig. [3] shows the final merged dataframe contaning all three dataframes.
Tthe product type =="2’ indicates casino games from the codebook. This parameter can
be changed to identify forecasts in other games played by different user.

Merging of Datasets

In [13]: merged_df = daily agg_df.merge(demog_df, on="UserID', how='outer')
merged_df = merged_df.merge(rg_det_df, on="UserID', how='outer")
In [14]: merged_df[ 'RG_case'].value_counts()

out[14]: 1 811570
] 170233
MName: RG_case, dtype: inte4

In [15]: merged_df
out[15]:
UserlD ProductType Turnover Hold NumberofBets Aggregate_Date RG_case CountryName LanguageName Gender YearofBirth Registration_d:
0 31965 1.0 153388 153388 1 2000-05-08 1 19 8 1 1971 1999-09
1 31985 1.0 341594 341594 5 2000-05-10 1 19 8 1 1971 1999-09.
2 31965 1.0 245419 245419 4 2000-05-18 1 19 8 1 1971 1999-09.
3 31965 1.0 25309 25309 1 2000-05-22 1 19 8 1 1971 1999-09
4 31965 1.0 153387 15.3387 2 2000-05-23 1 19 8 1 1971 1999-09

Figure 3: Code for merging datasets

5.4 Feature Selection

The features are checked for correlation and highly correlated items are dropped by
picking only the low correlated columns in the K - means clustering. The Fig. |4 shows
the correlated columns. More columns can be dropped to find optimal features for the
project (BUYRUKOC}LU and AKBAS; [2022). This paper has only excluded columns
which are highly correlated.
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Figure 4: Heatmap for merged Dataset

6 Model Fitting

4 models have been used in total for the research project. Configurations for each model
are given below.

6.1 K - Means Clustering

K - means clustering in the Fig. |5 require the data to be pivoted and features added as
layers to 3d dataframe (Kobylin and Lyashenkoj 2020). All the low correlated columns
are passed through the [user data 3d] column. This values can be configured as per need.




K means Evaluation

In [24]: 1 ipertias = []
2 for k_value im range(l, 6):

model = KMeans(n_clusters=k_wvalus, random_state=8)
4 model.fit(user_data array)
inertias.append(model.inertiz_}

7 plt.plot{range(l, &), inertias, marker="o")
5 plt.xlabel('Number of Clusters (K)")
plt.ylabel('Inertia")

18 | plt.title('Elbow Method for Optimal K')

C:\Users\abhiv\AppData‘\Localianaconda3\Lib\site-packages\sklearnicluster'_kmeans.py:87@: Futurelarning: The default wvalue of “n
_init® will change from 18 to 'autoc' in 1.4. Set the value of “n_init® explicitly to suppress the warning

warnings.warn(
C:\Users\abhiv\AppDataiLocalianaconda3\Liblsite-packages\sklearnicluster_kmeans.py:878: Futurelarning: The default walue of “n
_init® will change from 18 to 'aute' in 1.4. Set the value of “n_init® explicitly to suppress the warning

warnings.warn(
C:\Users\abhiv\AppDataiLocaltanaconda3\Lib\site-packages\sklearnicluster’,_kmeans.py:87@: Futurelarning: The default walue of “n
_init® will change from 18 to ‘autc' in 1.4. Set the value of “n_init® explicitly to suppress the warning

warnings.warn(
C:\Users\abhiv\AppData‘\Localianaconda3\Lib\site-packages\sklearnicluster\_kmeans.py:878: FutureWarning: The default value of 'n
_init® will change from 18 to 'autc' in 1.4. Set the value of “n_imit® explicitly to suppress the warning

warnings.warn(
C:\Users\abhiv\AppData‘\Localianaconda3\Lib\site-packages\sklearnicluster\_kmeans.py:878: FutureWarning: The default value of 'n
_init® will change from 18 to 'autc' in 1.4. Set the value of “n_imit® explicitly to suppress the warning

warnings.warn(

Out[24]: Text(®.5, 1.8, "Elbow Method for Optimal K')

Figure 5: K - Means Clustering Elbow method code

The optimal K value is set as 3 using Elbow method as shows in the Fig. [6 This can
be configured as per requirement if better K value is found for different game type apart
from ”2”.

# Pivot the DataFrame to create a 3D array with entries as rows, features as columns, and dates as depth
user_data_3d = filtered df.pivot(index="UserID', columns='Aggregate Date', values=['Turnover', 'Hold', 'NumberofBets®,'Age u

11 # Fill missing values with zeros (if any)
12 user_data_3d = user_data_3d.fillna(e)

14 # Convert empty strings (' ') to float values of zero (@)
15 wuser_data_3d = user_data_3d.replace(’ ', @).astype(float)
16 user_data_3d = user_data_3d.astype(float)

# Convert the pivot table to a mumpPy array
user_data_array = user_data 3d.to_numpy()

21 #k fold value
k=3

24 # Perform K-means clustering
25 model = KMeans(n_clusters=k, random_state=0)
26 y_pred = model.fit predict(user_data_array)

28 # Apply PcA to reduce dimensionality to 2D
29 pca = PCA(n_components=2)
user_data_pca = pca.fit transform(user_data_array)

2 # Visualize the clustered entries using PCA components

3 plt.figure(figsize=(8, 6))

scatter = plt.scatter(user_data_pca[:, @], user_data_pca[:, 1], c=y_pred, cmap="viridis")
plt.xlabel('PcA Component 1')

plt.ylabel('PCA Component 2')

Figure 6: K - Means Clustering Model

Cluster Labels can be configured based on Cluster Analysis done on the mean hold
and turnover as in Fig. [7]



In [28]: # Create a scotter plot
plt.fipure(figsize=(18, 6))

sns.scatterplot(data=agguser_allfeature, x='Mean_Hold', y="Mean_NumberofBets®, hue='Cluster', palette='viridis', alpha=9.7)
plt.xlabel('Mean_Hold')

plt.ylabel('Mean_MNumberofBets")

plt.title( 'Cluster Visualization based on Mean Hold and Mean Mumber of Bets')

#plt.legend(title="Cluster', Loc="upper right"')

legend_labels = ['Moderate Problem Gamblers','Early Players®,'Problem Gamblers']# [f'Cluster {info["cluster_num"J}' for inmfo
legend = plt.legend{handles=scatter.legend_elements()[8], title='Cluster', labels=legend_labels})

=

plt.show()

Figure 7: K - Means Clustering Label code

After Cluster Analysis. The moderate cluster user id need to be populated in the
variable shown in Fig.

In [34]: # features to consider : turnover, hold , number of bets for time series prediction

In [35]: moderate_pg_players= [868583, 1175809, 1411743, 1457496, 1486136, 1662632, 1679498, 1776178, 1796848, 1921204, 2878894, 2150

count = len{moderate_pg_players)
print{"Count of moderate addicted players:", count)

Count of moderate addicted players: 48

Figure 8: K - Means Moderate players config.

6.2 ARIMA/ SARIMA

Before Fitting into ARIMA/ SARIMA models the moderate cluster id needs to be se-
gregated into stationary and non stationary ; . For this ADF test is being
used. The threshold can be configured as in Fig. [0] A confidence interval of 0.05 is being
used as default to reject the null hypothesis.

the [is_stationary_df] is a df which stores the results of ADF test and is used to
segregate into ARIMA/ SARIMA or LSTM model data input.

Both ARIMA and SARIMA models in Fig. and are implemented over a loop
for each user. Thus both models are coded in the same loop for efficiency. SARIMA
model is implemented using SARIMAX. It is SARIMA model with exogenous factors.
The ARIMA /SARIMAX parameters can be configures based on seasonality and repetitive
trends identified in the manual examination of the usage plot (Kumar Dubey et al.; 2021]).

6.3 LSTM

LSTM model is used at the last and is implemented for non stationray datapoints
Dubey et al.; 2021). The Hyperparameter tuning section in the Fig. [12|is commented out
intentionally to save time. It can be un-commented and be used only if there is change in
the dataset. The LSTM model has already undergone hyper parameter tuning and the
results are commented for reference as can be seen in the Fig. [13] The best parameters
obtained are directly used in the LSTM implementation over a loop to forecast for each

user as seen in Fig. [14]




Filtering of data based on hypothesis testing for Stationarity

In [37]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from statsmodels.tsa.stattools import adfuller

[P

# Cregte a dictionary to store user IDs, their corresponding 'is_stationary' values, and 'hypothesis_test result’
is_stationary_data = {'UserID': moderate_pg players, 'is_stationary': [], 'hypothesis_test_result': []}

~ o

9 |# Itergte through the List of user IDs

1@  for user_id in moderate_pg players:

11 # Extract the user's turnover data

12 user_turnover = user_data_3d[ 'Turnover® ][user_data_3d.index == user_id].values.ravel()
13

14 # Perform the ADF test for stotionarity

15 result = adfuller{user_turnover)

# Check if the time series is stationary based on the p-value
if result[1] <= @.85:
is_stationary = 1 # Stationary

hypothesis_test_result = 'Reject Mull Hypothesis® # Stationarity is significant
else;
22 is_stationary = @ # Not stationary
23 hypothesis_test_result = 'Fail to Reject Null Hypothesis' # Stationority is not significant

# Append the 'is_stationory' and 'hypothesis_test_result' values to the List
is_stationary_data['is_stationary'].append{is_stationary)
is_stationary_data['hypothesis_test_result'].sppend{hypothesis_test_result)

# Cregte a new DotoFrame from the dictionary
is _stationary_df = pd.DataFrame(is_stationary data)

# Print the new DataFrame
print({is_stationary_df)

Figure 9: Stationarity Test

28 # Scale the data

29 scaler = MinMaxScaler(feature_range=(@, 1))

30 x_single user_turnover_ravel_scaled = scaler.fit_transform(x_single_user_turnover_ravel.reshape(-1, 1))
31

32 # Split the data into training and test sets

33 split_ratio = ©.97 # 97% for training, 3% for testing

34 split_index = int(len{x_single user_turnover_ravel) * split_ratio)

35

36 train_data = x_single_user_turnover_ravel scaled[:split_index]

37 test_data = x_single user_turnover_ravel scaled[split_index:]

38

39 # Create a time index for your data

40 time_index_train = pd.date_range(start=start_date, periods=len(train_data), freg=frequency)

41

42 # Create a time index for your data

43 time_index_test = pd.date_range(start=time_index_train[-1], periods=len(test_data), freq=frequency)
a4

45 #ARIMA

46

47 # Define the ARIMA model

48 model_arima = ARIMA(train_data, order=(1, 1, 1))

49

50 # Fit the ARIMA model to the training data

51 FITmodel_arima = model arima.fit()

52

53 # Forecast the test series using ARIMA

54 FITmodel_arima_forecast = FITmodel_arima.predict(start=split_index, end=len(x_single_user_turnover_ravel) - 1)
55

56 # Inverse scale the ARIMA forecasted values

57 FITmodel_arima_forecast = scaler.inverse_transform(FITmodel arima_forecast.reshape(-1, 1)).reshape(-1)

Figure 10: ARIMA Model



59 #5ARTMA

60
61 # Define the SARIMA model with seasonal difference and order
62 model_sarima_monthly = SARIMAX(train_data, order=(1, 1, 1), seasonal order=(1, 1, 1, 14))
63
64 # Fit the model to the training data
65 FITmodel sarima_monthly = model_sarima_monthly.fit()
66
67 # Forecast the test series
68 FITmodel_sarima_monthly forecast = FITmodel_sarima_monthly.forecast(steps=len(test_data))
69
70 # Inverse scale the forecasted values
71 FITmodel sarima_monthly forecast = scaler.inverse_transform(FITmodel_sarima_monthly forecast.reshape(-1, 1)).reshape(-1)
72
73 # Inverse scale the training data
74 train_data_inverse = scaler.inverse_transform(train_data.reshape(-1, 1)).reshape(-1)
75
76 # Inverse scale the test data
77 test_data_inverse = scaler.inverse transform(test_data.reshape(-1, 1)).reshape(-1)
Figure 11: SARIMA Model
57
58 # Define hyperparameters for tuning
59 units_values = [64, 128, 256]
60 learning_rate values = [0.01, ©.001, 0.0001]
61
62 best_rmse = float('inf")
63 best_params = None
64
65 # Perform grid search
66 for units in units_values:
67 for learning_rate in learning_rate_values:
68 model = create_lstm_model(units, learning_rate)
69
70 # Train the model
71 model.fit(x_train, y_train, batch_size=1, epochs=3, verbose=0)
72
73 # Prepare the testing data
74 test_data = scaled data[training data monthly len - 7 * test weeks:, :]
75 x_test = []
76
77 for i in range(7 * test_weeks, len(test_data)):
78 x_test.append(test data[i - (7 * test _weeks):i, @])
79
80 x_test = np.array(x test)
81 x_test = np.reshape(x_test, (x_test.shape[@], x test.shape[1], 1))
82
83 # Get predictions
84 predictions = model.predict(x test)
85 predictions = scaler.inverse_transform(predictions)
Figure 12: Hyperparameter Tuning
In [52]: 1 # Mean: 35.68018188657653
2 # Standard Deviation: 122.09556811748713
3 # Variance: 14987.32775393194
4 # 1/1 [===== ] - 1s 853ms/step
5 # , Learning Rate: @.01, Test RMSE: 375.2553253207926
6 # 1/1 [===== ] - 1s 846ms/step
7 # , Learning Rate: 8.001, Test RMSE: 231.66883181925292
8 # 1/1 [===== ] - 1s 987ms/step
9 # Units: 64, Learning Rate: 6.0001, Test RMSE: 299.90232480037746
10 # 1/1 [===== ] - 1s 982ms/step
11 # Units: 128, Learning Rate: @.01, Test RMSE: 398.97323688410444
12 # 1/1 [===== ] - 1s 879ms/step
13 # Units: 128, Learning Rate: ©.601, Test RMSE: 241.82620950011136
14 # 1/1 [===== ] - 1s 854ms/step
15 # Units: 128, Learning Rate: ©.6081, Test RMSE: 279.9525872191042
16 # 1/1 [ = ] - 1s 886ms/step
17 # Units: 256, Learning Rate: @.61, Test RMSE: 398.22153453188594
18 # 1/1 [===== ] - 1s 876ms/step
19 # Units: 256, Learning Rate: ©.001, Test RMSE: 289.69737162552474
20 # 1/1 [===== ] - 1s 879ms/step
21 # Units: 256, Learning Rate: ©.0001, Test RMSE: 266.59826253364014
22 # Best Hyperparameters: {'units': 64, 'learning rate': ©.8@1}, Best RMSE: 231.66883181925292

Figure 13: Results of Hyperparameter Tuning saved in comments to reduce computation
time



# Define the best hyperparameters
best_units = 64
best_learning rate = 0.001

# Build and compile the LSTM model with the best hyperparameters

best_model = Sequential()

best_model.add(LSTM(units=best_units, return_sequences=True, input_shape=(x_train.shape[1], 1)))
best_model.add(LSTM(units=best_units, return_sequences=False))

best_model.add(Dense(units=25))

best_model.add(Dense(units=1))

optimizer = Adam(learning_rate=best_learning_rate)
best_model.compile(optimizer=optimizer, loss="mean_squared_error")

# Train the model
best_model.fit(x_train, y train, batch_size=1, epochs=1) # Adjust epochs as needed

# Prepare the testing data
test_data = scaled_data[training_data monthly len - (7*test _weeks):, :]
x_test = []

for 1 in range(7*test_weeks, len(test_data)):
x_test.append(test_data[i-(7*test_weeks):i, 8])

x_test
x_test

= np.array(x_test)

= np.reshape(x_test, (x_test.shape[@], x_ test.shape[1], 1))
# Get predictions

predictions = best_model.predict(x_test)

predictions = scaler.inverse_transform(predictions)

Figure 14: LSTM model
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