ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Arundev Vamadevan
Student ID: x22144421

School of Computing
National College of Ireland

Supervisor: Dr. Christian Horn

‘-—
National College of Ireland \ National

MSc Project Submissi Sheet COllegeOf
c Project Submission ee I
reland
School of Computing
Student Arundev Vamadevan
Name:

Student ID: x22144421

Programme: MSc Data Analytics Year: 2022-23
Module: MSc Research Project
Lecturer: Dr. Christian Horn

Submission
Due Date: 14 December 2023

Project Title: Person Identification Using Landmarks and Deep Learning Techniques
Word Count: ... Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y L T 1= 1 o T -SSR

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Arundev Vamadevan
Student ID: x22144421

1 Introduction

This configuration manual contains details about hardware and software requirements and
specifications used to develop various models and the person identification system. The
below sections will walk through the steps to follow to setup minimal running environment
along with different applications to be downloaded and packages to be installed.

2 System Specification

For the implementation of the system, Python 3.9.13 is used. Other libraries and frameworks
are,

IDE : Jupyter Notebook

Computation : CPU

Modules : Numpy, Pandas, Matplotlib, Scikit-learn, CV2
Frameworks : Tensorflow, Keras

Softwares : MS Excel

Hardware Specifications: Minimum RAM 8GB RAM is required to provide required results.
But 16 GB or more is recommended. Figure 1 depicts the hardware and system configuration
used for the project.

System > About

Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch No pen or t

Related links Domain or workgroup ~ System protection Advanced system settings

== Windows specifications

Edition Windows 11 Home Single Language
Version

Installed on

OS build

Experience Windows Feature Experience Pack 1000

Microsoft Services Agreement
Microsoft Software License Terms

Fig 1 : System Configuration

3 Dataset Description

This research uses the dataset, VGG FACE-2. It was introduced by (Cao, 2018). The dataset
consists of around 3.31 million of images of 9131 persons with an approximate average of 362
samples for each person. The dataset is in compressed format and is about 40 GB in size. It can be
downloaded from the website https://academictorrents.com./

Dataset also contains facial landmark coordinates in a csv file.

The research used 6402 images of 20 personalities. The folders used are as below

G s e il o 0 i B

n000002 n000003 n000005 n000006 n000007 n000010 n000011 n000012 n000014 n000015 n000016 n000018

G B O B B 2 B B

n000019 n000020 n000028 n000030 n000031 n000032 n000034 n000035

Fig 2: 20 folders used in research
The ‘Data’ Folder in the ICT code artefact zipped folder contains all the 20 folders, which the
jupyter notebook is accessing for processing and corresponding csv files.

]: #lOAD THE IMAGES
image_pathil=os.listdir("Data/faces_20/")
imagel=|]
for i in image pathi:
imagel.append(os.path.join("Data/faces_20/",1))
imagel

|+ ['Data/faces_20/neeoee2"
'Data/faces_2@/neeeee3’
'Data/faces 2@/neesees’
'Data/faces 2@/neesees’
'Data/faces 2@/neeeea7’
'Data/faces 2@/neeee10’
'Data/faces_2@/neeee1l’
‘Data/faces_2@/neeeo12’
‘Data/faces_2@/neeeo14’
‘Data/faces_2@/neeee1s’
'Data/faces 2@/neeeel6’
'Data/faces 2@/npeee1s’
'Data/faces 2@/neeee19’
'Data/faces 2@/npese20’
'Data/faces_2@/neeee2s’
'Data/faces_2@/neeee30’
'Data/faces_2@/neeee31’
‘Data/faces_2@/neeee32’
'Data/faces_20/neepe34’
'Data/faces_20/neeee3s’

Lt % b e e e b e e b e b e b

]: #LOAD LANDMARK DATASET
landmarks=pd.read_csv("Data/Landmarks_2e.csv")
landmarks

Fig 3 : Accessing folders and landmarks

https://academictorrents.com./

4 Project Development and Implementation

After installing all the required software and downloading dataset, open a new notebook in
Jupyter Notebook. Then load and open the code file and execute as per the need. Execution
can be done by clicking Run All to run all cells simultaneously or individually cell by cell.

4.1 Importing Library

The packages needed to run the file should be pre-installed using the command “pip install
‘pakcage-name’”

#IMPORT NESSESSORY LIBRARIES

import os

import cv2

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import matplotlib.pyplot as plt

from glob import glob

from skimage import io

from tensorflow.keras.models import Model

from sklearn.model selection import train test split
from keras.models import Sequential

from tensorflow.keras.preprocessing.image import load img

import os

import cv2

import numpy as np

import pandas as pd

import tensorflow as tf

from tensortlow import keras

from tensorflow.keras import layers

from sklearn.model selection import train test split
from keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

import tensorflow as tf

from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam

import warnings

warnings.filterwarnings("ignore™)

import seaborn as sns

from sklearn.model selection import train_test split, GridSearchcv, cross_val score
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

from xgboost import XGBClassifier

from sklearn.naive bayes import GaussianhB

from sklearn.neighbors import KMeighborsClassifier
from sklearn.metrics import accuracy score

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import confusion matrix

import joblib

from mtcnn.mtcnn import MTCNN

import seaborn as sns

from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.models import load model
from sklearn.preprocessing import MinMaxScaler

Fig 4: Various python packages used in the project

4.2 Pre-processing

#PREPROCESSING
import cv2

import numpy as np
data=landmarks

df=pd.DataFrame(data,columns=['"NAME_ID', 'P1X', 'P1Y', 'P2X', 'P2¥', 'P3X', 'P3Y', 'P4X', 'P4aY','PS5X’, 'P5Y'])
Define dimensions for resize
target_height, target width = 128, 128

Function to preprocess an image and annotation
def preprocess_image_and_annotation(row):
image_path = row["NAME_ID"]
print(image path)
P1X,P1Y,P2X, P2Y,P3X,P3Y,P4X,P4Y,P5X,PSY=row["P1X"], row["P1¥"], row["P2X"],row["P2¥"], row["P3X"], row["P3¥"], row["P4x"],

Load the image using OpenCV

image = cv2.imread(image_path)

image = cw2.cvitColor({image, cv2.COLOR_BGR2RGE)

original_height, original_ width = image.shape[2], image.shape[1]
Resize the images to the target dimensions

image = cw2.resize(image, (target width, target_height))

Scale annotation coordinates

P1X = int((P1X/original width) * target width)
P1Y = int((P1Y/original_height) * target_height)
P2X = int((P2X/original_width) * target_width)
P2Y = int((P2Y¥/original height) * target height)
P3X = int((P3X/original_width) * target_width)
P3Y = int((P3Y/original_height) * target_height)
P4xX = int((P4x/original_width) * target_width)
P4Y = int((P4Y/original_height) * target_height)
PSX = int((P5X/original width) * target width)
PSY = int((P5Y/original_height) * target_height)

Normalize the image to values between @ and 1
image = image / 255.@

return image, (P1X,P1Y,P2X, P2Y,P3X,P3Y,P4X,P4Y,P5X,P5Y)
Preprocess the images and annotations

preprocessed_data = df.apply(preprocess_image_and_annotation, axis=1)

Create a NumPy array of images with the same shape
preprocessed_images = np.array([item[@] for item in preprocessed_data], dtype=np.float32)

Now, preprocessed images is a NumPy array containing all the images with the same shape.

Fig 5 : Preprocessing images and landmarks

Preprocessing of images includes, resizing, normalizing.

IMAGE AUGMENTATION IN PREPROCESSED IMAGES
Function for image flipping and Landmark flipping
def apply asugmentation(image, landmarks_rec):

Image Flipping

img = image

flipped_img = np.fliplr(img)

Landmarks Flipping

original_image width = 128
landmarks_new = landmarks_rec.reshape((-1,1,2))
for i in landmarks_new:

i[e][e]= original_image_width - i[@][e]

return flipped_img, landmarks_new

Apply data augmentation to each image and its corresponding Landmarks
def augment_data(images, landmarks):

augmented_images = []

augmented_landmarks = []

for img, landmark in zip(images, landmarks):
aug_img, aug_landmark = apply_augmentation(img, landmark)
augmented_images.append(aug_img)
augmented_landmarks.append({aug_landmark)

return np.array(augmented_images), np.array(augmented_landmarks)

Fig 6: Image Augmentation

4.3 Modelling

43.1 VGG-16 Model

Split the data into training and testing set using sklearn.
x_train,x_test,y_train,y_test = train_test_split{x_train_combined,y_train_combined,train_size=0.8,random_state=42)
¥_train.shape,x_test.shape,y_train.shape,y_test.shape

import tensorflow as tf

from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam

Load the VG616 model pre-trained on ImageNet data
base_model = VGGl6(weights="imagenet', include_ top=False, input_shape=(125, 128, 3))

#Freeze the lLayers of the pre-trained model
for layer in base_model.layers:
layer.trainable = False

Cregte o Sequential model
model = Sequential()

Add the vicG16 base model to the Sequential model
model.add(base_model)

Flatten the output of the VGG16 base model
model.add(Flatten())

Add a dense layer for regression
model.add(Dense(512, activation="relu'))
model.add(Dense(1@)) # Assuming you have one continuous output

: | # Compile the model with Mean Squared Error Loss for regression
model.compile(optimizer=Adam(learning rate=0.801), loss="mean_squared_error’, metrics=['mean_squared_error'])

: |# Train the model
batch_size = 64
epochs = 4@
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))

Fig 7 : Model building with VGG-16

4.3.2 Model Building using SVM for person identification with landmarks

split the data into troining and testing sets

X_train, X _test, y train, y_test = train_test_split(X, y _encoded, test size=08.2, random_state=42)
print{len(X_train),len(y_train))

Hyper Parameter Tuning with SVC Model

param_grid = {
‘c':[e.1,1,18,108],
‘gamma’: [@.0€1,08.01,0.1,1],
"kernel’ : ['rbf']

Create an 5VC model and train it
model = SVC()

grid_search = GridSearchCV({model, param_grid, cv=2, n_jobs=-1)
grid search.fit(X_train, y_train)

GridsearchCV(cv=2, estimator=svC(), n_jobs=-1,
param_grid={'C': [@.1, 1, 18, 1lé8], 'gammz’': [©.8e1, @.el, @.1, 1],
‘kernel’: ['rbf']})

best_params = grid_search.best_params_

print(“Best Hyperparameters:",best_params)

Best Hyperparameters: {'C': 18, 'gamma': 8.881, 'kernel’: ‘rbf'}
best_model = grid_search.best_estimator_

Make predictions on the test set
y_pred = best_model.predict(X_test)

Calculate accuracy

accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 188:.2f}%")

Fig 8 : Model building using SVM with landmarks

4.3.3 Model building using SVM for person identification using Images

Training with SVM Model

: | # Create an 5VC model and train it
model = SVC(C = 18, gamma = ©.881, kernel= 'rbf")

: model.fit(X train, y_train)

1 OSVC(C=1@, gamma=@.881)

: y_pred = model.predict(X_test)
Calculate accuracy

accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 1@e:.2f}%")

Accuracy: 79.60%

Fig 9 : Model building using SVM with images

References

Cao, Q., Shen, L., Xie, W., Parkhi, O.M. and Zisserman, A., 2018, May. VVggface2: A dataset for recognising
faces across pose and age. In 2018 13th IEEE international conference on automatic face & gesture recognition
(FG 2018) (pp. 67-74). IEEE.

