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1. Hardware and Software Requirements 
 

For this project, all compute intensive tasks like modelling, data visualization and 
prediction was done on a cloud service called Google Colab1 which was accessed using a 
MacBook Air. Only the data downloaded from various data sources were organized 
properly in their respective folders and converted from jpeg to png and was renamed on 
local device (MacBook Air) using bash program before uploading it to the cloud. 
 

Table 1: Cloud Setup Option 

Processor  
 

On-demand  

Graphic Card  

 

TPU and GPU option available  

 
RAM  Min 8Gb-Max 32GB  
HDD  12GB free space 

 
  
Bash scripts for data format changing and renaming. 
 

Changing the format 
for i in *.jpeg; do 
 sips -s format png $i --out pngs 
 done 
echo “Operation Over” 

 
Renaming images 

count = 0 
for i in *.png; do 
 mv “$i” “normal-img${count}.png”; 
 let count++; 
done 
echo “Operation Complete..” 

 
 
 
 
 
 
 
 
 
 

 
1 https://research.google.com/colaboratory/faq.html 



 

 

2. Google Collaboratory (Colab) Setup 
 
 
Since this research was carried out using Google Colab’s Cloud infrastructure, we need to 
first upload our dataset to Google drive which can be connected to our notebook (code 
platform of colab) where we are going to code and use the data. 
 

 
 

FIGURE 1: Google Drive 
 
 
We need three folders, one in which we are going to store our training data, second our test 
data and third for the models on which the training is going to be happening. 
The train and test folders had random images from that dataset and were divided locally 
and then uploaded while the models folder was create online. 

 
As mentioned in (Google, n.d.) Google Colab is an Infrastructure and Software as a Service 
free to use provided by Google for tasks related to machine learning, data analytics and 
artificial intelligence in python and its related libraries.   
 
List of libraries and packages used 

• Python 3.6.9 
• Keras 2.4.0 
• Matplotlib 
• os 
• tensorflow 
• sklearn, numpy 

 
To mount the drive to our notebook we use the code given below 
 

G-Drive mounting 
from google.colab import drive 
drive.mount("/content/drive/") 

  
 
 
 
 



 

 

After our drive is mounted successfully we can set paths for our train and test files, also 
import the required libraries and functions for our project. 
 

Importing required libraries and functions 
 

import os 
import tensorflow as tf 
import matplotlib.pyplot as plt 
import numpy as np 
from google.colab import drive 
from tensorflow import keras 
from tensorflow.keras.layers import Input, Lambda, Dense, Flatten 
from keras.utils.vis_utils import plot_model 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from glob import glob 
from tensorflow.keras.models import load_model 

 
 
To get maximum speed and utilization of our notebook we change our runtime to GPU 
from None, this will make our program execution faster while we train and run our 
predictions on the dataset. 
 
 

 
 

FIGURE 2: Setting Notebook runtime to GPU  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

3. Data Preparation and Visualization 
 
 

Next, we set paths for our train and test datasets in the respect variable names.  
 

Setting path to variables 
train_path = '/content/drive/My Drive/db/train/' 
test_path = '/content/drive/My Drive/db/test/' 
folders = glob('/content/drive/My Drive/db/test/*') 
 
      Now we need to calculate the overall count of each set of images and represent it  visually     
 for that we use python based library called matplotlib 
  

Counting datasets and plotting 
count = {‘covid’: 0, ‘normal’: 0, ‘pneumonia’:0} 
for i in count.keys(): 
  train_path +=i 
  test_path +=i 
  path, dirs, Trfiles = next(os.walk(train_path)) 
  path, dirs, Tsfiles = next(os.walk(test_path)) 
  count[i] += len(Trfiles) + len(Tsfiles) 
  train_path = ‘/content/drive/My Drive/db/train/’ 
  test_path = ‘/content/drive/My Drive/db/test/’ 
 
keys = count.keys() 
values = count.values() 
colors = [‘c’, ‘g’, ‘y’] 
plt.rcParams.update({‘font.size’: 14}) 
plt.pie(values, labels=keys, colors=colors, startangle=360,   
 explode=(0.2,0,0), autopct= ‘%1.2f%%’) 
plt.title(‘DATA’, fontdict = {‘fontsize’: 21}) 
plt.show() 
 
The output of Data spread which we get is  
 

 
FIGURE 3: Pie plot of Dataset 

 
As we can see the count of covid is relatively low, in order to balance this out we would be 
using data augmentation techniques while training our model. 



 

 

 

4. Implementation of Models 
 

Since we are going to make use of ensemble methods for prediction, we would be training 
around 7 models using which we would be performing the ensemble based prediction. 
For the first 5 models, we would be using transfer learning methodology via which a 
previously trained/optimized model on a large dataset can be inherited and reutilized on 
other datasets, the advantage of using such a method is that since these models are trained 
and optimized on large and complex datasets, their architecture can quickly adapt to most 
of the image datasets and reduce the huge overhead time of creating a convolutional neural 
network from scratch. 
 
Keras2 package has numerous such models which can be inherited via transfer learning and 
reused. 

 
4.1 Image Augmentation and rescaling 
 
Certain methods would be common throughout the model training process like image 
rescaling and augmentation which is shown below 
 

Data Augmentation 
 

# Use the Image Data Generator to import the images from the dataset 
train_datagen = ImageDataGenerator(rescale = 1./255, 
                                   shear_range = 0.2, 
                                   zoom_range = 0.2, 
                                   horizontal_flip = True) 
 
test_datagen = ImageDataGenerator(rescale = 1./255) 
 
# Make sure you provide the same target size as initialied for the image 
size 
training_set = train_datagen.flow_from_directory('/content/drive/My 
 Drive/db/train', target_size = (IMAGE_SIZE[0], IMAGE_SIZE[1]), 
 batch_size = 32, class_mode = 'categorical') 
 
test_set = test_datagen.flow_from_directory('/content/drive/My  
 Drive/db/test', target_size = (IMAGE_SIZE[0], IMAGE_SIZE[1]), 
 batch_size = 32, class_mode = 'categorical') 

 
4.2 Common Packages and libraries 
 

Other imports 
from tensorflow.keras.layers import Input, Lambda, Dense, Flatten 
from tensorflow.keras.models import Model, Sequential 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.preprocessing.image import 
ImageDataGenerator,load_img 
import numpy as np 
from glob import glob 

 
2 https://keras.io/about/ 



 

 

 
 

a. DenseNet201 
Below is the code for implementation of DenseNet201 model which we import from 
keras package and train our dataset on. 
 

Building the DenseNet Model 
 

from tensorflow.keras.applications.densenet import DenseNet201 
from tensorflow.keras.applications.densenet import preprocess_input 
from tensorflow.keras.applications.densenet import decode_predictions 
IMAGE_SIZE = [224, 224] 
densenet201 = DenseNet201(input_shape=IMAGE_SIZE + [3], weights='imagenet', 
include_top=False) 
# don't train existing weights 
for layer in densenet201.layers: 
    layer.trainable = False 
 
x = Flatten()(densenet201.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# # create a model object 
model = Model(inputs=densenet201.input, outputs=prediction) 
model.compile( 
  loss='categorical_crossentropy', 
  optimizer='adam', 
  metrics=['accuracy'] 
) 

 
 
Once the model is build and compiled, we begin the training process, we can optimize 
the parameters while training our model in order to get better output.  
 

 
Training and saving the densenet model. 

 
densenet_model = model.fit( 
  training_set, 
  validation_data=test_set, 
  epochs=25, 
  steps_per_epoch=len(training_set), 
  validation_steps=len(test_set) 
) 
 
# Save the entire model as a SavedModel. 
!mkdir -p saved_model 
model.save('saved_model/densenet201.h5') 
 
from google.colab import files 
files.download("saved_model/densenet201.h5") 
   

We also save and download the model which we will be using later on for our ensemble 
of models. Here on, same steps would be repeated for all the models mentioned below. 

 
 



 

 

 
 
 

b. VGG 16 
 

Building the VGG 16 Model 
from tensorflow.keras.applications.vgg16 import VGG16  
IMAGE_SIZE = [299, 299] 
vgg_net = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet', 
include_top=False) 
for layer in vgg_net.layers: 
    layer.trainable = False 
 
# useful for getting number of output classes 
folders = glob('/content/drive/My Drive/db/train/*') 
x = Flatten()(vgg_net.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# create a model object 
model = Model(inputs=vgg_net.input, outputs=prediction) 
model.summary() 
model.compile( 
  loss='categorical_crossentropy', 
  optimizer='adam', 
  metrics=['accuracy'] 
) 

 
 

Training and Saving Model 
# fit the model 
# It will take some time to execute 
vgg_model = model.fit( 
  training_set, 
  validation_data=test_set, 
  epochs=25, 
  steps_per_epoch=len(training_set), 
  validation_steps=len(test_set), 
  callbacks=[model_checkpoint_callback] 
) 
# save it as a h5 file 
from google.colab import files 
# Save the entire model as a SavedModel. 
!mkdir -p saved_model 
model.save('saved_model/vgg_model.h5') 
files.download("saved_model/vgg_model.h5") 

 
 
Some other features worth mentioning which can help us improve the performance 
and accuracy of our models is that we can take a peek in to the model architecture by 
using a built in method called `model.summary()` which summarizes the architecture 
of the model in our case VGG16 in a textual format and another function which gives 
a plot of our layer stack is `tf.keras.utils.plot_model(model)`  output of both functions 
is given below. 
 



 

 

FIGURE 4: Summary of VGG 16 
 
 

 
FIGURE 5: Architecture Plot for VGG16 Model 

 
Also, we have another technique to see the output of the prediction layers by 
plotting a heatmap around the input image. This technique is called “Grad-CAM” 
And the code and output for it is given below 



 

 

 
GRAD-CAM settings 

 
import numpy as np 
import tensorflow as tf 
from tensorflow import keras 
 
# Display 
from IPython.display import Image 
import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
 
img_size = (331, 331) 
preprocess_input = keras.applications.nasnet.preprocess_input 
 
last_conv_layer_name = "activation_259" 
classifier_layer_names = [ 
    "flatten", 
    "dense", 
] 
# The local path to our target image 
img_path = "/content/drive/MyDrive/db/test/covid/covid68.png" 
display(Image(img_path)) 

 
 

GRAD-CAM algorithm implementation 
 

def get_img_array(img_path, size): 
    # `img` is a PIL image of size 299x299 
    img = keras.preprocessing.image.load_img(img_path, target_size=size) 
    # `array` is a float32 Numpy array of shape (299, 299, 3) 
    array = keras.preprocessing.image.img_to_array(img) 
    # We add a dimension to transform our array into a "batch" 
    # of size (1, 299, 299, 3) 
    array = np.expand_dims(array, axis=0) 
    return array 
 
def make_gradcam_heatmap( 
    img_array, model, last_conv_layer_name, classifier_layer_names 
): 
    # First, we create a model that maps the input image to the activations 
    # of the last conv layer 
    last_conv_layer = model.get_layer(last_conv_layer_name) 
    last_conv_layer_model = keras.Model(model.inputs, 
last_conv_layer.output) 
 
    # Second, we create a model that maps the activations of the last conv 
    # layer to the final class predictions 
    classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:]) 
    x = classifier_input 
    for layer_name in classifier_layer_names: 
        x = model.get_layer(layer_name)(x) 
    classifier_model = keras.Model(classifier_input, x) 
    # Then, we compute the gradient of the top predicted class for our 
input image 
    # with respect to the activations of the last conv layer 
    with tf.GradientTape() as tape: 
        # Compute activations of the last conv layer and make the tape 
watch it 



 

 

        last_conv_layer_output = last_conv_layer_model(img_array) 
        tape.watch(last_conv_layer_output) 
        # Compute class predictions 
        preds = classifier_model(last_conv_layer_output) 
        top_pred_index = tf.argmax(preds[0]) 
        top_class_channel = preds[:, top_pred_index] 
      
    # This is the gradient of the top predicted class with regard to 
    # the output feature map of the last conv layer 
    grads = tape.gradient(top_class_channel, last_conv_layer_output) 
     
    # This is a vector where each entry is the mean intensity of the 
 gradient 
    # over a specific feature map channel 
    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) 
 
    # We multiply each channel in the feature map array 
    # by "how important this channel is" with regard to the top predicted 
class 
    last_conv_layer_output = last_conv_layer_output.numpy()[0] 
    pooled_grads = pooled_grads.numpy() 
     
    for i in range(pooled_grads.shape[-1]): 
        last_conv_layer_output[:, :, i] *= pooled_grads[i] 
 
    # The channel-wise mean of the resulting feature map 
    # is our heatmap of class activation 
    heatmap = np.mean(last_conv_layer_output, axis=-1) 
 
    # For visualization purpose, we will also normalize the heatmap between 
 0 & 1 
    heatmap = np.maximum(heatmap, 0) / np.max(heatmap) 
    return heatmap 

 
 

 

 
 
 
 

GRAD-CAM HeatMap 
 

#Prepare image 
img_array = preprocess_input(get_img_array(img_path, size=img_size)) 
  
# Print what the top predicted class is 
preds = model.predict(img_array) 
# Generate class activation heatmap 
heatmap = make_gradcam_heatmap( 
    img_array, model, last_conv_layer_name, classifier_layer_names 
) 
# Display heatmap 
plt.matshow(heatmap) 
plt.show() 

 
 

 



 

 

 
    FIGURE 6:HeatMap Over Image 

 
This technique can be applied on individual models but can’t be implemented on 
the overall output of the ensemble networks which we are going to create. 
 
 
 
 

c. NasNet 
 

Building NASNET Model 
 

IMAGE_SIZE = (331, 331,3) 
nasNet = NASNetLarge(input_shape=IMAGE_SIZE, weights='imagenet', 
include_top=False) 
# don't train existing weights 
for layer in nasNet.layers: 
    layer.trainable = False 
 
# useful for getting number of output classes 
folders = glob('/content/drive/My Drive/db/train/*') 
x = Flatten()(nasNet.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# create a model object 
model = Model(inputs=nasNet.input, outputs=prediction) 
#model.summary() 
model.compile( 



 

 

  loss='categorical_crossentropy', 
  optimizer='adam', 
  metrics=['accuracy'] 
) 

 
Training and saving Nasnet 

 
from tensorflow.keras.callbacks import ModelCheckpoint 
checkpoint_filepath = 'saved_model/' 
model_checkpoint_callback = ModelCheckpoint( 
    filepath=checkpoint_filepath, 
    save_weights_only=False, 
    monitor='val_accuracy', 
    mode='max', 
    save_best_only=True) 
# fit the model 
# Run the cell. It will take some time to execute 
nasnet_model = model.fit( 
  training_set, 
  validation_data=test_set, 
  epochs=15, 
  steps_per_epoch=len(training_set), 
  validation_steps=len(test_set), 
  callbacks=[model_checkpoint_callback] 
) 

 

d. Xception 
 

Building Xception Model 
 

# re-size all the images to this 
IMAGE_SIZE = [299, 299] 
xceptionNet = Xception(input_shape=IMAGE_SIZE + [3], weights='imagenet', 
include_top=False) 
for layer in xceptionNet.layers: 
    layer.trainable = False 
 
# useful for getting number of output classes 
folders = glob('/content/drive/My Drive/db/train/*') 
x = Flatten()(xceptionNet.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# create a model object 
model = Model(inputs=xceptionNet.input, outputs=prediction) 
model.summary() 

Compiling and Training Xception Model 
 

model.compile( 
  loss='categorical_crossentropy', 
  optimizer='adam', 
  metrics=['accuracy'] 
) 
 
from tensorflow.keras.callbacks import ModelCheckpoint 
checkpoint_filepath = 'saved_model/' 
model_checkpoint_callback = ModelCheckpoint( 
    filepath=checkpoint_filepath, 
    save_weights_only=False, 
    monitor='val_accuracy', 



 

 

    mode='max', 
    save_best_only=True) 
# fit the model It will take some time to execute 
xception_model = model.fit( 
  training_set, 
  validation_data=test_set, 
  epochs=15, 
  steps_per_epoch=len(training_set), 
  validation_steps=len(test_set), 
  callbacks=[model_checkpoint_callback] 
) 

 
 

e. Resnet 
 

Building a Resnet 
 

# re-size all the images to this 
IMAGE_SIZE = [224, 224] 
resnet = ResNet50(input_shape=IMAGE_SIZE + [3], weights='imagenet', 
include_top=False) 
for layer in resnet.layers: 
    layer.trainable = False 
 
# useful for getting number of output classes 
folders = glob('/content/drive/My Drive/db/train/*') 
x = Flatten()(resnet.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# create a model object 
model = Model(inputs=resnet.input, outputs=prediction) 
x = Flatten()(resnet.output) 
prediction = Dense(len(folders), activation='softmax')(x) 
 
# create a model object 
model = Model(inputs=resnet.input, outputs=prediction) 
model.summary() 
model.compile( 
  loss='categorical_crossentropy', 
  optimizer='adam', 
  metrics=['accuracy'] 
) 

 
 
 
 

Training of Resnet Model 
 

from tensorflow.keras.callbacks import ModelCheckpoint 
checkpoint_filepath = 'saved_model/' 
model_checkpoint_callback = ModelCheckpoint( 
    filepath=checkpoint_filepath, 
    save_weights_only=False, 
    monitor='val_accuracy', 



 

 

    mode='max', 
    save_best_only=True) 
 
# fit the model It will take some time to execute 
resnet_model = model.fit( 
  training_set, 
  validation_data=test_set, 
  epochs=25, 
  steps_per_epoch=len(training_set), 
  validation_steps=len(test_set), 
  callbacks=[model_checkpoint_callback] 
) 

 
 
 

f. MyModel 
 
In case of this model, we create it from scratch and train it on our data, the 
performance of this model was close to 90 % similar to our other models but since 
it is only trained on our dataset, the overall performance in comparison to other 
models might differ when other datasets are taken into consideration. 
 

Building the custom model 
  
 myModel = Sequential() 
 myModel.add(Conv2D(input_shape=(224,224,3),filters=64,kernel_size=(3,
 3),padding="same",  activation="relu")) 
 myModel.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", 
 activation="relu")) 
 myModel.add(MaxPooling2D(pool_size=(2,2),strides=(2,2))) 
 myModel.add(Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), 
 padding='same')) 
 myModel.add(BatchNormalization()) 
 myModel.add(Activation('relu')) 
 myModel.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
 padding='same')) 
 myModel.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", 
 activation="relu")) 
 myModel.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", 
 activation="relu")) 
 myModel.add(MaxPooling2D(pool_size=(2,2),strides=(2,2))) 
 myModel.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1), 
 padding='same')) 
 myModel.add(BatchNormalization()) 
 myModel.add(Activation('relu')) 
 myModel.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
 padding='same')) 
 #Passing it to a Fully Connected layer 
 myModel.add(Flatten()) 
 # 1st Fully Connected Layer 
 myModel.add(Dense(4096, input_shape=(224,224,3,))) 
 myModel.add(BatchNormalization()) 
 myModel.add(Activation('relu')) 
 # Add Dropout to prevent overfitting 
 myModel.add(Dropout(0.4)) 
 #2nd Fully Connected Layer 
 myModel.add(Dense(1000)) 
 myModel.add(BatchNormalization()) 



 

 

 myModel.add(Activation('relu')) 
 #Add Dropout 
 myModel.add(Dropout(0.2)) 
 #Output Layer 
 myModel.add(Dense(10)) 
 myModel.add(BatchNormalization()) 
 myModel.add(Dense(len(folders), activation='softmax')) 
 myModel.summary() 
 myModel.compile(loss = keras.losses.categorical_crossentropy, 
 optimizer= 'adam', metrics=['accuracy']) 

 
Training the Model 

 from tensorflow.keras.callbacks import ModelCheckpoint 
 checkpoint_filepath = 'saved_model/' 
 model_checkpoint_callback = ModelCheckpoint( 
     filepath=checkpoint_filepath, 
     save_weights_only=False, 
     monitor='val_accuracy', 
     mode='max', 
     save_best_only=True) 
 
 # This will take some time to execute 
 mymodel_ready = myModel.fit( 
   training_set, 
   validation_data=test_set, 
   epochs=15, 
   steps_per_epoch=len(training_set), 
   validation_steps=len(test_set), 
   callbacks=[model_checkpoint_callback] 
 ) 

 
 

g. AlexNet 
 

Building Alexnet Model from scratch 
 #1st Convolutional Layer 
 AlexNet.add(Conv2D(filters=96, input_shape=(150,150,3), 
 kernel_size=(11,11), strides=(4,4), padding='same')) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
 padding='same')) 
  
 #2nd Convolutional Layer 
 AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1), 
 padding='same')) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
 padding='same')) 
 
 #3rd Convolutional Layer 
 AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 
 padding='same')) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 
 #4th Convolutional Layer 



 

 

 AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 
 padding='same')) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 
 #5th Convolutional Layer 
 AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), 
 padding='same')) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
 padding='same')) 
 
 #Passing it to a Fully Connected layer 
 AlexNet.add(Flatten()) 
 # 1st Fully Connected Layer 
 AlexNet.add(Dense(4096, input_shape=(150,150,3,))) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 # Add Dropout to prevent overfitting 
 AlexNet.add(Dropout(0.4)) 
 
 #2nd Fully Connected Layer 
 AlexNet.add(Dense(4096)) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 #Add Dropout 
 AlexNet.add(Dropout(0.4)) 
 
 #3rd Fully Connected Layer 
 AlexNet.add(Dense(1000)) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Activation('relu')) 
 #Add Dropout 
 AlexNet.add(Dropout(0.4)) 
 
 #Output Layer 
 AlexNet.add(Dense(10)) 
 AlexNet.add(BatchNormalization()) 
 AlexNet.add(Dense(len(folders), activation='softmax')) 
 

Training Alexnet Model 
 AlexNet.compile(loss = keras.losses.categorical_crossentropy, 
 optimizer= 'adam', metrics=['accuracy']) 
 from tensorflow.keras.callbacks import ModelCheckpoint 
 checkpoint_filepath = 'saved_model/' 
 model_checkpoint_callback = ModelCheckpoint( 
     filepath=checkpoint_filepath, 
     save_weights_only=False, 
     monitor='val_accuracy', 
     mode='max', 
     save_best_only=True) 
 # fit the model 
 alexnet_model = AlexNet.fit( 
   training_set, 
   validation_data=test_set, 
   epochs=15, 
   steps_per_epoch=len(training_set), 
   validation_steps=len(test_set), 
   callbacks=[model_checkpoint_callback] 
 ) 
 



 

 

 

5. Implementation and Evaluation of Ensemble Networks. 
 
Ensemble is a collection of the above mentioned models, the input image is given to 
each model and output of each is stored in a list and the majority is regarded as the final 
outcome for that input Image. Here we implement two techniques of ensemble 
networks first one is based on voting and second one is based on weighted voting. 
 
Each model created above has its own function within which we import the trained 
model for that type and pass on our data to it which then returns output for the same. 
 
Example:  Resnet Function 
 

Function for Resnet loading and prediction 
 # Resnet Model call  
 def resnet(img_path, img_size): 
   # load all images into a list 
   from tensorflow.keras.applications.resnet import preprocess_input 
   images_gen = [] 
   dirs = ['covid/', 'normal/', 'pneumonia/'] 
   for next_path in dirs: 
     next_path = os.path.join(img_path, next_path) 
     for img in os.listdir(next_path): 
       img = os.path.join(next_path, img) 
       img = preprocess_input(get_img_array(img, size=img_size)) 
       images_gen.append(img) 
   
   model = 
 keras.models.load_model('/content/drive/MyDrive/db/models/resnet.h5') 
   images_gen = np.vstack(images_gen) 
   preds = model.predict(images_gen) 
   predicted_values = np.argmax(preds,axis=1) 
   print('Done............Resnet') 
   return predicted_values 

 
 
We call all our defined functions and save their output in respective variables. 
 

Calling models 
 resnet_predictions = resnet('/content/drive/My Drive/db/test/',(224, 
 224)) 
 alexnet_predictions = alexnet('/content/drive/My 
 Drive/db/test/',(150, 150)) 
 densenet_predictions = densenet('/content/drive/My 
 Drive/db/test/',(224, 224)) 
 nassnet_predictions = nasnet('/content/drive/My Drive/db/test/',(331, 
 331)) 
 xception_predictions = xception('/content/drive/My 
 Drive/db/test/',(299, 299)) 
 vgg_predictions = vgg16('/content/drive/My Drive/db/test/',(299, 
 299)) 
 mymodel_predictions = myModel('/content/drive/My  
 Drive/db/test/',(224, 224)) 

 
 



 

 

 
Then we merge them in a list and for each input we calculate the prediction based on 
voting and weighted voting algorithm.  
Note: We’ve passed the complete directory of our test data instead of a single image in 
order to evaluate the ensembles properly. 
  

Creating Ensembles of Model 
 model_preds = np.vstack((resnet_predictions, alexnet_predictions, 
 densenet_predictions, nassnet_predictions, xception_predictions, 
 vgg_predictions, mymodel_predictions)).T 
 model_predictions_weights = [] 
 model_predictions = [] 
 
 for i in model_preds: 
   preds = list(i) 
   model_predictions.append(max(set(preds), key=preds.count)) 
   for j in range(len(i)): 
     if j==3 or j == 4 or j == 2: 
       tmp = i[j] 
       i = np.append(i, tmp) 
       i = np.append(i, tmp) 
   preds_weights = list(i) 
   model_predictions_weights.append(max(set(preds_weights),   
  key=preds_weights.count)) 

  
 

 
Evaluation  
 
For our ensemble based on voting we get the following metrics  
 

Evaluation Metrics for Voting Based Ensemble Network 
 from sklearn.metrics import classification_report, confusion_matrix, 
 multilabel_confusion_matrix 
 from sklearn.metrics import f1_score, accuracy_score,
 matthews_corrcoef 
 target_names = ['Corona', 'Normal', 'Pneumonia'] 
 cm = confusion_matrix(test_set.classes, model_predictions) 
 print('Confusion Matrix \n', cm) 
 print('\n\n\n','Classification Report') 
 print(classification_report(test_set.classes, model_predictions, 
 target_names=target_names), '\n') 
 print('F1 Score', f1_score(test_set.classes, 
 model_predictions_weights, average='weighted')) 
 print('MCC \t' , matthews_corrcoef(test_set.classes, 
 model_predictions)) 
 print('Accuracy Score \t', accuracy_score(test_set.classes, 
 model_predictions)) 

 
 
 



 

 

 
FIGURE 7: Result of Evaluation Metrics Voting Based  

 
 
For ensemble based on weight increment, we get the following output 
 
 
 

Metrics for Weighted Voting Based Ensemble Network 
 cm = confusion_matrix(test_set.classes, model_predictions_weights) 
 print('Confusion Matrix \n', cm) 
 print('\n\n\n','Classification Report') 
 print(classification_report(test_set.classes, 
 model_predictions_weights, target_names=target_names), '\n') 
 print('F1 Score',f1_score(test_set.classes, 
 model_predictions_weights, average='weighted')) 
 print('MCC \t', matthews_corrcoef(test_set.classes, 
 model_predictions_weights)) 
 print('Accuracy Score \t', accuracy_score(test_set.classes, 
 model_predictions_weights)) 

 



 

 

 
FIGURE 8: Result of Evaluation from Weighted Voted Based Ensemble 

Network 
 
 
All the code mentioned in the screenshots above are provided with the ICT solution for 
this project. 
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