

 Configuration Manual

MSc Data Analytics
Research Project Configuration Manual

Akshen Doke
Student ID: x18191592

School of Computing
National College of Ireland

Supervisor: - Prof. Rashmi Gupta

National College of Ireland

MSc Project Configuration Manual

School of Computing

Student Name:

Akshen Doke

Student ID:

x18191592

Programme:

MSc in Data Analytics

Year:

2020

Module:

Research Project

Supervisor:

Prof. Rashmi Gupta

Submission Due
Date:

1st February 2021.

Project Title:

Image Classification: Detection of covid19, normal and pneumonia

from chest x-ray image dataset using ensemble methods.

Word Count:3207

Page Count 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Akshen Doke

Date:

1st February 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1. Hardware and Software Requirements

For this project, all compute intensive tasks like modelling, data visualization and
prediction was done on a cloud service called Google Colab1 which was accessed using a
MacBook Air. Only the data downloaded from various data sources were organized
properly in their respective folders and converted from jpeg to png and was renamed on
local device (MacBook Air) using bash program before uploading it to the cloud.

Table 1: Cloud Setup Option

Processor

On-demand

Graphic Card

TPU and GPU option available

RAM Min 8Gb-Max 32GB
HDD 12GB free space

Bash scripts for data format changing and renaming.

Changing the format
for i in *.jpeg; do
 sips -s format png $i --out pngs
 done
echo “Operation Over”

Renaming images

count = 0
for i in *.png; do
 mv “$i” “normal-img${count}.png”;
 let count++;
done
echo “Operation Complete..”

1 https://research.google.com/colaboratory/faq.html

2. Google Collaboratory (Colab) Setup

Since this research was carried out using Google Colab’s Cloud infrastructure, we need to
first upload our dataset to Google drive which can be connected to our notebook (code
platform of colab) where we are going to code and use the data.

FIGURE 1: Google Drive

We need three folders, one in which we are going to store our training data, second our test
data and third for the models on which the training is going to be happening.
The train and test folders had random images from that dataset and were divided locally
and then uploaded while the models folder was create online.

As mentioned in (Google, n.d.) Google Colab is an Infrastructure and Software as a Service
free to use provided by Google for tasks related to machine learning, data analytics and
artificial intelligence in python and its related libraries.

List of libraries and packages used

• Python 3.6.9
• Keras 2.4.0
• Matplotlib
• os
• tensorflow
• sklearn, numpy

To mount the drive to our notebook we use the code given below

G-Drive mounting
from google.colab import drive
drive.mount("/content/drive/")

After our drive is mounted successfully we can set paths for our train and test files, also
import the required libraries and functions for our project.

Importing required libraries and functions

import os
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from google.colab import drive
from tensorflow import keras
from tensorflow.keras.layers import Input, Lambda, Dense, Flatten
from keras.utils.vis_utils import plot_model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from glob import glob
from tensorflow.keras.models import load_model

To get maximum speed and utilization of our notebook we change our runtime to GPU
from None, this will make our program execution faster while we train and run our
predictions on the dataset.

FIGURE 2: Setting Notebook runtime to GPU

3. Data Preparation and Visualization

Next, we set paths for our train and test datasets in the respect variable names.

Setting path to variables
train_path = '/content/drive/My Drive/db/train/'
test_path = '/content/drive/My Drive/db/test/'
folders = glob('/content/drive/My Drive/db/test/*')

 Now we need to calculate the overall count of each set of images and represent it visually
 for that we use python based library called matplotlib

Counting datasets and plotting
count = {‘covid’: 0, ‘normal’: 0, ‘pneumonia’:0}
for i in count.keys():
 train_path +=i
 test_path +=i
 path, dirs, Trfiles = next(os.walk(train_path))
 path, dirs, Tsfiles = next(os.walk(test_path))
 count[i] += len(Trfiles) + len(Tsfiles)
 train_path = ‘/content/drive/My Drive/db/train/’
 test_path = ‘/content/drive/My Drive/db/test/’

keys = count.keys()
values = count.values()
colors = [‘c’, ‘g’, ‘y’]
plt.rcParams.update({‘font.size’: 14})
plt.pie(values, labels=keys, colors=colors, startangle=360,
 explode=(0.2,0,0), autopct= ‘%1.2f%%’)
plt.title(‘DATA’, fontdict = {‘fontsize’: 21})
plt.show()

The output of Data spread which we get is

FIGURE 3: Pie plot of Dataset

As we can see the count of covid is relatively low, in order to balance this out we would be
using data augmentation techniques while training our model.

4. Implementation of Models

Since we are going to make use of ensemble methods for prediction, we would be training
around 7 models using which we would be performing the ensemble based prediction.
For the first 5 models, we would be using transfer learning methodology via which a
previously trained/optimized model on a large dataset can be inherited and reutilized on
other datasets, the advantage of using such a method is that since these models are trained
and optimized on large and complex datasets, their architecture can quickly adapt to most
of the image datasets and reduce the huge overhead time of creating a convolutional neural
network from scratch.

Keras2 package has numerous such models which can be inherited via transfer learning and
reused.

4.1 Image Augmentation and rescaling

Certain methods would be common throughout the model training process like image
rescaling and augmentation which is shown below

Data Augmentation

Use the Image Data Generator to import the images from the dataset
train_datagen = ImageDataGenerator(rescale = 1./255,
 shear_range = 0.2,
 zoom_range = 0.2,
 horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

Make sure you provide the same target size as initialied for the image
size
training_set = train_datagen.flow_from_directory('/content/drive/My
 Drive/db/train', target_size = (IMAGE_SIZE[0], IMAGE_SIZE[1]),
 batch_size = 32, class_mode = 'categorical')

test_set = test_datagen.flow_from_directory('/content/drive/My
 Drive/db/test', target_size = (IMAGE_SIZE[0], IMAGE_SIZE[1]),
 batch_size = 32, class_mode = 'categorical')

4.2 Common Packages and libraries

Other imports
from tensorflow.keras.layers import Input, Lambda, Dense, Flatten
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import
ImageDataGenerator,load_img
import numpy as np
from glob import glob

2 https://keras.io/about/

a. DenseNet201
Below is the code for implementation of DenseNet201 model which we import from
keras package and train our dataset on.

Building the DenseNet Model

from tensorflow.keras.applications.densenet import DenseNet201
from tensorflow.keras.applications.densenet import preprocess_input
from tensorflow.keras.applications.densenet import decode_predictions
IMAGE_SIZE = [224, 224]
densenet201 = DenseNet201(input_shape=IMAGE_SIZE + [3], weights='imagenet',
include_top=False)
don't train existing weights
for layer in densenet201.layers:
 layer.trainable = False

x = Flatten()(densenet201.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=densenet201.input, outputs=prediction)
model.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)

Once the model is build and compiled, we begin the training process, we can optimize
the parameters while training our model in order to get better output.

Training and saving the densenet model.

densenet_model = model.fit(
 training_set,
 validation_data=test_set,
 epochs=25,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set)
)

Save the entire model as a SavedModel.
!mkdir -p saved_model
model.save('saved_model/densenet201.h5')

from google.colab import files
files.download("saved_model/densenet201.h5")

We also save and download the model which we will be using later on for our ensemble
of models. Here on, same steps would be repeated for all the models mentioned below.

b. VGG 16

Building the VGG 16 Model
from tensorflow.keras.applications.vgg16 import VGG16
IMAGE_SIZE = [299, 299]
vgg_net = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet',
include_top=False)
for layer in vgg_net.layers:
 layer.trainable = False

useful for getting number of output classes
folders = glob('/content/drive/My Drive/db/train/*')
x = Flatten()(vgg_net.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=vgg_net.input, outputs=prediction)
model.summary()
model.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)

Training and Saving Model
fit the model
It will take some time to execute
vgg_model = model.fit(
 training_set,
 validation_data=test_set,
 epochs=25,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)
save it as a h5 file
from google.colab import files
Save the entire model as a SavedModel.
!mkdir -p saved_model
model.save('saved_model/vgg_model.h5')
files.download("saved_model/vgg_model.h5")

Some other features worth mentioning which can help us improve the performance
and accuracy of our models is that we can take a peek in to the model architecture by
using a built in method called `model.summary()` which summarizes the architecture
of the model in our case VGG16 in a textual format and another function which gives
a plot of our layer stack is `tf.keras.utils.plot_model(model)` output of both functions
is given below.

FIGURE 4: Summary of VGG 16

FIGURE 5: Architecture Plot for VGG16 Model

Also, we have another technique to see the output of the prediction layers by
plotting a heatmap around the input image. This technique is called “Grad-CAM”
And the code and output for it is given below

GRAD-CAM settings

import numpy as np
import tensorflow as tf
from tensorflow import keras

Display
from IPython.display import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm

img_size = (331, 331)
preprocess_input = keras.applications.nasnet.preprocess_input

last_conv_layer_name = "activation_259"
classifier_layer_names = [
 "flatten",
 "dense",
]
The local path to our target image
img_path = "/content/drive/MyDrive/db/test/covid/covid68.png"
display(Image(img_path))

GRAD-CAM algorithm implementation

def get_img_array(img_path, size):
 # `img` is a PIL image of size 299x299
 img = keras.preprocessing.image.load_img(img_path, target_size=size)
 # `array` is a float32 Numpy array of shape (299, 299, 3)
 array = keras.preprocessing.image.img_to_array(img)
 # We add a dimension to transform our array into a "batch"
 # of size (1, 299, 299, 3)
 array = np.expand_dims(array, axis=0)
 return array

def make_gradcam_heatmap(
 img_array, model, last_conv_layer_name, classifier_layer_names
):
 # First, we create a model that maps the input image to the activations
 # of the last conv layer
 last_conv_layer = model.get_layer(last_conv_layer_name)
 last_conv_layer_model = keras.Model(model.inputs,
last_conv_layer.output)

 # Second, we create a model that maps the activations of the last conv
 # layer to the final class predictions
 classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:])
 x = classifier_input
 for layer_name in classifier_layer_names:
 x = model.get_layer(layer_name)(x)
 classifier_model = keras.Model(classifier_input, x)
 # Then, we compute the gradient of the top predicted class for our
input image
 # with respect to the activations of the last conv layer
 with tf.GradientTape() as tape:
 # Compute activations of the last conv layer and make the tape
watch it

 last_conv_layer_output = last_conv_layer_model(img_array)
 tape.watch(last_conv_layer_output)
 # Compute class predictions
 preds = classifier_model(last_conv_layer_output)
 top_pred_index = tf.argmax(preds[0])
 top_class_channel = preds[:, top_pred_index]

 # This is the gradient of the top predicted class with regard to
 # the output feature map of the last conv layer
 grads = tape.gradient(top_class_channel, last_conv_layer_output)

 # This is a vector where each entry is the mean intensity of the
 gradient
 # over a specific feature map channel
 pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))

 # We multiply each channel in the feature map array
 # by "how important this channel is" with regard to the top predicted
class
 last_conv_layer_output = last_conv_layer_output.numpy()[0]
 pooled_grads = pooled_grads.numpy()

 for i in range(pooled_grads.shape[-1]):
 last_conv_layer_output[:, :, i] *= pooled_grads[i]

 # The channel-wise mean of the resulting feature map
 # is our heatmap of class activation
 heatmap = np.mean(last_conv_layer_output, axis=-1)

 # For visualization purpose, we will also normalize the heatmap between
 0 & 1
 heatmap = np.maximum(heatmap, 0) / np.max(heatmap)
 return heatmap

GRAD-CAM HeatMap

#Prepare image
img_array = preprocess_input(get_img_array(img_path, size=img_size))

Print what the top predicted class is
preds = model.predict(img_array)
Generate class activation heatmap
heatmap = make_gradcam_heatmap(
 img_array, model, last_conv_layer_name, classifier_layer_names
)
Display heatmap
plt.matshow(heatmap)
plt.show()

 FIGURE 6:HeatMap Over Image

This technique can be applied on individual models but can’t be implemented on
the overall output of the ensemble networks which we are going to create.

c. NasNet

Building NASNET Model

IMAGE_SIZE = (331, 331,3)
nasNet = NASNetLarge(input_shape=IMAGE_SIZE, weights='imagenet',
include_top=False)
don't train existing weights
for layer in nasNet.layers:
 layer.trainable = False

useful for getting number of output classes
folders = glob('/content/drive/My Drive/db/train/*')
x = Flatten()(nasNet.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=nasNet.input, outputs=prediction)
#model.summary()
model.compile(

 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)

Training and saving Nasnet

from tensorflow.keras.callbacks import ModelCheckpoint
checkpoint_filepath = 'saved_model/'
model_checkpoint_callback = ModelCheckpoint(
 filepath=checkpoint_filepath,
 save_weights_only=False,
 monitor='val_accuracy',
 mode='max',
 save_best_only=True)
fit the model
Run the cell. It will take some time to execute
nasnet_model = model.fit(
 training_set,
 validation_data=test_set,
 epochs=15,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)

d. Xception

Building Xception Model

re-size all the images to this
IMAGE_SIZE = [299, 299]
xceptionNet = Xception(input_shape=IMAGE_SIZE + [3], weights='imagenet',
include_top=False)
for layer in xceptionNet.layers:
 layer.trainable = False

useful for getting number of output classes
folders = glob('/content/drive/My Drive/db/train/*')
x = Flatten()(xceptionNet.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=xceptionNet.input, outputs=prediction)
model.summary()

Compiling and Training Xception Model

model.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)

from tensorflow.keras.callbacks import ModelCheckpoint
checkpoint_filepath = 'saved_model/'
model_checkpoint_callback = ModelCheckpoint(
 filepath=checkpoint_filepath,
 save_weights_only=False,
 monitor='val_accuracy',

 mode='max',
 save_best_only=True)
fit the model It will take some time to execute
xception_model = model.fit(
 training_set,
 validation_data=test_set,
 epochs=15,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)

e. Resnet

Building a Resnet

re-size all the images to this
IMAGE_SIZE = [224, 224]
resnet = ResNet50(input_shape=IMAGE_SIZE + [3], weights='imagenet',
include_top=False)
for layer in resnet.layers:
 layer.trainable = False

useful for getting number of output classes
folders = glob('/content/drive/My Drive/db/train/*')
x = Flatten()(resnet.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=resnet.input, outputs=prediction)
x = Flatten()(resnet.output)
prediction = Dense(len(folders), activation='softmax')(x)

create a model object
model = Model(inputs=resnet.input, outputs=prediction)
model.summary()
model.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)

Training of Resnet Model

from tensorflow.keras.callbacks import ModelCheckpoint
checkpoint_filepath = 'saved_model/'
model_checkpoint_callback = ModelCheckpoint(
 filepath=checkpoint_filepath,
 save_weights_only=False,
 monitor='val_accuracy',

 mode='max',
 save_best_only=True)

fit the model It will take some time to execute
resnet_model = model.fit(
 training_set,
 validation_data=test_set,
 epochs=25,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)

f. MyModel

In case of this model, we create it from scratch and train it on our data, the
performance of this model was close to 90 % similar to our other models but since
it is only trained on our dataset, the overall performance in comparison to other
models might differ when other datasets are taken into consideration.

Building the custom model

 myModel = Sequential()
 myModel.add(Conv2D(input_shape=(224,224,3),filters=64,kernel_size=(3,
 3),padding="same", activation="relu"))
 myModel.add(Conv2D(filters=64,kernel_size=(3,3),padding="same",
 activation="relu"))
 myModel.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
 myModel.add(Conv2D(filters=96, kernel_size=(11,11), strides=(4,4),
 padding='same'))
 myModel.add(BatchNormalization())
 myModel.add(Activation('relu'))
 myModel.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
 padding='same'))
 myModel.add(Conv2D(filters=128, kernel_size=(3,3), padding="same",
 activation="relu"))
 myModel.add(Conv2D(filters=128, kernel_size=(3,3), padding="same",
 activation="relu"))
 myModel.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))
 myModel.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),
 padding='same'))
 myModel.add(BatchNormalization())
 myModel.add(Activation('relu'))
 myModel.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
 padding='same'))
 #Passing it to a Fully Connected layer
 myModel.add(Flatten())
 # 1st Fully Connected Layer
 myModel.add(Dense(4096, input_shape=(224,224,3,)))
 myModel.add(BatchNormalization())
 myModel.add(Activation('relu'))
 # Add Dropout to prevent overfitting
 myModel.add(Dropout(0.4))
 #2nd Fully Connected Layer
 myModel.add(Dense(1000))
 myModel.add(BatchNormalization())

 myModel.add(Activation('relu'))
 #Add Dropout
 myModel.add(Dropout(0.2))
 #Output Layer
 myModel.add(Dense(10))
 myModel.add(BatchNormalization())
 myModel.add(Dense(len(folders), activation='softmax'))
 myModel.summary()
 myModel.compile(loss = keras.losses.categorical_crossentropy,
 optimizer= 'adam', metrics=['accuracy'])

Training the Model

 from tensorflow.keras.callbacks import ModelCheckpoint
 checkpoint_filepath = 'saved_model/'
 model_checkpoint_callback = ModelCheckpoint(
 filepath=checkpoint_filepath,
 save_weights_only=False,
 monitor='val_accuracy',
 mode='max',
 save_best_only=True)

 # This will take some time to execute
 mymodel_ready = myModel.fit(
 training_set,
 validation_data=test_set,
 epochs=15,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)

g. AlexNet

Building Alexnet Model from scratch
 #1st Convolutional Layer
 AlexNet.add(Conv2D(filters=96, input_shape=(150,150,3),
 kernel_size=(11,11), strides=(4,4), padding='same'))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
 padding='same'))

 #2nd Convolutional Layer
 AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),
 padding='same'))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
 padding='same'))

 #3rd Convolutional Layer
 AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),
 padding='same'))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))

 #4th Convolutional Layer

 AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),
 padding='same'))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))

 #5th Convolutional Layer
 AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),
 padding='same'))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
 padding='same'))

 #Passing it to a Fully Connected layer
 AlexNet.add(Flatten())
 # 1st Fully Connected Layer
 AlexNet.add(Dense(4096, input_shape=(150,150,3,)))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 # Add Dropout to prevent overfitting
 AlexNet.add(Dropout(0.4))

 #2nd Fully Connected Layer
 AlexNet.add(Dense(4096))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 #Add Dropout
 AlexNet.add(Dropout(0.4))

 #3rd Fully Connected Layer
 AlexNet.add(Dense(1000))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Activation('relu'))
 #Add Dropout
 AlexNet.add(Dropout(0.4))

 #Output Layer
 AlexNet.add(Dense(10))
 AlexNet.add(BatchNormalization())
 AlexNet.add(Dense(len(folders), activation='softmax'))

Training Alexnet Model
 AlexNet.compile(loss = keras.losses.categorical_crossentropy,
 optimizer= 'adam', metrics=['accuracy'])
 from tensorflow.keras.callbacks import ModelCheckpoint
 checkpoint_filepath = 'saved_model/'
 model_checkpoint_callback = ModelCheckpoint(
 filepath=checkpoint_filepath,
 save_weights_only=False,
 monitor='val_accuracy',
 mode='max',
 save_best_only=True)
 # fit the model
 alexnet_model = AlexNet.fit(
 training_set,
 validation_data=test_set,
 epochs=15,
 steps_per_epoch=len(training_set),
 validation_steps=len(test_set),
 callbacks=[model_checkpoint_callback]
)

5. Implementation and Evaluation of Ensemble Networks.

Ensemble is a collection of the above mentioned models, the input image is given to
each model and output of each is stored in a list and the majority is regarded as the final
outcome for that input Image. Here we implement two techniques of ensemble
networks first one is based on voting and second one is based on weighted voting.

Each model created above has its own function within which we import the trained
model for that type and pass on our data to it which then returns output for the same.

Example: Resnet Function

Function for Resnet loading and prediction
 # Resnet Model call
 def resnet(img_path, img_size):
 # load all images into a list
 from tensorflow.keras.applications.resnet import preprocess_input
 images_gen = []
 dirs = ['covid/', 'normal/', 'pneumonia/']
 for next_path in dirs:
 next_path = os.path.join(img_path, next_path)
 for img in os.listdir(next_path):
 img = os.path.join(next_path, img)
 img = preprocess_input(get_img_array(img, size=img_size))
 images_gen.append(img)

 model =
 keras.models.load_model('/content/drive/MyDrive/db/models/resnet.h5')
 images_gen = np.vstack(images_gen)
 preds = model.predict(images_gen)
 predicted_values = np.argmax(preds,axis=1)
 print('Done............Resnet')
 return predicted_values

We call all our defined functions and save their output in respective variables.

Calling models
 resnet_predictions = resnet('/content/drive/My Drive/db/test/',(224,
 224))
 alexnet_predictions = alexnet('/content/drive/My
 Drive/db/test/',(150, 150))
 densenet_predictions = densenet('/content/drive/My
 Drive/db/test/',(224, 224))
 nassnet_predictions = nasnet('/content/drive/My Drive/db/test/',(331,
 331))
 xception_predictions = xception('/content/drive/My
 Drive/db/test/',(299, 299))
 vgg_predictions = vgg16('/content/drive/My Drive/db/test/',(299,
 299))
 mymodel_predictions = myModel('/content/drive/My
 Drive/db/test/',(224, 224))

Then we merge them in a list and for each input we calculate the prediction based on
voting and weighted voting algorithm.
Note: We’ve passed the complete directory of our test data instead of a single image in
order to evaluate the ensembles properly.

Creating Ensembles of Model
 model_preds = np.vstack((resnet_predictions, alexnet_predictions,
 densenet_predictions, nassnet_predictions, xception_predictions,
 vgg_predictions, mymodel_predictions)).T
 model_predictions_weights = []
 model_predictions = []

 for i in model_preds:
 preds = list(i)
 model_predictions.append(max(set(preds), key=preds.count))
 for j in range(len(i)):
 if j==3 or j == 4 or j == 2:
 tmp = i[j]
 i = np.append(i, tmp)
 i = np.append(i, tmp)
 preds_weights = list(i)
 model_predictions_weights.append(max(set(preds_weights),
 key=preds_weights.count))

Evaluation

For our ensemble based on voting we get the following metrics

Evaluation Metrics for Voting Based Ensemble Network
 from sklearn.metrics import classification_report, confusion_matrix,
 multilabel_confusion_matrix
 from sklearn.metrics import f1_score, accuracy_score,
 matthews_corrcoef
 target_names = ['Corona', 'Normal', 'Pneumonia']
 cm = confusion_matrix(test_set.classes, model_predictions)
 print('Confusion Matrix \n', cm)
 print('\n\n\n','Classification Report')
 print(classification_report(test_set.classes, model_predictions,
 target_names=target_names), '\n')
 print('F1 Score', f1_score(test_set.classes,
 model_predictions_weights, average='weighted'))
 print('MCC \t' , matthews_corrcoef(test_set.classes,
 model_predictions))
 print('Accuracy Score \t', accuracy_score(test_set.classes,
 model_predictions))

FIGURE 7: Result of Evaluation Metrics Voting Based

For ensemble based on weight increment, we get the following output

Metrics for Weighted Voting Based Ensemble Network
 cm = confusion_matrix(test_set.classes, model_predictions_weights)
 print('Confusion Matrix \n', cm)
 print('\n\n\n','Classification Report')
 print(classification_report(test_set.classes,
 model_predictions_weights, target_names=target_names), '\n')
 print('F1 Score',f1_score(test_set.classes,
 model_predictions_weights, average='weighted'))
 print('MCC \t', matthews_corrcoef(test_set.classes,
 model_predictions_weights))
 print('Accuracy Score \t', accuracy_score(test_set.classes,
 model_predictions_weights))

FIGURE 8: Result of Evaluation from Weighted Voted Based Ensemble

Network

All the code mentioned in the screenshots above are provided with the ICT solution for
this project.

Works Cited
Google, n.d. Collaboratory : - Frequently Asked Questions. [Online]
Available at: https://research.google.com/colaboratory/faq.html
[Accessed 8 December 2020].

Chollet, F., 2020. Grad-CAM class activation visualization. [Online]
Available at: https://keras.io/examples/vision/grad_cam/
[Accessed 10 December 2020].

Kumar, D. V., 2020. Hands-on Guide To Implementing AlexNet With Keras For Multi-Class
Image Classification. [Online]
Available at: https://analyticsindiamag.com/hands-on-guide-to-implementing-alexnet-with-
keras-for-multi-class-image-classification/
[Accessed 10 November 2020].

